Skip site navigation (1) Skip section navigation (2)

Re: tsearch2 poor performance

From: "Gregory S(dot) Williamson" <gsw(at)globexplorer(dot)com>
To: "Kris Kiger" <kris(at)musicrebellion(dot)com>,<pgsql-admin(at)postgresql(dot)org>
Subject: Re: tsearch2 poor performance
Date: 2004-09-25 00:31:52
Message-ID: 71E37EF6B7DCC1499CEA0316A2568328DC9DF0@loki.wc.globexplorer.net (view raw or flat)
Thread:
Lists: pgsql-adminpgsql-hackers
Can't speak to tsearch2 in specific but I have learned to be very cautious -- caching does indeed make a noticible difference on this sort of thing, especially if you have enough RAM to hold a significant amount of the data. Either keep changing the query target or do something violent to wipe the cache(s).

Greg Williamson
DBA
GlobeXplorer LLC

-----Original Message-----
From: Kris Kiger [mailto:kris(at)musicrebellion(dot)com]
Sent: Friday, September 24, 2004 2:59 PM
To: pgsql-admin(at)postgresql(dot)org
Subject: Re: [ADMIN] tsearch2 poor performance


Here is the explain analyze output, funny thing, after I ran josh's 
query, mine ran a lot faster....maybe it forced a caching?;

search_test=# explain analyze select count(*) from product where vector 
@@ to_tsquery('oil');
 Aggregate  (cost=6113.09..6113.09 rows=1 width=0) (actual 
time=19643.372..19643.376 rows=1 loops=1)
   ->  Index Scan using vector_idx on product  (cost=0.00..6105.58 
rows=3001 width=0) (actual time=0.381..18145.917 rows=226357 loops=1)
         Index Cond: (vector @@ '\'oil\''::tsquery)
         Filter: (vector @@ '\'oil\''::tsquery)
 Total runtime: 19643.597 ms

search_test=# explain analyze select count(*) from product where vector 
@@ to_tsquery('hydrogen');
 Aggregate  (cost=6113.09..6113.09 rows=1 width=0) (actual 
time=19629.766..19629.769 rows=1 loops=1)
   ->  Index Scan using vector_idx on product  (cost=0.00..6105.58 
rows=3001 width=0) (actual time=0.378..18127.573 rows=226868 loops=1)
         Index Cond: (vector @@ '\'hydrogen\''::tsquery)
         Filter: (vector @@ '\'hydrogen\''::tsquery)
 Total runtime: 19629.992 ms

Here is Josh's;

search_test=# explain analyze SELECT count(q) FROM product, 
to_tsquery('oil') AS q  WHERE vector @@ q;
 Aggregate  (cost=6150597.03..6150597.03 rows=1 width=32) (actual 
time=21769.526..21769.530 rows=1 loops=1)
   ->  Nested Loop  (cost=0.00..6143097.02 rows=3000001 width=32) 
(actual time=0.424..20450.208 rows=226357 loops=1)
         ->  Function Scan on q  (cost=0.00..12.50 rows=1000 width=32) 
(actual time=0.023..0.031 rows=1 loops=1)
         ->  Index Scan using vector_idx on product  (cost=0.00..6105.58 
rows=3000 width=32) (actual time=0.376..18165.415 rows=226357 loops=1)
               Index Cond: (product.vector @@ "outer".q)
               Filter: (product.vector @@ "outer".q)
 Total runtime: 21769.786 ms

Disabling Index usage slowed it down:

search_test=# explain analyze select count(*) from product where vector 
@@ to_tsquery('hydrogen');
 Aggregate  (cost=347259.51..347259.51 rows=1 width=0) (actual 
time=24675.933..24675.936 rows=1 loops=1)
   ->  Seq Scan on product  (cost=0.00..347252.00 rows=3001 width=0) 
(actual time=0.320..23164.492 rows=226868 loops=1)
         Filter: (vector @@ '\'hydrogen\''::tsquery)
 Total runtime: 24676.091 ms

Time: 24678.842 ms

search_test=# explain analyze SELECT count(q) FROM product, 
to_tsquery('oil') AS q  WHERE vector @@ q;
 Aggregate  (cost=67847264.50..67847264.50 rows=1 width=32) (actual 
time=83631.201..83631.204 rows=1 loops=1)
   ->  Nested Loop  (cost=12.50..67839764.50 rows=3000001 width=32) 
(actual time=0.214..82294.710 rows=226357 loops=1)
         Join Filter: ("outer".vector @@ "inner".q)
         ->  Seq Scan on product  (cost=0.00..339752.00 rows=3000000 
width=32) (actual time=0.107..27563.952 rows=3000000 loops=1)
         ->  Materialize  (cost=12.50..22.50 rows=1000 width=32) (actual 
time=0.003..0.006 rows=1 loops=3000000)
               ->  Function Scan on q  (cost=0.00..12.50 rows=1000 
width=32) (actual time=0.019..0.023 rows=1 loops=1)
 Total runtime: 83631.385 ms

