Supported Versions: 15 / 14 / 13 / 12
Unsupported versions: 11 / 10 / 9.6 / 9.5 / 9.4 / 9.3 / 9.2 / 9.1 / 9.0 / 8.4 / 8.3 / 8.2 / 8.1 / 8.0 / 7.4 / 7.3 / 7.2 / 7.1

17.4. Installation Procedure

  1. Configuration

    The first step of the installation procedure is to configure the source tree for your system and choose the options you would like. This is done by running the configure script. For a default installation simply enter:

    ./configure
    

    This script will run a number of tests to determine values for various system dependent variables and detect any quirks of your operating system, and finally will create several files in the build tree to record what it found.

    You can also run configure in a directory outside the source tree, and then build there, if you want to keep the build directory separate from the original source files. This procedure is called a VPATH build. Here's how:

    mkdir build_dir
    cd build_dir
    /path/to/source/tree/configure [options go here]
    make
    

    The default configuration will build the server and utilities, as well as all client applications and interfaces that require only a C compiler. All files will be installed under /usr/local/pgsql by default.

    You can customize the build and installation process by supplying one or more command line options to configure. Typically you would customize the install location, or the set of optional features that are built. configure has a large number of options, which are described in Section 17.4.1.

    Also, configure responds to certain environment variables, as described in Section 17.4.2. These provide additional ways to customize the configuration.

  2. Build

    To start the build, type either of:

    make
    make all
    

    (Remember to use GNU make.) The build will take a few minutes depending on your hardware.

    If you want to build everything that can be built, including the documentation (HTML and man pages), and the additional modules (contrib), type instead:

    make world
    

    If you want to build everything that can be built, including the additional modules (contrib), but without the documentation, type instead:

    make world-bin
    

    If you want to invoke the build from another makefile rather than manually, you must unset MAKELEVEL or set it to zero, for instance like this:

    build-postgresql:
            $(MAKE) -C postgresql MAKELEVEL=0 all
    

    Failure to do that can lead to strange error messages, typically about missing header files.

  3. Regression Tests

    If you want to test the newly built server before you install it, you can run the regression tests at this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in the way the developers expected it to. Type:

    make check
    

    (This won't work as root; do it as an unprivileged user.) See Chapter 33 for detailed information about interpreting the test results. You can repeat this test at any later time by issuing the same command.

  4. Installing the Files

    Note

    If you are upgrading an existing system be sure to read Section 19.6, which has instructions about upgrading a cluster.

    To install PostgreSQL enter:

    make install
    

    This will install files into the directories that were specified in Step 1. Make sure that you have appropriate permissions to write into that area. Normally you need to do this step as root. Alternatively, you can create the target directories in advance and arrange for appropriate permissions to be granted.

    To install the documentation (HTML and man pages), enter:

    make install-docs
    

    If you built the world above, type instead:

    make install-world
    

    This also installs the documentation.

    If you built the world without the documentation above, type instead:

    make install-world-bin
    

    You can use make install-strip instead of make install to strip the executable files and libraries as they are installed. This will save some space. If you built with debugging support, stripping will effectively remove the debugging support, so it should only be done if debugging is no longer needed. install-strip tries to do a reasonable job saving space, but it does not have perfect knowledge of how to strip every unneeded byte from an executable file, so if you want to save all the disk space you possibly can, you will have to do manual work.

    The standard installation provides all the header files needed for client application development as well as for server-side program development, such as custom functions or data types written in C.

    Client-only installation:  If you want to install only the client applications and interface libraries, then you can use these commands:

    make -C src/bin install
    make -C src/include install
    make -C src/interfaces install
    make -C doc install
    

    src/bin has a few binaries for server-only use, but they are small.

Uninstallation:  To undo the installation use the command make uninstall. However, this will not remove any created directories.

Cleaning:  After the installation you can free disk space by removing the built files from the source tree with the command make clean. This will preserve the files made by the configure program, so that you can rebuild everything with make later on. To reset the source tree to the state in which it was distributed, use make distclean. If you are going to build for several platforms within the same source tree you must do this and re-configure for each platform. (Alternatively, use a separate build tree for each platform, so that the source tree remains unmodified.)

