Text Size: Normal / Large
This page in other versions: 8.4 / 9.0 / 9.1 / 9.2 / 9.3  |  Development versions: devel  |  Unsupported versions: 7.1 / 7.2 / 7.3 / 7.4 / 8.0 / 8.1 / 8.2 / 8.3

# 9.9. Date/Time Functions and Operators

Table 9-26 shows the available functions for date/time value processing, with details appearing in the following subsections. Table 9-25 illustrates the behaviors of the basic arithmetic operators (+, *, etc.). For formatting functions, refer to Section 9.8. You should be familiar with the background information on date/time data types from Section 8.5.

All the functions and operators described below that take time or timestamp inputs actually come in two variants: one that takes time with time zone or timestamp with time zone, and one that takes time without time zone or timestamp without time zone. For brevity, these variants are not shown separately. Also, the + and * operators come in commutative pairs (for example both date + integer and integer + date); we show only one of each such pair.

Table 9-25. Date/Time Operators

Operator Example Result
+ date '2001-09-28' + integer '7' date '2001-10-05'
+ date '2001-09-28' + interval '1 hour' timestamp '2001-09-28 01:00:00'
+ date '2001-09-28' + time '03:00' timestamp '2001-09-28 03:00:00'
+ interval '1 day' + interval '1 hour' interval '1 day 01:00:00'
+ timestamp '2001-09-28 01:00' + interval '23 hours' timestamp '2001-09-29 00:00:00'
+ time '01:00' + interval '3 hours' time '04:00:00'
- - interval '23 hours' interval '-23:00:00'
- date '2001-10-01' - date '2001-09-28' integer '3'
- date '2001-10-01' - integer '7' date '2001-09-24'
- date '2001-09-28' - interval '1 hour' timestamp '2001-09-27 23:00:00'
- time '05:00' - time '03:00' interval '02:00:00'
- time '05:00' - interval '2 hours' time '03:00:00'
- timestamp '2001-09-28 23:00' - interval '23 hours' timestamp '2001-09-28 00:00:00'
- interval '1 day' - interval '1 hour' interval '1 day -01:00:00'
- timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00' interval '1 day 15:00:00'
* 900 * interval '1 second' interval '00:15:00'
* 21 * interval '1 day' interval '21 days'
* double precision '3.5' * interval '1 hour' interval '03:30:00'
/ interval '1 hour' / double precision '1.5' interval '00:40:00'

Table 9-26. Date/Time Functions

Function Return Type Description Example Result
`age`(timestamp, timestamp) interval Subtract arguments, producing a "symbolic" result that uses years and months age(timestamp '2001-04-10', timestamp '1957-06-13') 43 years 9 mons 27 days
`age`(timestamp) interval Subtract from `current_date` age(timestamp '1957-06-13') 43 years 8 mons 3 days
`clock_timestamp`() timestamp with time zone Current date and time (changes during statement execution); see Section 9.9.4
`current_date` date Current date; see Section 9.9.4
`current_time` time with time zone Current time of day; see Section 9.9.4
`current_timestamp` timestamp with time zone Current date and time (start of current transaction); see Section 9.9.4
`date_part`(text, timestamp) double precision Get subfield (equivalent to `extract`); see Section 9.9.1 date_part('hour', timestamp '2001-02-16 20:38:40') 20
`date_part`(text, interval) double precision Get subfield (equivalent to `extract`); see Section 9.9.1 date_part('month', interval '2 years 3 months') 3
`date_trunc`(text, timestamp) timestamp Truncate to specified precision; see also Section 9.9.2 date_trunc('hour', timestamp '2001-02-16 20:38:40') 2001-02-16 20:00:00
`extract`(field from timestamp) double precision Get subfield; see Section 9.9.1 extract(hour from timestamp '2001-02-16 20:38:40') 20
`extract`(field from interval) double precision Get subfield; see Section 9.9.1 extract(month from interval '2 years 3 months') 3
`isfinite`(timestamp) boolean Test for finite time stamp (not equal to infinity) isfinite(timestamp '2001-02-16 21:28:30') true
`isfinite`(interval) boolean Test for finite interval isfinite(interval '4 hours') true
`justify_days`(interval) interval Adjust interval so 30-day time periods are represented as months justify_days(interval '30 days') 1 month
`justify_hours`(interval) interval Adjust interval so 24-hour time periods are represented as days justify_hours(interval '24 hours') 1 day
`justify_interval`(interval) interval Adjust interval using `justify_days` and `justify_hours`, with additional sign adjustments justify_interval(interval '1 mon -1 hour') 29 days 23:00:00
`localtime` time Current time of day; see Section 9.9.4
`localtimestamp` timestamp Current date and time (start of current transaction); see Section 9.9.4
`now`() timestamp with time zone Current date and time (start of current transaction); see Section 9.9.4
`statement_timestamp`() timestamp with time zone Current date and time (start of current statement); see Section 9.9.4
`timeofday`() text Current date and time (like `clock_timestamp`, but as a text string); see Section 9.9.4
`transaction_timestamp`() timestamp with time zone Current date and time (start of current transaction); see Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

```(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)
```