Here are the results of stat:

search_test=# select * from stat('select vector from product') order by 
ndoc desc, nentry;
     word     |  ndoc   | nentry
--------------+---------+---------
 anoth        | 1187386 | 1477442
 bear         |  696668 |  780963
 take         |  675319 |  736410
 relat        |  491469 |  528259
 toward       |  490653 |  528369
 defin        |  490572 |  527099
 live         |  490538 |  527401
 beyond       |  490124 |  527957
 behind       |  490087 |  527735
 insid        |  489530 |  527074
 near         |  489504 |  527721
 around       |  489244 |  526870
 mean         |  478201 |  512699
 complex      |  440339 |  468669
 light        |  438685 |  468140
 ball         |  438567 |  468168
 pit          |  438293 |  467807
 dress        |  438128 |  467260
 player       |  437633 |  466753
 secret       |  433279 |  457246
 love         |  423777 |  442694
 give         |  423691 |  441305
 need         |  423336 |  434409
 peopl        |  423336 |  434409
 believ       |  423336 |  434409
 rememb       |  423336 |  434409
 howev        |  421762 |  434194
 real         |  419906 |  435074
 furthermor   |  416672 |  434413
 indic        |  416508 |  434919
 exampl       |  416508 |  434919
 alway        |  415543 |  432861
 sometim      |  415543 |  432861
 see          |  410706 |  434586
 inde         |  408379 |  434283
 fruit        |  363203 |  381862
 cook         |  362674 |  381112
 graduat      |  362444 |  381284
 chees        |  362358 |  381040
 hesit        |  307431 |  317550
 self         |  301001 |  312312
 hard         |  300138 |  310167
 spirit       |  299310 |  312092
 know         |  298246 |  309010
 laugh        |  294136 |  302392
 make         |  287633 |  295003
 find         |  287550 |  294770
 goe          |  279336 |  287025
 team         |  228000 |  234703
 footbal      |  228000 |  234703
 void         |  227914 |  234681
 formless     |  227914 |  234681
 board        |  227907 |  234797
 chess        |  227907 |  234797
 submarin     |  227869 |  234727
 inferior     |  227858 |  234357
 viper        |  227855 |  234865
 cylind       |  227847 |  234505
 suit         |  227822 |  234376
 class        |  227822 |  234376
 action       |  227822 |  234376
 diskett      |  227802 |  234786
 roller       |  227792 |  234524
 coaster      |  227792 |  234524
 mate         |  227785 |  234431
 ritual       |  227785 |  234431
 engin        |  227784 |  234575
 steam        |  227784 |  234575
 industri     |  227780 |  234312
 fire         |  227775 |  234532
 hydrant      |  227775 |  234532
 briar        |  227769 |  234524
 patch        |  227769 |  234524
 mastadon     |  227677 |  234665
 defend       |  227617 |  234410
 blade        |  227603 |  234356
 razor        |  227603 |  234356
 cab          |  227578 |  234554
 driver       |  227578 |  234554
 cough        |  227570 |  234324
 syrup        |  227570 |  234324
 cowboy       |  227566 |  234663
 chop         |  227564 |  234437
 pork         |  227564 |  234437
 ceo          |  227557 |  234760
 rattlesnak   |  227554 |  234323
 hell         |  227540 |  234313
 flavor       |  227540 |  234313
 maelstrom    |  227537 |  234404
 mulch        |  227531 |  234311
 cyprus       |  227531 |  234311
 tack         |  227525 |  234462
 carpet       |  227525 |  234462
 movi         |  227505 |  234207
 theater      |  227505 |  234207
 spider       |  227466 |  234524
 cone         |  227463 |  234198
 pine         |  227463 |  234198
 garbag       |  227459 |  234207
 beer         |  227443 |  234077
 bottl        |  227443 |  234077
 polygon      |  227438 |  234267
 judg         |  227425 |  234565
 blith        |  227409 |  233979
 traffic      |  227403 |  234051
 paper        |  227397 |  234028
 napkin       |  227397 |  234028
 apart        |  227393 |  233911
 build        |  227393 |  233911
 cocker       |  227368 |  233926
 spaniel      |  227368 |  233926
 bay          |  227358 |  234261
 cargo        |  227358 |  234261
 order        |  227357 |  233885
 short        |  227357 |  233885
 polar        |  227326 |  234118
 demon        |  227324 |  234442
 minivan      |  227317 |  234292
 bulb         |  227314 |  234089
 fundrais     |  227308 |  234235
 eggplant     |  227306 |  234202
 cake         |  227299 |  234075
 bowl         |  227299 |  234110
