PostgreSQL 16.3 Documentation

The PostgreSQL Global Development Group

PostgreSQL 16.3 Documentation

The PostgreSQL Global Development Group
Copyright © 1996-2024 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2024 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THISSOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THEUNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDERISON AN “AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HASNO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

= = o PP XXXV
1 What 1S POSIGrESQL? ...ttt ettt e et e s XXXV
2. A Brief History of POSIGreSQLc.uuniiiiiiiiieiiii et XXXV

2.1. The Berkeley POSTGRES PrOJECEcccvuuiiiiiiieiiiii e XXXV
2.2, POSIOrESOS ...t e XXXV
2.3, POSIOrESQL ..ot XXXVi
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et et e et eaar e e e ane e e eenans XXXVi
4. Further INfOrmMationcoouuuiiiiii et XXXVil
5. Bug Reporting GUIEIINESc.uuiiiiiiiie e e et XXXVil
5.1 1deNtifYiNg BUGS ...cevveneiiiiie ettt XXXVil
5.2, WHEL 10 REDPOIT ...ttt XXXVili
5.3. WHEre t0 REPOI BUGJSccevvneeiiiiiieeeeii ettt ettt et e e e e e e et e e e Xl
N T 1o - PP 1
L. GEtING SEAEAen ettt et 3
L1 INSEAITEIION .ottt 3
1.2. Architectural FUNDamMEeNtalScoouuuiiiiiiiie e 3
1.3. Creating @ Dal@haseccoeuuiiiiiiiii e 4
1.4, ACCESSING 8 DAANBSEcoviieiiiii e 5
2. The SQL LBNGUBGE ...cevtueieiit ettt ettt ettt e e e na e e eneans 8
2% W [i oo (8o (o o RO TSP SPPPTPR 8
A O 0] 1= o = PP 8
2.3. Creating @aNew Tableuiiii e 8
2.4. Populating a Table With ROWSccoouuiiiiiiiii e 9
25, QUEYING A TaADIE ..o 10
2.6. J0INS BEWEEN TaDIESuiiiiii e 12
2.7. AQQregate FUNCLIONSccuuuieieiiie ettt ettt e e e na e eeees 14
2.8 UPUELES ...ttt 16
2.9, DEIBLIONS ...t e et et aean 17
3. AGVANCED FEAIUMNEScevu ittt ettt e et e e enb e e eneas 18
I3 B [L oo (8 1o o EO TP PPPPTT 18
2 VT T S PR 18
3.3 FOrEIgN KEBYS ..t 18
B THANSACHIONS ...ttt ettt ettt et e e e e 19
3.5, WINAOW FUNCHIONSovueiiii et 21
3.6, INNEITEANCE ...t 24
7. CONCIUSION ..ttt ettt ettt ettt e et e e e et e e eenen s 26
[1. The SQL LBNQUAJE eeeetiee ettt ettt ettt ettt et et e et et e e e et e e e eaa e e eenens 27
A, SQL SYNEBX t.tteeeetti ettt ettt ettt e ettt ettt e e e e 35
A1, LeXiCal SHUCKUME ...ttt ettt e e e e e et e e eeees 35
4.2, ValUE EXPIESSIONSeeeeiiietieii ettt ettt ettt et e et e e e 45
4.3. CalliNg FUNCLIONS ...ttt ettt eneans 59
5. Data DEFINITION ...oeeiiieii et 63
DL TADIE BASICS ..ttt 63
5.2. DEFAUIT VAIUBS ... e 64
5.3. Generated COIUMNScoouiieiiii e et eeeans 65
B4, CONSITAINTS ...evtneeeeet ettt ettt ettt e et et et e e e e e e ennen s 66
5.5, SYStEM COIUMNS ...ttt 76
5.6. MOAIfTYiNG TaDIESceiiiiieiee e 77
BT PrIVIIEOES ..o 80
5.8. ROW SeCUurity POIICIESuuiiiiiii e 85
5.9, SCREMAS ... 91