If you perform a build and then discover that your configure options were wrong, or if you change anything that configure investigates (for example, software upgrades), then it's a good idea to do make distclean before reconfiguring and rebuilding. Without this, your changes in configuration choices might not propagate everywhere they need to.

17.4.1. configure Options

configure's command line options are explained below. This list is not exhaustive (use ./configure --help to get one that is). The options not covered here are meant for advanced use-cases such as cross-compilation, and are documented in the standard Autoconf documentation.

17.4.1.1. Installation Locations

These options control where make install will put the files. The --prefix option is sufficient for most cases. If you have special needs, you can customize the installation subdirectories with the other options described in this section. Beware however that changing the relative locations of the different subdirectories may render the installation non-relocatable, meaning you won't be able to move it after installation. (The man and doc locations are not affected by this restriction.) For relocatable installs, you might want to use the --disable-rpath option described later.

--prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsql. The actual files will be installed into various subdirectories; no files will ever be installed directly into the PREFIX directory.

--exec-prefix=EXEC-PREFIX

You can install architecture-dependent files under a different prefix, EXEC-PREFIX, than what PREFIX was set to. This can be useful to share architecture-independent files between hosts. If you omit this, then EXEC-PREFIX is set equal to PREFIX and both architecture-dependent and independent files will be installed under the same tree, which is probably what you want.

--bindir=DIRECTORY

Specifies the directory for executable programs. The default is EXEC-PREFIX/bin, which normally means /usr/local/pgsql/bin.

--sysconfdir=DIRECTORY

Sets the directory for various configuration files, PREFIX/etc by default.

--libdir=DIRECTORY

Sets the location to install libraries and dynamically loadable modules. The default is EXEC-PREFIX/lib.

--includedir=DIRECTORY

Sets the directory for installing C and C++ header files. The default is PREFIX/include.

--datarootdir=DIRECTORY

Sets the root directory for various types of read-only data files. This only sets the default for some of the following options. The default is PREFIX/share.

--datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is DATAROOTDIR. Note that this has nothing to do with where your database files will be placed.

--localedir=DIRECTORY

Sets the directory for installing locale data, in particular message translation catalog files. The default is DATAROOTDIR/locale.

--mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their respective manx subdirectories. The default is DATAROOTDIR/man.

--docdir=DIRECTORY

Sets the root directory for installing documentation files, except man pages. This only sets the default for the following options. The default value for this option is DATAROOTDIR/doc/postgresql.

--htmldir=DIRECTORY

The HTML-formatted documentation for PostgreSQL will be installed under this directory. The default is DATAROOTDIR.

Note

Care has been taken to make it possible to install PostgreSQL into shared installation locations (such as /usr/local/include) without interfering with the namespace of the rest of the system. First, the string /postgresql is automatically appended to datadir, sysconfdir, and docdir, unless the fully expanded directory name already contains the string postgres or pgsql. For example, if you choose /usr/local as prefix, the documentation will be installed in /usr/local/doc/postgresql, but if the prefix is /opt/postgres, then it will be in /opt/postgres/doc. The public C header files of the client interfaces are installed into includedir and are namespace-clean. The internal header files and the server header files are installed into private directories under includedir. See the documentation of each interface for information about how to access its header files. Finally, a private subdirectory will also be created, if appropriate, under libdir for dynamically loadable modules.

17.4.1.2. PostgreSQL Features

The options described in this section enable building of various PostgreSQL features that are not built by default. Most of these are non-default only because they require additional software, as described in Section 17.2.

--enable-nls[=LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program's messages in a language other than English. LANGUAGES is an optional space-separated list of codes of the languages that you want supported, for example --enable-nls='de fr'. (The intersection between your list and the set of actually provided translations will be computed automatically.) If you do not specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API.

--with-perl

Build the PL/Perl server-side language.

--with-python

Build the PL/Python server-side language.

--with-tcl

Build the PL/Tcl server-side language.