 paycheck     |  227295 |  234224
 sheriff      |  227292 |  234313
 turkey       |  227271 |  234267
 turn         |  227265 |  234210
 signal       |  227265 |  234210
 chestnut     |  227250 |  234104
 hole         |  227239 |  233975
 puncher      |  227239 |  233975
 tabloid      |  227238 |  234341
 microscop    |  227236 |  234067
 reclin       |  227234 |  233946
 dolphin      |  227231 |  234080
 pen          |  227222 |  234269
 pig          |  227222 |  234269
 wed          |  227221 |  233860
 bullfrog     |  227211 |  234144
 truck        |  227208 |  233980
 pickup       |  227208 |  233980
 agent        |  227201 |  233840
 insur        |  227201 |  233840
 girl         |  227201 |  233934
 scout        |  227201 |  233934
 drill        |  227200 |  233986
 power        |  227200 |  233986
 ocean        |  227187 |  234211
 case         |  227173 |  233983
 crank        |  227173 |  233983
 squid        |  227169 |  234056
 senat        |  227167 |  234147
 fraction     |  227161 |  234065
 custom       |  227152 |  234128
 burglar      |  227148 |  234014
 grizzli      |  227133 |  233955
 wheel        |  227122 |  233813
 asteroid     |  227108 |  233928
 anomali      |  227106 |  234156
 acceler      |  227103 |  233428
 particl      |  227103 |  233428
 saw          |  227082 |  233934
 chain        |  227082 |  233934
 reactor      |  227035 |  234061
 wedg         |  227033 |  234143
 photon       |  227029 |  234017
 deficit      |  227029 |  234102
 vacuum       |  227021 |  233760
 cleaner      |  227021 |  233760
 cashier      |  227010 |  233858
 scyth        |  227001 |  233928
 cloud        |  226981 |  233569
 format       |  226981 |  233569
 tornado      |  226968 |  234058
 grand        |  226936 |  233730
 piano        |  226936 |  233730
 tripod       |  226930 |  233755
 tomato       |  226928 |  233915
 sandwich     |  226923 |  233786
 earring      |  226912 |  233665
 train        |  226912 |  233712
 freight      |  226912 |  233712
 skyscrap     |  226901 |  233755
 abstract     |  226890 |  233658
 mortician    |  226883 |  233781
 warranti     |  226876 |  233935
 atom         |  226868 |  233467
 hydrogen     |  226868 |  233467
 satellit     |  226866 |  233680
 corpor       |  226858 |  233818
 globul       |  226853 |  233980
 cow          |  226832 |  233808
 jersey       |  226832 |  233808
 salad        |  226830 |  233400
 buzzard      |  226804 |  233825
 lot          |  226794 |  233643
 park         |  226794 |  233643
 prime        |  226793 |  233325
 minist       |  226793 |  233325
 clot         |  226780 |  233380
 blood        |  226780 |  233380
 tuba         |  226765 |  233575
 tape         |  226749 |  233388
 record       |  226749 |  233388
 line         |  226747 |  233574
 dancer       |  226747 |  233574
 nation       |  226736 |  233796
 bartend      |  226653 |  233422
 hockey       |  226645 |  233178
 canyon       |  226617 |  233699
 ski          |  226610 |  233451
 lodg         |  226610 |  233451
 stovepip     |  226608 |  233489
 crane        |  226590 |  233578
 sand         |  226572 |  233270
 grain        |  226572 |  233270
 dust         |  226570 |  233391
 bunni        |  226570 |  233391
 lover        |  226564 |  233628
 fairi        |  226554 |  233743
 plaintiff    |  226537 |  233563
 wheelbarrow  |  226520 |  233206
 food         |  226445 |  233228
 stamp        |  226445 |  233228
 umbrella     |  226380 |  233273
 avocado      |  226375 |  232942
 oil          |  226357 |  233266
 filter       |  226357 |  233266
 financi      |  220105 |  225116
 complet      |  162829 |  164065
 ridicul      |  162346 |  163592
 handl        |  162200 |  163390
 singl        |  162200 |  163390
 single-handl |  162200 |  163390
 greedili     |  162123 |  163379
 careless     |  162009 |  163193
 somewhat     |  161979 |  163205
 accur        |  161975 |  163228
 overwhelm    |  161946 |  163107
 usual        |  161930 |  163158
 ostens       |  161826 |  163020
 lazili       |  161809 |  163133
 slyli        |  161803 |  163149
 underhand    |  161751 |  162955
 non          |  161585 |  162823
 chalant      |  161585 |  162823
 non-chal     |  161585 |  162823
 seldom       |  161525 |  162739
 accident     |  161511 |  162676
 almost       |  161508 |  162782
 often        |  161488 |  162733