PostgreSQL 16.3 Documentation

5.10. INNEITANCE ... et e e et 96
5.11. Table Partitioningoceuuieiiiiiii e e e e e et aaa s 100
I = o (= To o I - A 114
5.13. Other Database ODJECESuuivviiiiii e e 114
5.14. Dependency TraCKingociuuieeii eanaas 115
(SR T = 1Y =T o 10 = 1 o 117
(O 1S g To [- - NP 117
S Lo = (] g o B T - L 118
(SRR D= I (] oo - v U 119
6.4. Returning Data from Modified ROWSccccoviiiiiiiie e, 119
28 8 = = 121
8 T @ = 4T PN 121
7.2. TahlE EXPIrESSIONSivviieiii e e e e e e e e e e et e e st e e e e eaneees 121
SRS = [o B I £ SRR 138
7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)covvvvviiviiiiiieveiiiieeeneenn 140
7.5. Sorting ROWS (ORDER BY) ...iiiiiiiiiieciii et e e e s 141
L Y B =0 o O o P 142
T.7. VALUES LISES 1ieiiiiieiiii ettt ettt e et e et e e e b 143
7.8. W TH Queries (Common Table EXPreSSions)vvveveeeiiieiiiieeiineeiineesieeeaneens 144
T D= = T Y/ oS PP 153
T80 O N U 0= Lo Y o= 154
8.2, M ONEAY Ty DS ittt ittt et e 160
G O == ot (= g Y/ o= PR 161
8.4. BINAry Dala TYPES ..uuciiiiiii it e et e e e e e e e e e e e e e eaa s 163
R = (=l T (ST Y/ o= P 165
S = T To =T N Y/ o= P 176
A 10001 = =0 B Y/ o= 177
8.8. GEOMELNIC TYPES ..uvitiiii ettt et et e et e e e e e e e e et e e et e e et e e et eeaaeaeens 179
8.9. NEtWOrK AdOreSS TYPES .ovuiiiiieii et et e e e e e e e e e e e e e et e e et e e aanaaes 181
8.10. Bit SIHNG TYPES . uiitnieiie et e e e e e e e e e e et e e et e ea e eaes 184
8.11. TeXt SEACH TYPES o vvun it e e 185
ST 2 U1 1 T I/ o= P 188
ST Q. I 1Y/ o= ST 188
ST N S @ NI Y/ o=~ PP 190
e I N = Y PP 201
8.16. COMPOSITE TYPES .vvuiiiiieein et ettt e et e et e e e e e e e e e e st e e et e e et e e et e e aneeaenns 211
8.7, RANGE TYPES .ottt 218
8.18. DOMAIN TYPES ..uuiiiiiiiii e et e e e e e e e e e e e et e e et e et e e e e aaeeaanns 225
8.19. ObjeCt 1AdENtifier TYPES ..vuiiii i eiiie e e e e e e e ea e 225
<3220 R o To TR =Y 2 T 1Y/ o= TP 228
ST I e =0 (o 0l N o1 228
1 I N 0 Tox [0 5= 0 (o @ o= = 0 231
1S I oo vz B @ o= = (] £ 231
9.2. Comparison FUNCtions and OPEratorsSocvvuieiiiieiiieeii e e e e e e e eannas 232
9.3. Mathematical Functions and OPEratorScc.ovevvrieiiiiieiii e e e e 236
9.4. String FUNCLioNS and OPEIatOrScvvueiiieeiiie e e e e e e e e e e e e eaaes 244
9.5. Binary String FUNctions and OPEratorsSccuuveiuuieeeueeeiiieeiieeeieeraineeaneeaenns 255
9.6. Bit String FUNCtions and OPEratorsccuuvevuiieiiieeiiie e e e e e e e 259
A = 1 (= g TN\ (11 o P 261
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiiii e e 281
9.9. Date/Time FUNCtions and OPEratorSccuueviiieiiiieeiii e e e e e e e eanas 289
9.10. ENum SUPPOIt FUNCLIONScvviciiiiceii e e e e e e 306
9.11. Geometric FUNCtions and OPEratorsScvvueiirnieiiieeeii e ee e e e eaannes 307
9.12. Network Address Functions and OPEratorsScceuueeeueerinierieeeiieeeineesanenns 314