--with-tclconfig=DIRECTORY

Tcl installs the file tclConfig.sh, which contains configuration information needed to build modules interfacing to Tcl. This file is normally found automatically at a well-known location, but if you want to use a different version of Tcl you can specify the directory in which to look for tclConfig.sh.

--with-icu

Build with support for the ICU library, enabling use of ICU collation features (see Section 24.2). This requires the ICU4C package to be installed. The minimum required version of ICU4C is currently 4.2.

By default, pkg-config will be used to find the required compilation options. This is supported for ICU4C version 4.6 and later. For older versions, or if pkg-config is not available, the variables ICU_CFLAGS and ICU_LIBS can be specified to configure, like in this example:

./configure ... --with-icu ICU_CFLAGS='-I/some/where/include' ICU_LIBS='-L/some/where/lib -licui18n -licuuc -licudata'

(If ICU4C is in the default search path for the compiler, then you still need to specify nonempty strings in order to avoid use of pkg-config, for example, ICU_CFLAGS=' '.)

--with-llvm

Build with support for LLVM based JIT compilation (see Chapter 32). This requires the LLVM library to be installed. The minimum required version of LLVM is currently 3.9.

llvm-config will be used to find the required compilation options. llvm-config, and then llvm-config-$major-$minor for all supported versions, will be searched for in your PATH. If that would not yield the desired program, use LLVM_CONFIG to specify a path to the correct llvm-config. For example

./configure ... --with-llvm LLVM_CONFIG='/path/to/llvm/bin/llvm-config'

LLVM support requires a compatible clang compiler (specified, if necessary, using the CLANG environment variable), and a working C++ compiler (specified, if necessary, using the CXX environment variable).

--with-lz4

Build with LZ4 compression support.

--with-zstd

Build with Zstandard compression support.

--with-ssl=LIBRARY

Build with support for SSL (encrypted) connections. The only LIBRARY supported is openssl. This requires the OpenSSL package to be installed. configure will check for the required header files and libraries to make sure that your OpenSSL installation is sufficient before proceeding.

--with-openssl

Obsolete equivalent of --with-ssl=openssl.

--with-gssapi

Build with support for GSSAPI authentication. On many systems, the GSSAPI system (usually a part of the Kerberos installation) is not installed in a location that is searched by default (e.g., /usr/include, /usr/lib), so you must use the options --with-includes and --with-libraries in addition to this option. configure will check for the required header files and libraries to make sure that your GSSAPI installation is sufficient before proceeding.

--with-ldap

Build with LDAP support for authentication and connection parameter lookup (see Section 34.18 and Section 21.10 for more information). On Unix, this requires the OpenLDAP package to be installed. On Windows, the default WinLDAP library is used. configure will check for the required header files and libraries to make sure that your OpenLDAP installation is sufficient before proceeding.

--with-pam

Build with PAM (Pluggable Authentication Modules) support.

--with-bsd-auth

Build with BSD Authentication support. (The BSD Authentication framework is currently only available on OpenBSD.)

--with-systemd

Build with support for systemd service notifications. This improves integration if the server is started under systemd but has no impact otherwise; see Section 19.3 for more information. libsystemd and the associated header files need to be installed to use this option.

--with-bonjour

Build with support for Bonjour automatic service discovery. This requires Bonjour support in your operating system. Recommended on macOS.

--with-uuid=LIBRARY

Build the uuid-ossp module (which provides functions to generate UUIDs), using the specified UUID library. LIBRARY must be one of:

  • bsd to use the UUID functions found in FreeBSD and some other BSD-derived systems

  • e2fs to use the UUID library created by the e2fsprogs project; this library is present in most Linux systems and in macOS, and can be obtained for other platforms as well

  • ossp to use the OSSP UUID library

--with-ossp-uuid

Obsolete equivalent of --with-uuid=ossp.

--with-libxml

Build with libxml2, enabling SQL/XML support. Libxml2 version 2.6.23 or later is required for this feature.

To detect the required compiler and linker options, PostgreSQL will query pkg-config, if that is installed and knows about libxml2. Otherwise the program xml2-config, which is installed by libxml2, will be used if it is found. Use of pkg-config is preferred, because it can deal with multi-architecture installations better.