 bare         |  161401 |  162659
 eager        |  161278 |  162513
 wise         |  161073 |  162341
 inexor       |  161042 |  162265
 feverish     |  160805 |  162020
 thorough     |  160611 |  161823
 home         |  154672 |  155766
 return       |  154672 |  155766
 lost         |  154655 |  155567
 glori        |  154655 |  155567
 start        |  154655 |  155567
 reminisc     |  154655 |  155567
 rumin        |  154577 |  155776
 read         |  154529 |  155642
 magazin      |  154529 |  155642
 pray         |  154478 |  155748
 floor        |  154396 |  155477
 sweep        |  154396 |  155477
 nag          |  154271 |  155259
 feel         |  154271 |  155259
 remors       |  154271 |  155259
 procrastin   |  154256 |  155371
 wake         |  154220 |  155397
 sleep        |  154217 |  155353
 panic        |  154189 |  155346
 get          |  154168 |  155253
 drunk        |  154168 |  155253
 stink        |  154168 |  155253
 hibern       |  154158 |  155358
 die          |  153973 |  155223
 fli          |  153943 |  155056
 rage         |  153943 |  155056
 flagel       |  153916 |  155067
 self-flagel  |  153916 |  155067
 daydream     |  153864 |  155043
 medit        |  153816 |  154935
 ceas         |  153735 |  154815
 exist        |  153735 |  154815
 joy          |  153672 |  154754
 beam         |  153672 |  154754
 trembl       |  153656 |  154799
 loud         |  153635 |  154665
 hide         |  153592 |  154797
 break        |  153559 |  154599
 coffe        |  153559 |  154599
 earn         |  153538 |  154540
 mile         |  153538 |  154540
 flier        |  153538 |  154540
 frequent     |  153538 |  154540
 leav         |  153535 |  154730
 rejoic       |  153226 |  154412
 sell         |  147231 |  148103
 plan         |  147046 |  147809
 escap        |  147046 |  147809
 throw        |  146973 |  147764
 negoti       |  146905 |  147704
 prenupti     |  146905 |  147704
 agreement    |  146905 |  147704
 card         |  146892 |  147731
 trade        |  146892 |  147731
 basebal      |  146892 |  147731
 oper         |  146888 |  147787
 small        |  146888 |  147787
 stand        |  146888 |  147787
 drink        |  146881 |  147727
 night        |  146881 |  147727
 steal        |  146835 |  147847
 pencil       |  146835 |  147847
 seek         |  146816 |  148029
 figur        |  146801 |  147908
 write        |  146736 |  147720
 letter       |  146736 |  147720
 recogn       |  146723 |  147823
 truce        |  146684 |  147630
 eat          |  146670 |  147874
 compet       |  146647 |  147760
 buy          |  146642 |  147522
 gift         |  146642 |  147522
 expens       |  146642 |  147522
 big          |  146626 |  147717
 fan          |  146626 |  147717
 fall         |  146597 |  147601
 assist       |  146587 |  147589
 requir       |  146587 |  147589
 chang        |  146542 |  147479
 heart        |  146542 |  147479
 conquer      |  146542 |  147695
 money        |  146481 |  147450
 borrow       |  146481 |  147450
 ignor        |  146475 |  147643
 share        |  146415 |  147404
 shower       |  146415 |  147404
 fault        |  146413 |  147361
 subtl        |  146413 |  147361
 kind         |  146402 |  147492
 great        |  146397 |  147367
 upon         |  146396 |  147366
 honor        |  146396 |  147366
 bestow       |  146396 |  147366
 pee          |  146394 |  147477
 avoid        |  146392 |  147388
 contact      |  146392 |  147388
 pink         |  146372 |  147347
 slip         |  146372 |  147347
 aid          |  146367 |  147225
 teach        |  146366 |  147516
 sanit        |  146361 |  147477
 lice         |  146360 |  147409
 buri         |  146360 |  147483
 cold         |  146357 |  147220
 pour         |  146357 |  147220
 freez        |  146357 |  147220
 water        |  146357 |  147220
 sea          |  146347 |  147217
 deep         |  146347 |  147217
 fish         |  146347 |  147217
 organ        |  146321 |  147476
 grit         |  146289 |  147227
 satiat       |  146251 |  147349
 assimil      |  146251 |  147377
 tri          |  146188 |  147200
 seduc        |  146188 |  147200
 reach        |  146132 |  147008
 understand   |  146132 |  147008
 brainwash    |  146068 |  147158
 admir        |  146050 |  147021
 caricatur    |  145989 |  147107
 deriv        |  145941 |  146790
 pervers      |  145941 |  146790