PostgreSQL 16.3 Documentation

9.13. Text Search FUNCtions and OPEratorsSoeeveieiiiieeii e e e e e e e 318
9.14. UUID FUNCLIONSuieieiiieee ittt ettt et e et e e et e e e ea e e eeennas 324
9.15. XML FUNCLIONS ... iieiiiieeiiii ettt e e e e et e e e e b 325
9.16. JSON FUNCLions and OPEraiorsScc.uueveunieeieeeiieeieee e e e e e e e e e e e e aanaas 340
9.17. Sequence Manipulation FUNCLIONSooiuiiiiiiiiciiec e e e e 361
9.18. Conditional EXPrESSIONSuuiiireiiiiieiiieee e e e e e e e e e e e s e e e eaneees 362
9.19. Array FUNCtions and OPEratorsSccuueiiieeiiieeeiiieeiie e e e e e e et e e eeaens 365
9.20. Range/Multirange Functions and OPEratorsScc.ueevuuieeiineeeieesiiieeaneesneens 369
9.21. AQQregate FUNCLIONSccuuiiiii e e e e e e eanaees 375
9.22. WINAOW FUNCLIONSvuiiieiii et e s 383
9.23. SUDQUENY EXPrESSIONSuueiiiiiiiiieeiieeeieeeee e e e e e e e et e e et e e e e e et e e et e eanaeenes 385
9.24. Row and Array COMPAIiSONSeeuueiiieeiieeeiiieeeieesieeeieeeanaeestneestneeenaeenes 388
9.25. Set RetUrNiNg FUNCLIONSuuiiiici e e e e e 391
9.26. System Information Functions and OPEratorsc.uveveiieeieeernieriiieeeneeeenns 395
9.27. System Administration FUNCHIONScouuiiiiiiiiiiie e e 415
9.28. Trigger FUNCLIONSuuiiii i e e e e e e e e e e e e e e e e et e e e eaneees 433
9.29. Event Trigger FUNCLIONSco.uuiiiiicicc e e e e e e e 434
9.30. Statistics INfOrmMation FUNCLIONSviiiiiiiieiiiin e 437
O Y oL @0 0177 = o] o PP 439
FO. 1. OVEIVIBIW Leuieeiiii et et e e e e e e et e e e et e e e e st e e e e eatn e 439
B0.2, P AIONS v uitittt ettt et 440
L0 R T o] o LU 444
O R 1R (o] = o 448
10.5. UNI ON, CASE, and Related CONSIIUCESvvvieviiiiieeeiiiieeeciii e 449
10.6. SELECT OUPUL COIUMNSuueiiiiiieeeiie e ee et e e e e et e e e 451
T o (== SRR 452
0 O 1 1 oo (0 o IR 452
2 1 o L= G Y/ o === 453
11.3. MUItICOIUMN TNAEXES .. .ceeeviieeeeei e 455
11.4. Indexes and ORDER BYccuuuiiiiiiiieieiiiise e e et e et e eeaanns 456
11.5. Combining MUItiple INAEXEScviiiiiiee e 457
12.6. UNIQUE INAEXES ...vueeieee et e e e e e e e e e e e e e aanees 458
11.7. INAEXES ON EXPrESSIONSuiiiiieiiieeiiiee e ee e e e e e e e e e e e st e e e eaneees 458
11.8. Partial INAEXES .. .ceeeviieeiii et 459
11.9. Index-Only Scans and Covering INAEXESc.voveviieiiiieiiieceee e 462
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 465
11.11. Indexes and Coll@tioNSoviiieiiiiiiiiii e 467
11.12. EXxamining INAeX USAQEuuiivnieiieii e e e e e e e et eeanae e 467
12, FUIl TEXE SEAICH .o e e e aaen s 469
2 R | 1 oo (0o o IR 469
12.2. TahleS @nd INAEXES .. .cevvviieiiei et e eeeen 473
12.3. Controlling TeXt SEarchcccuiiiiiiiiie e 475
12.4. AddItioNal FEAIUMEScvuiieiii e e e 483
T o T S SUPP 489
12.6. DICHONAITES ..vuieeeitiieee ettt ettt e ettt e et e e ettt e e e et e e e eatn s e e e entnneeeenes 491
12.7. Configuration EXamMPIEcouuiiiiicii e 501
12.8. Testing and Debugging Text Searchcoevviiiiiiiiiie e, 502
12.9. Preferred Index Types for Text SEarchccovevviiiiiieiiicce e, 507
2250 O T o 1= o ST o oo o P 508
2 O T 1] = o) R SPPPT 511
13. ConCUITENCY CONLION .uuuiiit i e e e e e e e e e e e e e e et e e et e e ean e eanaes 513
G20 O 1 1 oo [0 1o IR 513
13.2. Transaction ISOIAtONcoevuiieiiiii e 513
T o[T o] Vo [519