This expression yields true when two time periods (defined by their endpoints) overlap, false when they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time, or time stamp followed by an interval.

```SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30');
Result: false
```

When adding an interval value to (or subtracting an interval value from) a timestamp with time zone value, the days component advances (or decrements) the date of the timestamp with time zone by the indicated number of days. Across daylight saving time changes (with the session time zone set to a time zone that recognizes DST), this means interval '1 day' does not necessarily equal interval '24 hours'. For example, with the session time zone set to CST7CDT, timestamp with time zone '2005-04-02 12:00-07' + interval '1 day' will produce timestamp with time zone '2005-04-03 12:00-06', while adding interval '24 hours' to the same initial timestamp with time zone produces timestamp with time zone '2005-04-03 13:00-06', as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by `age` because different months have a different number of days. PostgreSQL's approach uses the month from the earlier of the two dates when calculating partial months. For example, age('2004-06-01', '2004-04-30') uses April to yield 1 mon 1 day, while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

## 9.9.1. `EXTRACT`, `date_part`

```EXTRACT(field FROM source)
```

The `extract` function retrieves subfields such as year or hour from date/time values. source must be a value expression of type timestamp, time, or interval. (Expressions of type date will be cast to timestamp and can therefore be used as well.) field is an identifier or string that selects what field to extract from the source value. The `extract` function returns values of type double precision. The following are valid field names:

century

The century

```SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21
```

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This definition applies to all Gregorian calendar countries. There is no century number 0, you go from -1 to 1. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just returned the year field divided by 100.

day

The day (of the month) field (1 - 31)

```SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16
```

The year field divided by 10

```SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200
```
dow

The day of the week as Sunday(0) to Saturday(6)

```SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5
```

Note that `extract`'s day of the week numbering is different from that of the `to_char(..., 'D')` function.

doy

The day of the year (1 - 365/366)

```SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47
```
epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be negative); for interval values, the total number of seconds in the interval

```SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-08');
Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800
```

Here is how you can convert an epoch value back to a time stamp:

```SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL '1 second';
```
hour

The hour field (0 - 23)

```SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20
```
isodow

The day of the week as Monday(1) to Sunday(7)

```SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7
```

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear

The ISO 8601 year that the date falls in (not applicable to intervals).

```SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006
```

Each ISO year begins with the Monday of the week containing the 4th of January, so in early January or late December the ISO year may be different from the Gregorian year. See the week field for more information.

This field is not available in PostgreSQL releases prior to 8.3.

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full seconds.

```SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000
```
millennium

The millennium

```SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3
```

Years in the 1900s are in the second millennium. The third millennium starts January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

```SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500
```
minute

The minutes field (0 - 59)

```SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38
```
month

For timestamp values, the number of the month within the year (1 - 12) ; for interval values the number of months, modulo 12 (0 - 11)

```SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1
```
quarter

The quarter of the year (1 - 4) that the day is in

```SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1
```
second

The seconds field, including fractional parts (0 - 59[1])

```SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.5
```
timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of a year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words, the first Thursday of a year is in week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week of the previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the 52nd week of year 2005.

```SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7
```
year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done with care.

```SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001
```

The `extract` function is primarily intended for computational processing. For formatting date/time values for display, see Section 9.8.

