This page in other versions: 9.0 / 9.1 / 9.2 / 9.3  |  Development versions: devel / 9.4  |  Unsupported versions: 7.1 / 7.2 / 7.3 / 7.4 / 8.0 / 8.1 / 8.2 / 8.3 / 8.4

Chapter 32. Triggers

This chapter describes how to write trigger functions. Trigger functions can be written in C or in some of the available procedural languages. It is not currently possible to write a SQL-language trigger function.

32.1. Overview of Trigger Behavior

A trigger can be defined to execute before or after an INSERT, UPDATE, or DELETE operation, either once per modified row, or once per SQL statement. If a trigger event occurs, the trigger's function is called at the appropriate time to handle the event.

The trigger function must be defined before the trigger itself can be created. The trigger function must be declared as a function taking no arguments and returning type trigger. (The trigger function receives its input through a specially-passed TriggerData structure, not in the form of ordinary function arguments.)

Once a suitable trigger function has been created, the trigger is established with CREATE TRIGGER. The same trigger function can be used for multiple triggers.

There are two types of triggers: per-row triggers and per-statement triggers. In a per-row trigger, the trigger function is invoked once for every row that is affected by the statement that fired the trigger. In contrast, a per-statement trigger is invoked only once when an appropriate statement is executed, regardless of the number of rows affected by that statement. In particular, a statement that affects zero rows will still result in the execution of any applicable per-statement triggers. These two types of triggers are sometimes called "row-level triggers" and "statement-level triggers", respectively.

Statement-level "before" triggers naturally fire before the statement starts to do anything, while statement-level "after" triggers fire at the very end of the statement. Row-level "before" triggers fire immediately before a particular row is operated on, while row-level "after" triggers fire at the end of the statement (but before any statement-level "after" triggers).

Trigger functions invoked by per-statement triggers should always return NULL. Trigger functions invoked by per-row triggers can return a table row (a value of type HeapTuple) to the calling executor, if they choose. A row-level trigger fired before an operation has the following choices:

  • It can return NULL to skip the operation for the current row. This instructs the executor to not perform the row-level operation that invoked the trigger (the insertion or modification of a particular table row).

  • For row-level INSERT and UPDATE triggers only, the returned row becomes the row that will be inserted or will replace the row being updated. This allows the trigger function to modify the row being inserted or updated.

A row-level before trigger that does not intend to cause either of these behaviors must be careful to return as its result the same row that was passed in (that is, the NEW row for INSERT and UPDATE triggers, the OLD row for DELETE triggers).

The return value is ignored for row-level triggers fired after an operation, and so they may as well return NULL.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired in alphabetical order by trigger name. In the case of before triggers, the possibly-modified row returned by each trigger becomes the input to the next trigger. If any before trigger returns NULL, the operation is abandoned and subsequent triggers are not fired.

Typically, row before triggers are used for checking or modifying the data that will be inserted or updated. For example, a before trigger might be used to insert the current time into a timestamp column, or to check that two elements of the row are consistent. Row after triggers are most sensibly used to propagate the updates to other tables, or make consistency checks against other tables. The reason for this division of labor is that an after trigger can be certain it is seeing the final value of the row, while a before trigger cannot; there might be other before triggers firing after it. If you have no specific reason to make a trigger before or after, the before case is more efficient, since the information about the operation doesn't have to be saved until end of statement.

If a trigger function executes SQL commands then these commands may fire triggers again. This is known as cascading triggers. There is no direct limitation on the number of cascade levels. It is possible for cascades to cause a recursive invocation of the same trigger; for example, an INSERT trigger might execute a command that inserts an additional row into the same table, causing the INSERT trigger to be fired again. It is the trigger programmer's responsibility to avoid infinite recursion in such scenarios.

When a trigger is being defined, arguments can be specified for it. The purpose of including arguments in the trigger definition is to allow different triggers with similar requirements to call the same function. As an example, there could be a generalized trigger function that takes as its arguments two column names and puts the current user in one and the current time stamp in the other. Properly written, this trigger function would be independent of the specific table it is triggering on. So the same function could be used for INSERT events on any table with suitable columns, to automatically track creation of records in a transaction table for example. It could also be used to track last-update events if defined as an UPDATE trigger.

Each programming language that supports triggers has its own method for making the trigger input data available to the trigger function. This input data includes the type of trigger event (e.g., INSERT or UPDATE) as well as any arguments that were listed in CREATE TRIGGER. For a row-level trigger, the input data also includes the NEW row for INSERT and UPDATE triggers, and/or the OLD row for UPDATE and DELETE triggers. Statement-level triggers do not currently have any way to examine the individual row(s) modified by the statement.

Comments


July 7, 2006, 11:02 a.m.

The trigger function must be defined before the trigger itself can be created. The trigger function must be declared as a function taking no arguments and returning type trigger. (The trigger function receives its input through a specially-passed TriggerData structure, not in the form of ordinary function arguments.)

The above is not technically true. You can supply parameters, however they will not be supplied by the trigger when it is called. The trigger assignment can and does allow you to pass static parameters into it, allowing the use of One trigger function in different situations based on the input parameters.

The trigger definition will have the function name plus all the parameters defined.


July 17, 2007, 2:57 p.m.

To create a trigger function in PLPGSQL that works for INSERT/UPDATE and DELETE, you can use exception handling to use either NEW or OLD as appropriate. Here's an example:

create or replace function tr_proc_update_compgroup_size () returns trigger as
$BODY$

declare theCompGroupID int;

begin

begin
theCompGroupID := NEW.compgroupid;
exception
when others then
theCompGroupID := OLD.compgroupid;
end;

/* DO STUFF USING theCompGroupID */

return null;
end;
$BODY$
language 'plpgsql'
;

create trigger tr_tbllinkcompgroupunit_update_compgroup_size
after insert or update or delete
on tbllinkcompgroupunit for each row
execute procedure tr_proc_update_compgroup_size()

Privacy Policy | About PostgreSQL
Copyright © 1996-2014 The PostgreSQL Global Development Group