PostgreSQL 16.3 Documentation

13.4. Data Consistency Checks at the Application Levelccocoiveiiiiiiiiiviineennnn, 525

13.5. Seridization Failure Handlingccovoiiiiiiiiiiii e 527

ST 0 Y= 527

13.7. Locking and INAEXEScvvniii e e e e e e 528
(o 7= 0o =T T 529
14.2. USING EXPLAIL N L.ouiiiiiiiiiee st s s e e e e e et e s e e e e e eenannns 529

14.2. Statistics Used by the Plannercooviiiiiii e 542

14.3. Controlling the Planner with Explicit JO N ClauSeSccooevviveviiieiiineeiieeenn, 547

14.4. Populating @ Databaseuoeivuieiiiciie e e 549

14.5. NON-DUrable SEtliNGSuueveriiii e e e e e e e eees 551

ST = = RO = oS 553
15.1. How Parallel QUErY WOTKSiiiiiiiiii e 553

15.2. When Can Parallel Query Be Used?covvvviiiiiieiiiiceiiie e 554

15.3. Parallel PLanScoovviieiiii et e 555

15.4. Parallel SafEYoieeeeieeeeiiiee e 557

RIS o V7= g AN 41T g 1 = (o o PP 559
16. Installation from BiNAIEScccuuuiieiiiiiiee et e et eeean e eeees 567
17. Installation from SOUICE COUEuuuieiiiiiieeeiei et e 568
I o (VT = 1 4= | £ 568

17.2. GELHNG the SOUMCE .. .cvuiii e e e s 570

17.3. Building and Installation with Autoconf and Makecccoeeiiiiiiiiineiinee, 570

17.4. Building and Installation With MESONcouviiiiiiiiii e, 584

17.5. Post-INStallation SELUDueviiiiiie e e 594

17.6. Supported Platformsoouiiiii e 595

17.7. Platform-SpeCific NOESuuiiii e 596

18. Ingtallation from Source Code 0N WINAOWSoovveviiiiiiiiieiiiiie e 601
18.1. Building with Visua C++ or the Microsoft Windows SDKcccoceveveiinnnnns 601

19. Server Setup and OPEratiONuiiieieiie e e e e e e e e e e e 607
19.1. The PostgreSQL USEr ACCOUNTuuiiiiiiiii e eeie e e e e e e e e e e e eanas 607

19.2. Creating a Datahase CIUSLEYoiviiiiiii e 607

19.3. Starting the Database SEIVENcevviiiii e 610

19.4. Managing Kernel RESOUICESciuuiiiii e e e e e e e e e e 613

19.5. Shutting DOWN the SEIVEruiiiii e 621

19.6. Upgrading a POStgreSOQL CIUSLErccovuiiiiieiii e eeie e ee e e e e 622

19.7. Preventing Server SPOOfiNgcvuueiiiiieiii e ee e e r e 625

19.8. ENCryption OPLiONS .. .ccuuueiiii e e e e e e e et e e e e e eaaas 626

19.9. Secure TCP/IP Connections With SSLcccvviiiiiiiiiiiii e, 627
19.10. Secure TCP/IP Connections with GSSAPI Encryptioncccooevvivivnnnennnnn. 631
19.11. Secure TCP/IP Connections with SSH Tunnelscoovvvvviiiiiiiiiieeciieeeeee, 632
19.12. Registering Event Log on WIiNdOWSooiviiiiiiieiiiiecin e e 633

20. Server CONfIQUIAIONuuiie e et e e e e e e e e e e e et e e e e e et e e e et e e eanaeeenaes 634
20.1. SEtting ParameterScovn e 634

P T L= e o o] o LN 638

20.3. Connections and AUheNtiCaEIONiviiiiiiieieii e 639

20.4. ResoUrce CONSUMPLIONuuiiiiii e ee e e e e e e e e e e e e e e e et e e ean e eaa s 646

20.5. WIit€ ANEAA LOQ .. ivviiiiiiei e e e e e e e e e e e 655

P20 N ST = L= o] o= 1o o NS 666
20.7. QUENY Planningcuuueiiiieiii i e e e e e e e 673