The `date_part` function is modeled on the traditional Ingres equivalent to the SQL-standard function `extract`:

```date_part('field', source)
```

Note that here the field parameter needs to be a string value, not a name. The valid field names for `date_part` are the same as for `extract`.

```SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
Result: 4
```

## 9.9.2. `date_trunc`

The function `date_trunc` is conceptually similar to the `trunc` function for numbers.

```date_trunc('field', source)
```

source is a value expression of type timestamp or interval. (Values of type date and time are cast automatically, to timestamp or interval respectively.) field selects to which precision to truncate the input value. The return value is of type timestamp or interval with all fields that are less significant than the selected one set to zero (or one, for day and month).

Valid values for field are:

 microseconds milliseconds second minute hour day week month quarter year decade century millennium

Examples:

```SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00

SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00
```

## 9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-27 shows its variants.

Table 9-27. AT TIME ZONE Variants

Expression Return Type Description
timestamp without time zone AT TIME ZONE zone timestamp with time zone Treat given time stamp without time zone as located in the specified time zone
timestamp with time zone AT TIME ZONE zone timestamp without time zone Convert given time stamp with time zone to the new time zone
time with time zone AT TIME ZONE zone time with time zone Convert given time with time zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., 'PST') or as an interval (e.g., INTERVAL '-08:00'). In the text case, a time zone name can be specified in any of the ways described in Section 8.5.3.

Examples (supposing that the local time zone is PST8PDT):

```SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST';
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'MST';
Result: 2001-02-16 18:38:40
```

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in EST (UTC-5) and converts it to local time in MST (UTC-7).

The function `timezone`(zone, timestamp) is equivalent to the SQL-conforming construct timestamp AT TIME ZONE zone.

## 9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time. These SQL-standard functions all return values based on the start time of the current transaction:

```CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)
```

`CURRENT_TIME` and `CURRENT_TIMESTAMP` deliver values with time zone; `LOCALTIME` and `LOCALTIMESTAMP` deliver values without time zone.

`CURRENT_TIME`, `CURRENT_TIMESTAMP`, `LOCALTIME`, and `LOCALTIMESTAMP` can optionally be given a precision parameter, which causes the result to be rounded to that many fractional digits in the seconds field. Without a precision parameter, the result is given to the full available precision.

Some examples:

```SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522
```

Since these functions return the start time of the current transaction, their values do not change during the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent notion of the "current" time, so that multiple modifications within the same transaction bear the same time stamp.

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual current time at the instant the function is called. The complete list of non-SQL-standard time functions is:

```now()
transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
```

`now()` is a traditional PostgreSQL equivalent to `CURRENT_TIMESTAMP`. `transaction_timestamp()` is likewise equivalent to `CURRENT_TIMESTAMP`, but is named to clearly reflect what it returns. `statement_timestamp()` returns the start time of the current statement (more specifically, the time of receipt of the latest command message from the client). `statement_timestamp()` and `transaction_timestamp()` return the same value during the first command of a transaction, but might differ during subsequent commands. `clock_timestamp()` returns the actual current time, and therefore its value changes even within a single SQL command. `timeofday()` is a historical PostgreSQL function. Like `clock_timestamp()`, it returns the actual current time, but as a formatted text string rather than a timestamp with time zone value.

All the date/time data types also accept the special literal value now to specify the current date and time (again, interpreted as the transaction start time). Thus, the following three all return the same result:

```SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now';  -- incorrect for use with DEFAULT
```

Tip: You do not want to use the third form when specifying a DEFAULT clause while creating a table. The system will convert now to a timestamp as soon as the constant is parsed, so that when the default value is needed, the time of the table creation would be used! The first two forms will not be evaluated until the default value is used, because they are function calls. Thus they will give the desired behavior of defaulting to the time of row insertion.

## 9.9.5. Delaying Execution

The following function is available to delay execution of the server process:

```pg_sleep(seconds)
```

`pg_sleep` makes the current session's process sleep until seconds seconds have elapsed. seconds is a value of type double precision, so fractional-second delays can be specified. For example:

```SELECT pg_sleep(1.5);
```

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value. The sleep delay will be at least as long as specified. It might be longer depending on factors such as server load.

 Warning Make sure that your session does not hold more locks than necessary when calling `pg_sleep`. Otherwise other sessions might have to wait for your sleeping process, slowing down the entire system.

### Notes

 [1] 60 if leap seconds are implemented by the operating system