8th August 2019: PostgreSQL 11.5, 10.10, 9.6.15, 9.5.19, 9.4.24, and 12 Beta 3 Released!

This documentation is for an unsupported version of PostgreSQL.

You may want to view the same page for the current version, or one of the supported versions listed above instead.

You may want to view the same page for the current version, or one of the supported versions listed above instead.

PostgreSQL 9.3.25 Documentation | ||||
---|---|---|---|---|

Prev | Up | Chapter 9. Functions and Operators | Next |

*Aggregate functions* compute a single
result from a set of input values. The built-in aggregate functions
are listed in Table 9-47
and Table
9-48. The special syntax considerations for aggregate functions
are explained in Section 4.2.7. Consult
Section 2.7 for additional
introductory information.

**Table 9-47. General-Purpose Aggregate Functions**

Function | Argument Type(s) | Return Type | Description |
---|---|---|---|

`array_agg(` |
any | array of the argument type | input values, including nulls, concatenated into an array |

`avg(` |
smallint, int,
bigint, real,
double precision, numeric, or interval |
numeric for any integer-type argument,
double precision for a floating-point
argument, otherwise the same as the argument data type |
the average (arithmetic mean) of all input values |

`bit_and(` |
smallint, int,
bigint, or bit |
same as argument data type | the bitwise AND of all non-null input values, or null if none |

`bit_or(` |
smallint, int,
bigint, or bit |
same as argument data type | the bitwise OR of all non-null input values, or null if none |

`bool_and(` |
bool |
bool |
true if all input values are true, otherwise false |

`bool_or(` |
bool |
bool |
true if at least one input value is true, otherwise false |

`count(*)` |
bigint |
number of input rows | |

`count(` |
any | bigint |
number of input rows for which the value of expression is not null |

`every(` |
bool |
bool |
equivalent to `bool_and` |

`json_agg(` |
any |
json |
aggregates values as a JSON array |

`max(` |
any array, numeric, string, or date/time type | same as argument type | maximum value of expression
across all input values |

`min(` |
any array, numeric, string, or date/time type | same as argument type | minimum value of expression
across all input values |

`string_agg(` |
(text, text) or
(bytea, bytea) |
same as argument types | input values concatenated into a string, separated by delimiter |

`sum(` |
smallint, int,
bigint, real,
double precision, numeric, interval, or money |
bigint for smallint
or int arguments, numeric for bigint arguments,
otherwise the same as the argument data type |
sum of expression across all
input values |

`xmlagg(` |
xml |
xml |
concatenation of XML values (see also Section 9.14.1.7) |

It should be noted that except for `count`

, these functions return a null value when
no rows are selected. In particular, `sum`

of no rows returns null, not zero as one
might expect, and `array_agg`

returns
null rather than an empty array when there are no input rows. The
`coalesce`

function can be used to
substitute zero or an empty array for null when necessary.

Note:Boolean aggregates`bool_and`

and`bool_or`

correspond to standard SQL aggregates`every`

and`any`

or`some`

. As for`any`

and`some`

, it seems that there is an ambiguity built into the standard syntax:SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;Here

`ANY`

can be considered either as introducing a subquery, or as being an aggregate function, if the subquery returns one row with a Boolean value. Thus the standard name cannot be given to these aggregates.

Note:Users accustomed to working with other SQL database management systems might be disappointed by the performance of the`count`

aggregate when it is applied to the entire table. A query like:SELECT count(*) FROM sometable;will require effort proportional to the size of the table: PostgreSQL will need to scan either the entire table or the entirety of an index which includes all rows in the table.

The aggregate functions `array_agg`

,
`json_agg`

, `string_agg`

, and `xmlagg`

, as well as similar user-defined aggregate
functions, produce meaningfully different result values depending
on the order of the input values. This ordering is unspecified by
default, but can be controlled by writing an `ORDER BY` clause within the aggregate call, as shown
in Section
4.2.7. Alternatively, supplying the input values from a sorted
subquery will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems.

Table
9-48 shows aggregate functions typically used in statistical
analysis. (These are separated out merely to avoid cluttering the
listing of more-commonly-used aggregates.) Where the description
mentions `N`, it means the number of
input rows for which all the input expressions are non-null. In all
cases, null is returned if the computation is meaningless, for
example when `N` is zero.

**Table 9-48. Aggregate Functions for Statistics**

Function | Argument Type | Return Type | Description |
---|---|---|---|

`corr(` |
double precision |
double precision |
correlation coefficient |

`covar_pop(` |
double precision |
double precision |
population covariance |

`covar_samp(` |
double precision |
double precision |
sample covariance |

`regr_avgx(` |
double precision |
double precision |
average of the independent variable (sum()X)/N |

`regr_avgy(` |
double precision |
double precision |
average of the dependent variable (sum()Y)/N |

`regr_count(` |
double precision |
bigint |
number of input rows in which both expressions are nonnull |

`regr_intercept(` |
double precision |
double precision |
y-intercept of the least-squares-fit linear equation determined
by the (X, Y) pairs |

`regr_r2(` |
double precision |
double precision |
square of the correlation coefficient |

`regr_slope(` |
double precision |
double precision |
slope of the least-squares-fit linear equation determined by
the (X, Y) pairs |

`regr_sxx(` |
double precision |
double precision |
sum( ("sum of
squares" of the independent variable)X^2) -
sum(X)^2/N |

`regr_sxy(` |
double precision |
double precision |
sum(
("sum of products" of independent times
dependent variable)X*Y) -
sum(X) * sum(Y)/N |

`regr_syy(` |
double precision |
double precision |
sum( ("sum of
squares" of the dependent variable)Y^2) -
sum(Y)^2/N |

`stddev(` |
smallint, int,
bigint, real,
double precision, or numeric |
double precision for floating-point
arguments, otherwise numeric |
historical alias for `stddev_samp` |

`stddev_pop(` |
smallint, int,
bigint, real,
double precision, or numeric |
double precision for floating-point
arguments, otherwise numeric |
population standard deviation of the input values |

`stddev_samp(` |
smallint, int,
bigint, real,
double precision, or numeric |
double precision for floating-point
arguments, otherwise numeric |
sample standard deviation of the input values |

`variance` (expression) |
smallint, int,
bigint, real,
double precision, or numeric |
double precision for floating-point
arguments, otherwise numeric |
historical alias for `var_samp` |

`var_pop` (expression) |
smallint, int,
bigint, real,
double precision, or numeric |
double precision for floating-point
arguments, otherwise numeric |
population variance of the input values (square of the population standard deviation) |

`var_samp` (expression) |
smallint, int,
bigint, real,
double precision, or numeric |
double precision for floating-point
arguments, otherwise numeric |
sample variance of the input values (square of the sample standard deviation) |