20.8. Error Reporting and LOGINGuovevnieiiiieiieeeieeeee e e e e e e e e e eaeeeees 680

20.9. RUN-EIME SEALISHICS cvvvtieeeiiie et e e e e et e e e eae s 695
L0 B O RANU 1 (o 0 47 (FoAVA=o: U LW 411 oo 697
20.11. Client ConNeCtion DEFAUITSccuuuiiiiiiiiiee e 699
20.12. LOCK MaNAGEMENLevviiiieeiii e e e e e e e e e e e e e e e e et e e e eeanns 710
20.13. Version and Platform Compatibilityccoooiiiiiiiiiiiii e 711

Vi

PostgreSQL 16.3 Documentation

21.

22.

23.

24.

25.

26.

27.

28.

20.24. Error HAaNAINGoovniii et e e e e e e 712
20.15. Preset OPtiONSuuiii e e e et e e e e e e e e e e e aa 713
20.16. CuStOMIZEA OPLIONS .. cevuiiiiieeiiieeeie e e e e e e e e e e e e e e et e e e e e eanees 715
20.17. DeVEIOPEr OPLIONSciiiiiiiie e e e 715
20.18. SNOI OPLIONS ...vuiiiiieiiieiee e e e e e e e e e e e e e e et e e et e e e eaaneees 721
Client AULRENTICEIION e e e e 723
21.1. The pg_hba. conf File ... 723
212, USEN NAIME MBS . ettt 732
21.3. Authentication MEthOOSuuiiiiiiiie e 734
214, Trust AULNENEICAIION ...evvuiiiiii e 734
21.5. Password AUtNENtICALIONuuiiiiiiiiei e 735
21.6. GSSAPI AULNENtICALION ...ievviieiiiie e 736
21.7. SSPI AUNENEICALION ..eevvi e e e e s 737
21.8. [dent AULNENTICAIONcevveieeeiiie e e e 738
21.9. Peer AULNENLICALION ... ciiiiiieeieii et e e et eeeae e eees 739
21.10. LDAP AULhENTICAIONiiieeieeeeiiis ettt e e e e e e e eeeens 739
21.11. RADIUS AURENEICALION ...vevviiieeiis e 743
21.12. Certificate AUNENICALIONutiiiiiiieeeii e e 744
21.13. PAM AULNENLICAION ...ceiiiiieeiiii e 744
21.14. BSD AULNENLICALION ...ueeiiiieeeeiii et e e e e e e e e aa s 744
21.15. Authentication ProblemSuiiiiiiiiieiii e 745
DataDase ROIES ... coeeiiieeeii e e 746
22.1. Dat@hase ROIESiiiiiiiee ittt 746
22.2. ROIE ALLIDULES ... e 747
22.3. ROIE MEMDEISNIP «.iviiii e e e e e 749
22.4. Dropping ROIESiii e 751
22.5. Predefined ROIESi i 751
22.6. FUNCLION SECUMLY .vuuiiiieiiiieiie et e e e e e e e e e e e e e eaa s 753
MaNaging Dalabasescouuueiii i 754
P I O Y= g = ST 754
23.2. Creating @ Databaseccuueiuiieiii i e 754
23.3. Template Databasesuveiviieiii e 756
23.4. Databhase CONfigUIationcc.uieiiiieiiiiieiii e e e e e e e e e ea e eens 757
23.5. Destroying a DatahaSeccvuuieiiiieii i 757
23.6. TADIESPACES ... ceve et 757
(oo 12 1o o RS OPPTTPN 760
S I e oz LIS o] oo o AP 760
24.2. COll@tion SUPPOITcivieii et e e e e e e e e e e e e e e e et e e e e eeanaas 765
24.3. CharaCter SEt SUPPOIuuevii i e e e e e e e e e e e eaa e eaes 775
Routine Database MaintenanCe TasKSoveveeeneeriiiineereiieee et e et e e e e e eain s 786
25.1. ROULINE VACUUMING ...uuiiiiieii e e e e e e e e e e e e e e e e st e e e e e s e e enneeennaas 786
25.2. ROULINE REINAEXING ©..cvvveiiiieiiie e e e e e e e e e e e e et e e e aanas 796
25.3. LOg File MAINtENANCEcvvviiii et e e e e e e e e e 796
Backup and RESIOIEu.iiiicee e e e e e e e eaaas 798
26.1. SQL DUMP ittt sttt e e e et e et e e e aae 798
26.2. File System Level Backupccovuiiiiiiiiiiecii e 801
26.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccoooviveviinenines 802
High Availability, Load Balancing, and Replicationccccecviiiiiiiiiiin e, 813
27.1. Comparison of Different SOlUtiONScccuviiiiiiiiii e 813
27.2. Log-Shipping Standby SErVEIScivviiiiiecii e 816
27.3. FIOVEN .oeieiei i 825
27.4. HOt SEANADY ..oovneie e 826
Monitoring Database ACHIVITYcovuiiiiiei e e 835
28.1. Standard UNiX TOOISuuiiiiiiieiiiiie et e e e e e e e e et e e e 835