To use a libxml2 installation that is in an unusual location, you can set pkg-config-related environment variables (see its documentation), or set the environment variable XML2_CONFIG to point to the xml2-config program belonging to the libxml2 installation, or set the variables XML2_CFLAGS and XML2_LIBS. (If pkg-config is installed, then to override its idea of where libxml2 is you must either set XML2_CONFIG or set both XML2_CFLAGS and XML2_LIBS to nonempty strings.)

--with-libxslt

Build with libxslt, enabling the xml2 module to perform XSL transformations of XML. --with-libxml must be specified as well.

17.4.1.3. Anti-Features

The options described in this section allow disabling certain PostgreSQL features that are built by default, but which might need to be turned off if the required software or system features are not available. Using these options is not recommended unless really necessary.

--without-readline

Prevents use of the Readline library (and libedit as well). This option disables command-line editing and history in psql.

--with-libedit-preferred

Favors the use of the BSD-licensed libedit library rather than GPL-licensed Readline. This option is significant only if you have both libraries installed; the default in that case is to use Readline.

--without-zlib

Prevents use of the Zlib library. This disables support for compressed archives in pg_dump and pg_restore.

--disable-spinlocks

Allow the build to succeed even if PostgreSQL has no CPU spinlock support for the platform. The lack of spinlock support will result in very poor performance; therefore, this option should only be used if the build aborts and informs you that the platform lacks spinlock support. If this option is required to build PostgreSQL on your platform, please report the problem to the PostgreSQL developers.

--disable-atomics

Disable use of CPU atomic operations. This option does nothing on platforms that lack such operations. On platforms that do have them, this will result in poor performance. This option is only useful for debugging or making performance comparisons.

--disable-thread-safety

Disable the thread-safety of client libraries. This prevents concurrent threads in libpq and ECPG programs from safely controlling their private connection handles. Use this only on platforms with deficient threading support.

17.4.1.4. Build Process Details

--with-includes=DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the compiler searches for header files. If you have optional packages (such as GNU Readline) installed in a non-standard location, you have to use this option and probably also the corresponding --with-libraries option.

Example: --with-includes=/opt/gnu/include:/usr/sup/include.

--with-libraries=DIRECTORIES

DIRECTORIES is a colon-separated list of directories to search for libraries. You will probably have to use this option (and the corresponding --with-includes option) if you have packages installed in non-standard locations.

Example: --with-libraries=/opt/gnu/lib:/usr/sup/lib.

--with-system-tzdata=DIRECTORY

PostgreSQL includes its own time zone database, which it requires for date and time operations. This time zone database is in fact compatible with the IANA time zone database provided by many operating systems such as FreeBSD, Linux, and Solaris, so it would be redundant to install it again. When this option is used, the system-supplied time zone database in DIRECTORY is used instead of the one included in the PostgreSQL source distribution. DIRECTORY must be specified as an absolute path. /usr/share/zoneinfo is a likely directory on some operating systems. Note that the installation routine will not detect mismatching or erroneous time zone data. If you use this option, you are advised to run the regression tests to verify that the time zone data you have pointed to works correctly with PostgreSQL.

This option is mainly aimed at binary package distributors who know their target operating system well. The main advantage of using this option is that the PostgreSQL package won't need to be upgraded whenever any of the many local daylight-saving time rules change. Another advantage is that PostgreSQL can be cross-compiled more straightforwardly if the time zone database files do not need to be built during the installation.

--with-extra-version=STRING

Append STRING to the PostgreSQL version number. You can use this, for example, to mark binaries built from unreleased Git snapshots or containing custom patches with an extra version string, such as a git describe identifier or a distribution package release number.

--disable-rpath

Do not mark PostgreSQL's executables to indicate that they should search for shared libraries in the installation's library directory (see --libdir). On most platforms, this marking uses an absolute path to the library directory, so that it will be unhelpful if you relocate the installation later. However, you will then need to provide some other way for the executables to find the shared libraries. Typically this requires configuring the operating system's dynamic linker to search the library directory; see Section 17.5.1 for more detail.