 satisfact    |  145941 |  146790
 moral        |  145854 |  146733
 lectur       |  145854 |  146733
 befriend     |  145799 |  146963
 learn        |  145758 |  146666
 lesson       |  145758 |  146666
 play         |  145738 |  146706
 pinochl      |  145738 |  146706
 peek         |  145698 |  146737
 danc         |  145555 |  146637
 fashion      |   78762 |   79203
 muddi        |   78750 |   79236
 hypnot       |   78747 |   79204
 childlik     |   78579 |   79002
 loyal        |   78575 |   79056
 mysteri      |   78554 |   79047
 annoy        |   78532 |   79032
 slow         |   78517 |   78996
 twist        |   78515 |   79016
 unstabl      |   78510 |   78945
 feder        |   78501 |   78967
 rever        |   78501 |   79008
 wrinkl       |   78495 |   78965
 rude         |   78495 |   78975
 boil         |   78493 |   78972
 high         |   78481 |   78940
 paid         |   78481 |   78940
 geosynchron  |   78478 |   78931
 greasi       |   78476 |   78961
 cosmopolitan |   78459 |   78903
 fat          |   78438 |   78935
 inciner      |   78429 |   78896
 dot          |   78426 |   78864
 polka        |   78426 |   78864
 polka-dot    |   78426 |   78864
 outer        |   78415 |   78910
 phoni        |   78411 |   78895
 pathet       |   78405 |   78869
 purpl        |   78405 |   78895
 frozen       |   78403 |   78886
 nearest      |   78396 |   78879
 statesmanlik |   78386 |   78830
 dirt         |   78376 |   78828
 encrust      |   78376 |   78828
 dirt-encrust |   78376 |   78828
 sur          |   78371 |   78895
 obsequi      |   78369 |   78805
 salti        |   78360 |   78834
 imagin       |   78356 |   78808
 south        |   78325 |   78787
 american     |   78325 |   78787
 load         |   78318 |   78832
 righteous    |   78282 |   78760
 fractur      |   78281 |   78737
 educ         |   78278 |   78682
 colleg       |   78278 |   78682
 college-educ |   78278 |   78682
 mitochondri  |   78269 |   78745
 treacher     |   78265 |   78697
 spartan      |   78252 |   78707
 felin        |   78244 |   78713
 ravish       |   78242 |   78765
 patern       |   78241 |   78701
 psychot      |   78238 |   78693
 shabbi       |   78228 |   78685
 dreamlik     |   78224 |   78642
 loath        |   78221 |   78653
 self-loath   |   78221 |   78653
 world        |   78203 |   78658
 call         |   78183 |   78610
 so-cal       |   78183 |   78610
 radioact     |   78182 |   78623
 alleg        |   78178 |   78664
 cantanker    |   78159 |   78620
 makeshift    |   78159 |   78648
 gentl        |   78156 |   78609
 fri          |   78143 |   78648
 linguist     |   78141 |   78586
 overrip      |   78134 |   78572
 varig        |   78132 |   78609
 vapor        |   78105 |   78548
 impromptu    |   78104 |   78569
 actual       |   78104 |   78592
 self-actu    |   78104 |   78592
 frighten     |   78100 |   78544
 molten       |   78100 |   78567
 gratifi      |   78098 |   78528
 bur          |   78094 |   78563
 hairi        |   78092 |   78563
 foreign      |   78083 |   78569
 tatter       |   78050 |   78518
 frustrat     |   78044 |   78474
 stoic        |   78036 |   78503
 eurasian     |   78033 |   78513
 proverbi     |   78031 |   78519
 green        |   78024 |   78450
 skinni       |   78023 |   78524
 familiar     |   78016 |   78477
 optim        |   78006 |   78483
 bohemian     |   78002 |   78500
 overpr       |   77983 |   78411
 pompous      |   77955 |   78460
 difficult    |   77938 |   78375
 raspi        |   77924 |   78461
 soggi        |   77912 |   78381
 resplend     |   77910 |   78351
 blotch       |   77910 |   78380
 fals         |   77908 |   78409
 infect       |   77907 |   78399
 magnific     |   77898 |   78350
 snooti       |   77897 |   78422
 moron        |   77886 |   78362
 moldi        |   77865 |   78370
 precis       |   77860 |   78331
 crispi       |   77856 |   78324
 smelli       |   77813 |   78279
 tempor       |   77810 |   78244
 alaskan      |   77808 |   78258
 elus         |   77775 |   78245
 miser        |   77772 |   78232
 flatul       |   77761 |   78201
 orbit        |   77723 |   78157
 mean-spirit  |   77660 |   78113
 flabbi       |   77649 |   78110
 nuclear      |   77609 |   78069
 go           |   15532 |   15545
 made         |       1 |       1
 america      |       1 |       1


