September 26, 2024: PostgreSQL 17 Released!
Supported Versions: Current (17) / 16 / 15 / 14 / 13 / 12
Development Versions: devel
Unsupported versions: 11 / 10 / 9.6 / 9.5 / 9.4 / 9.3 / 9.2 / 9.1 / 9.0 / 8.4 / 8.3 / 8.2 / 8.1 / 8.0 / 7.4 / 7.3 / 7.2 / 7.1

8.9. Network Address Types #

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better to use these types instead of plain text types to store network addresses, because these types offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description
cidr 7 or 19 bytes IPv4 and IPv6 networks
inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses
macaddr8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet #

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet is represented by the number of network address bits present in the host address (the netmask). If the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the number of bits in the netmask. If the /y portion is omitted, the netmask is taken to be 32 for IPv4 or 128 for IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies a single host.

8.9.2. cidr #

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless Internet Domain Routing conventions. The format for specifying networks is address/y where address is the network's lowest address represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering system, except it will be at least large enough to include all of the octets written in the input. It is an error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table 8.22. cidr Type Input Examples

cidr Input cidr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16
128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16
10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128 2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128 2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128
::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120
::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. inet vs. cidr #

The essential difference between inet and cidr data types is that inet accepts values with nonzero bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for inet but not for cidr.

Tip

If you do not like the output format for inet or cidr values, try the functions host, text, and abbrev.

8.9.4. macaddr #

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses (although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03'
'08-00-2b-01-02-03'
'08002b:010203'
'08002b-010203'
'0800.2b01.0203'
'0800-2b01-0203'
'08002b010203'

These examples all specify the same address. Upper and lower case is accepted for the digits a through f. Output is always in the first of the forms shown.

IEEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form for MAC addresses, and specifies the first form (with colons) as used with bit-reversed, MSB-first notation, so that 08-00-2b-01-02-03 = 10:00:D4:80:40:C0. This convention is widely ignored nowadays, and it is relevant only for obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal; all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddr8 #

The macaddr8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card hardware addresses (although MAC addresses are used for other purposes as well). This type can accept both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE, respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after the conversion from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally speaking, any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated consistently by one of ':', '-' or '.', is accepted. The number of hex digits must be either 16 (8 bytes) or 12 (6 bytes). Leading and trailing whitespace is ignored. The following are examples of input formats that are accepted:

'08:00:2b:01:02:03:04:05'
'08-00-2b-01-02-03-04-05'
'08002b:0102030405'
'08002b-0102030405'
'0800.2b01.0203.0405'
'0800-2b01-0203-0405'
'08002b01:02030405'
'08002b0102030405'

These examples all specify the same address. Upper and lower case is accepted for the digits a through f. Output is always in the first of the forms shown.

The last six input formats shown above are not part of any standard.

To convert a traditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included as the host portion of an IPv6 address, use macaddr8_set7bit as shown:

SELECT macaddr8_set7bit('08:00:2b:01:02:03');

    macaddr8_set7bit
-------------------------
 0a:00:2b:ff:fe:01:02:03
(1 row)

Submit correction

If you see anything in the documentation that is not correct, does not match your experience with the particular feature or requires further clarification, please use this form to report a documentation issue.