17.4.1.5. Miscellaneous

It's fairly common, particularly for test builds, to adjust the default port number with --with-pgport. The other options in this section are recommended only for advanced users.

--with-pgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port can always be changed later on, but if you specify it here then both server and clients will have the same default compiled in, which can be very convenient. Usually the only good reason to select a non-default value is if you intend to run multiple PostgreSQL servers on the same machine.

--with-krb-srvnam=NAME

The default name of the Kerberos service principal used by GSSAPI. postgres is the default. There's usually no reason to change this unless you are building for a Windows environment, in which case it must be set to upper case POSTGRES.

--with-segsize=SEGSIZE

Set the segment size, in gigabytes. Large tables are divided into multiple operating-system files, each of size equal to the segment size. This avoids problems with file size limits that exist on many platforms. The default segment size, 1 gigabyte, is safe on all supported platforms. If your operating system has largefile support (which most do, nowadays), you can use a larger segment size. This can be helpful to reduce the number of file descriptors consumed when working with very large tables. But be careful not to select a value larger than is supported by your platform and the file systems you intend to use. Other tools you might wish to use, such as tar, could also set limits on the usable file size. It is recommended, though not absolutely required, that this value be a power of 2. Note that changing this value breaks on-disk database compatibility, meaning you cannot use pg_upgrade to upgrade to a build with a different segment size.

--with-blocksize=BLOCKSIZE

Set the block size, in kilobytes. This is the unit of storage and I/O within tables. The default, 8 kilobytes, is suitable for most situations; but other values may be useful in special cases. The value must be a power of 2 between 1 and 32 (kilobytes). Note that changing this value breaks on-disk database compatibility, meaning you cannot use pg_upgrade to upgrade to a build with a different block size.

--with-wal-blocksize=BLOCKSIZE

Set the WAL block size, in kilobytes. This is the unit of storage and I/O within the WAL log. The default, 8 kilobytes, is suitable for most situations; but other values may be useful in special cases. The value must be a power of 2 between 1 and 64 (kilobytes). Note that changing this value breaks on-disk database compatibility, meaning you cannot use pg_upgrade to upgrade to a build with a different WAL block size.

17.4.1.6. Developer Options

Most of the options in this section are only of interest for developing or debugging PostgreSQL. They are not recommended for production builds, except for --enable-debug, which can be useful to enable detailed bug reports in the unlucky event that you encounter a bug. On platforms supporting DTrace, --enable-dtrace may also be reasonable to use in production.

When building an installation that will be used to develop code inside the server, it is recommended to use at least the options --enable-debug and --enable-cassert.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run the programs in a debugger to analyze problems. This enlarges the size of the installed executables considerably, and on non-GCC compilers it usually also disables compiler optimization, causing slowdowns. However, having the symbols available is extremely helpful for dealing with any problems that might arise. Currently, this option is recommended for production installations only if you use GCC. But you should always have it on if you are doing development work or running a beta version.

--enable-cassert

Enables assertion checks in the server, which test for many cannot happen conditions. This is invaluable for code development purposes, but the tests can slow down the server significantly. Also, having the tests turned on won't necessarily enhance the stability of your server! The assertion checks are not categorized for severity, and so what might be a relatively harmless bug will still lead to server restarts if it triggers an assertion failure. This option is not recommended for production use, but you should have it on for development work or when running a beta version.

--enable-tap-tests

Enable tests using the Perl TAP tools. This requires a Perl installation and the Perl module IPC::Run. See Section 33.4 for more information.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that all affected object files will be rebuilt when any header file is changed. This is useful if you are doing development work, but is just wasted overhead if you intend only to compile once and install. At present, this option only works with GCC.

--enable-coverage

If using GCC, all programs and libraries are compiled with code coverage testing instrumentation. When run, they generate files in the build directory with code coverage metrics. See Section 33.5 for more information. This option is for use only with GCC and when doing development work.

--enable-profiling

If using GCC, all programs and libraries are compiled so they can be profiled. On backend exit, a subdirectory will be created that contains the gmon.out file containing profile data. This option is for use only with GCC and when doing development work.