If you need anything else, let me know!

Kris


Oleg Bartunov wrote:

>Kris,
>
>could you post 'explain analyze' output ?
>Also, could you disable index usage (set enable_indexscan=off)
>and rerun search using tsearch2 ?
>
>also, could you run 'stat' function to see frequency distribution
>of words. See http://www.sai.msu.su/~megera/oddmuse/index.cgi/Tsearch_V2_Notes
>for details.
>
>Oleg
>  
>
>>Hi all.  I am doing some work with tsearch2 and am not sure what to
>>expect out of it, performance wise.  Here is my setup:
>>
>>                          Table "public.product"
>>   Column    |   Type   |                    Modifiers
>>-------------+----------+-------------------------------------------------
>> description | text     |
>> product_id  | integer  | default nextval('product_product_id_seq'::text)
>> vector      | tsvector |
>>Indexes:
>>    "vector_idx" gist (vector)
>>Triggers:
>>    tsvectorupdate BEFORE INSERT OR UPDATE ON product FOR EACH ROW EXECUTE PROCEDURE tsearch2('vector', 'description')
>>
>>This table has 3,000,000 rows in it.  Each description field has roughly 50 characters.  There are fewer than ten thousand distinct words in my 3,000,000 rows.  The vector was filled using the description fields values.  I ran a vacuum full analyze before executing any of my queries.
>>
>>Here are a couple of tests I performed using the tsearch index and like;
>>
>>search_test=# select count(*) from product where vector @@ to_tsquery('oil');
>> count
>>--------
>> 226357
>>(1 row)
>>
>>Time: 191056.230 ms
>>
>>search_test=# select count(*) from product where vector @@ to_tsquery('hydrogen');
>> count
>>--------
>> 226868
>>(1 row)
>>
>>Time: 306411.957 ms
>>
>>search_test=# select count(*) from product where description like '% oil %';
>> count
>>--------
>> 226357
>>(1 row)
>>
>>Time: 38426.851 ms
>>
>>search_test=# select count(*) from product where description like '% hydrogen %';
>> count
>>--------
>> 226868
>>(1 row)
>>
>>Time: 38265.421 ms
>>
>>
>>Both of the likes are using a sequential scan and both of the tsearch queries use the gist index.  Did I miss a configuration parameter, are these queries incorrectly using tsearch2,or is this tsearch2's average performance?  Thanks in advance for the input!
>>
>>Kris
>>    
>>




---------------------------(end of broadcast)---------------------------
TIP 2: you can get off all lists at once with the unregister command
    (send "unregister YourEmailAddressHere" to majordomo(at)postgresql(dot)org)

Responses

pgsql-hackers by date

Next:From: Jan WieckDate: 2004-09-25 01:32:30
Subject: Re: 7.4.5 losing committed transactions
Previous:From: Tom LaneDate: 2004-09-25 00:15:11
Subject: Re: 7.4.5 losing committed transactions

pgsql-admin by date

Next:From: ATOLODate: 2004-09-25 06:27:53
Subject: Re: Linux Distributions
Previous:From: Kris KigerDate: 2004-09-24 21:59:10
Subject: Re: tsearch2 poor performance

Privacy Policy | About PostgreSQL
Copyright © 1996-2014 The PostgreSQL Global Development Group