September 26, 2024: PostgreSQL 17 Released!
Supported Versions: Current (17) / 16 / 15 / 14 / 13 / 12
Development Versions: devel
Unsupported versions: 11 / 10 / 9.6 / 9.5 / 9.4 / 9.3 / 9.2 / 9.1 / 9.0 / 8.4 / 8.3 / 8.2 / 8.1 / 8.0 / 7.4 / 7.3 / 7.2 / 7.1
This documentation is for an unsupported version of PostgreSQL.
You may want to view the same page for the current version, or one of the other supported versions listed above instead.

25.2. File System Level Backup

An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in the database; Section 18.2 explains where these files are located. You can use whatever method you prefer for doing file system backups; for example:

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the pg_dump method:

  1. The database server must be shut down in order to get a usable backup. Half-way measures such as disallowing all connections will not work (in part because tar and similar tools do not take an atomic snapshot of the state of the file system, but also because of internal buffering within the server). Information about stopping the server can be found in Section 18.5. Needless to say, you also need to shut down the server before restoring the data.

  2. If you have dug into the details of the file system layout of the database, you might be tempted to try to back up or restore only certain individual tables or databases from their respective files or directories. This will not work because the information contained in these files is not usable without the commit log files, pg_xact/*, which contain the commit status of all transactions. A table file is only usable with this information. Of course it is also impossible to restore only a table and the associated pg_xact data because that would render all other tables in the database cluster useless. So file system backups only work for complete backup and restoration of an entire database cluster.

An alternative file-system backup approach is to make a consistent snapshot of the data directory, if the file system supports that functionality (and you are willing to trust that it is implemented correctly). The typical procedure is to make a frozen snapshot of the volume containing the database, then copy the whole data directory (not just parts, see above) from the snapshot to a backup device, then release the frozen snapshot. This will work even while the database server is running. However, a backup created in this way saves the database files in a state as if the database server was not properly shut down; therefore, when you start the database server on the backed-up data, it will think the previous server instance crashed and will replay the WAL log. This is not a problem; just be aware of it (and be sure to include the WAL files in your backup). You can perform a CHECKPOINT before taking the snapshot to reduce recovery time.

If your database is spread across multiple file systems, there might not be any way to obtain exactly-simultaneous frozen snapshots of all the volumes. For example, if your data files and WAL log are on different disks, or if tablespaces are on different file systems, it might not be possible to use snapshot backup because the snapshots must be simultaneous. Read your file system documentation very carefully before trusting the consistent-snapshot technique in such situations.

If simultaneous snapshots are not possible, one option is to shut down the database server long enough to establish all the frozen snapshots. Another option is to perform a continuous archiving base backup (Section 25.3.2) because such backups are immune to file system changes during the backup. This requires enabling continuous archiving just during the backup process; restore is done using continuous archive recovery (Section 25.3.4).

Another option is to use rsync to perform a file system backup. This is done by first running rsync while the database server is running, then shutting down the database server long enough to do an rsync --checksum. (--checksum is necessary because rsync only has file modification-time granularity of one second.) The second rsync will be quicker than the first, because it has relatively little data to transfer, and the end result will be consistent because the server was down. This method allows a file system backup to be performed with minimal downtime.

Note that a file system backup will typically be larger than an SQL dump. (pg_dump does not need to dump the contents of indexes for example, just the commands to recreate them.) However, taking a file system backup might be faster.