--enable-dtrace

Compiles PostgreSQL with support for the dynamic tracing tool DTrace. See Section 28.5 for more information.

To point to the dtrace program, the environment variable DTRACE can be set. This will often be necessary because dtrace is typically installed under /usr/sbin, which might not be in your PATH.

Extra command-line options for the dtrace program can be specified in the environment variable DTRACEFLAGS. On Solaris, to include DTrace support in a 64-bit binary, you must specify DTRACEFLAGS="-64". For example, using the GCC compiler:

./configure CC='gcc -m64' --enable-dtrace DTRACEFLAGS='-64' ...

Using Sun's compiler:

./configure CC='/opt/SUNWspro/bin/cc -xtarget=native64' --enable-dtrace DTRACEFLAGS='-64' ...

17.4.2. configure Environment Variables

In addition to the ordinary command-line options described above, configure responds to a number of environment variables. You can specify environment variables on the configure command line, for example:

./configure CC=/opt/bin/gcc CFLAGS='-O2 -pipe'

In this usage an environment variable is little different from a command-line option. You can also set such variables beforehand:

export CC=/opt/bin/gcc
export CFLAGS='-O2 -pipe'
./configure

This usage can be convenient because many programs' configuration scripts respond to these variables in similar ways.

The most commonly used of these environment variables are CC and CFLAGS. If you prefer a C compiler different from the one configure picks, you can set the variable CC to the program of your choice. By default, configure will pick gcc if available, else the platform's default (usually cc). Similarly, you can override the default compiler flags if needed with the CFLAGS variable.

Here is a list of the significant variables that can be set in this manner:

BISON

Bison program

CC

C compiler

CFLAGS

options to pass to the C compiler

CLANG

path to clang program used to process source code for inlining when compiling with --with-llvm

CPP

C preprocessor

CPPFLAGS

options to pass to the C preprocessor

CXX

C++ compiler

CXXFLAGS

options to pass to the C++ compiler

DTRACE

location of the dtrace program

DTRACEFLAGS

options to pass to the dtrace program

FLEX

Flex program

LDFLAGS

options to use when linking either executables or shared libraries

LDFLAGS_EX

additional options for linking executables only

LDFLAGS_SL

additional options for linking shared libraries only

LLVM_CONFIG

llvm-config program used to locate the LLVM installation

MSGFMT

msgfmt program for native language support

PERL

Perl interpreter program. This will be used to determine the dependencies for building PL/Perl. The default is perl.

PYTHON

Python interpreter program. This will be used to determine the dependencies for building PL/Python. If this is not set, the following are probed in this order: python3 python.

TCLSH

Tcl interpreter program. This will be used to determine the dependencies for building PL/Tcl. If this is not set, the following are probed in this order: tclsh tcl tclsh8.6 tclsh86 tclsh8.5 tclsh85 tclsh8.4 tclsh84.

XML2_CONFIG

xml2-config program used to locate the libxml2 installation

Sometimes it is useful to add compiler flags after-the-fact to the set that were chosen by configure. An important example is that gcc's -Werror option cannot be included in the CFLAGS passed to configure, because it will break many of configure's built-in tests. To add such flags, include them in the COPT environment variable while running make. The contents of COPT are added to both the CFLAGS and LDFLAGS options set up by configure. For example, you could do

make COPT='-Werror'

or

export COPT='-Werror'
make

Note

If using GCC, it is best to build with an optimization level of at least -O1, because using no optimization (-O0) disables some important compiler warnings (such as the use of uninitialized variables). However, non-zero optimization levels can complicate debugging because stepping through compiled code will usually not match up one-to-one with source code lines. If you get confused while trying to debug optimized code, recompile the specific files of interest with -O0. An easy way to do this is by passing an option to make: make PROFILE=-O0 file.o.

The COPT and PROFILE environment variables are actually handled identically by the PostgreSQL makefiles. Which to use is a matter of preference, but a common habit among developers is to use PROFILE for one-time flag adjustments, while COPT might be kept set all the time.

Submit correction

If you see anything in the documentation that is not correct, does not match your experience with the particular feature or requires further clarification, please use this form to report a documentation issue.