Supported Versions: Current (16) / 15 / 14 / 13 / 12
Development Versions: 17 / devel
Unsupported versions: 11 / 10 / 9.6 / 9.5 / 9.4 / 9.3 / 9.2 / 9.1 / 9.0 / 8.4 / 8.3 / 8.2 / 8.1
This documentation is for an unsupported version of PostgreSQL.
You may want to view the same page for the current version, or one of the other supported versions listed above instead.

28.3. Write-Ahead Logging (WAL) #

Write-Ahead Logging (WAL) is a standard method for ensuring data integrity. A detailed description can be found in most (if not all) books about transaction processing. Briefly, WAL's central concept is that changes to data files (where tables and indexes reside) must be written only after those changes have been logged, that is, after WAL records describing the changes have been flushed to permanent storage. If we follow this procedure, we do not need to flush data pages to disk on every transaction commit, because we know that in the event of a crash we will be able to recover the database using the log: any changes that have not been applied to the data pages can be redone from the WAL records. (This is roll-forward recovery, also known as REDO.)

Tip

Because WAL restores database file contents after a crash, journaled file systems are not necessary for reliable storage of the data files or WAL files. In fact, journaling overhead can reduce performance, especially if journaling causes file system data to be flushed to disk. Fortunately, data flushing during journaling can often be disabled with a file system mount option, e.g., data=writeback on a Linux ext3 file system. Journaled file systems do improve boot speed after a crash.

Using WAL results in a significantly reduced number of disk writes, because only the WAL file needs to be flushed to disk to guarantee that a transaction is committed, rather than every data file changed by the transaction. The WAL file is written sequentially, and so the cost of syncing the WAL is much less than the cost of flushing the data pages. This is especially true for servers handling many small transactions touching different parts of the data store. Furthermore, when the server is processing many small concurrent transactions, one fsync of the WAL file may suffice to commit many transactions.

WAL also makes it possible to support on-line backup and point-in-time recovery, as described in Section 25.3. By archiving the WAL data we can support reverting to any time instant covered by the available WAL data: we simply install a prior physical backup of the database, and replay the WAL just as far as the desired time. What's more, the physical backup doesn't have to be an instantaneous snapshot of the database state — if it is made over some period of time, then replaying the WAL for that period will fix any internal inconsistencies.