Vii

PostgreSQL 16.3 Documentation

28.2. The Cumulative StatiStiCsS SYSIEMcvvviiiiieeie e e 836

28.3. VIEBWING LOCKS .. .ceviiiii e e e 877

28.4. Progress REPOMINGuivviieiiii e e e e e e e et e e e e e e e e e e eaneees 877

28.5. DYNAMIC TIaCIiNG .vvuuiiiieiiiieiie e e et e e e e e e e e e e e et s e et e et s e e et e e aaneeeanns 886

29. MONItoring DiSK USAQEuuiiiiiiiii i e e e e e e e et e e e eeeas 896
29.1. Determining DiSK USAQgE ...c.uuiiiiieiiieiie e e e e e e e e e e e e e aaaeeaes 896

29.2. Disk FUIl FaIlUMccceeieiiii et e e e e 897

30. Reliability and the Write-AhEad LOgoovvviiiiiiiii e 898
O = = T 1) Y 898

30.2. Data ChECKSUMS ...cevviieeiiii ettt e et e e et r e e e eat e e eenenaeeees 900

30.3. Write-Ahead Logging (WAL) ...coveiii e 900

30.4. ASynchronous COMMITcuuiiuiieiii e e e e e e e e e e e et e et e e e e eaanees 901

30.5. WAL ConfigUurationc...ieiuuieiieeiiiieee e e e e e e e e e e e e et e e e e eanas 902

30.6. WAL INEEIMAIS ..vuieiiii ettt et e e e e e e e 905

G I oo [or= I 2 3= o] o= [o NS 907
I . o o= 1o S 907

G IS U1 1=] o1 o o P 908

313 ROW FIlEIS .oieiiiiiie ettt e e e e e e et na e e e e e eanaees 915

I I o 11 0o T I PP 923

3 R 0o) T £ PR 926

3 I (== e o LSS 926

I A o 1) = o LU PP 927

13I8 T 1 o g (o oo 928

TS o) Y 928
31.10. Configuration SELNGScvvvneeiiieiii e e e e e e e e e aaaas 929
O U o= (1o T 930

32. Just-in-Time Compilation (JIT) .ouuiiinieiii e e e e e e e e e e e e aaeees 931
32.1. What IS JIT compilation?cc.uiiiiiiiiiiei e e e e 931

K VAV 01 3 T (TN N S 931

IC22C T ©¢o 11 To 1= 1 (o] o [933

K = 1= | o] 1) YU 933

T B L= | (= o g 1= =P 935
33.1. RUNNING the TESES ...iviiiiii e e e e e e e e 935

K =S B Y 1 1 o) o TR 939

33.3. Variant Comparison FilEScoouiiiiiiiiiie e 941

T I AN o = £ 942

33.5. Test Coverage EXamiNaionc.uiiiinieiieeiiii e e e e e e e e e e e e eans 943

Y O 1= o 1 1= 4 == TP 945
34, 1IDPG — C LIbrary ..ooouieiiee e 950
34.1. Database Connection Control FUNCLIONScocuvviiiiiiiiniiii e 950

34.2. ConNeCtion StAtUS FUNCLIONSvuueeiiiiieeiiiie e 969

34.3. Command EXeCUtion FUNCHIONSoovviuiiiiiiiiiie e 976

34.4. Asynchronous Command ProCESSINGcuueernieiiiieiiiieeiiieeeiieeeieeeaeeeeneeaenaes 993

34.5. PIPENE MOUE .. .ccvuiiiiiei e e e e e e aa s 997

34.6. Retrieving Query Results ROW-BY-ROWccoooiiiiiiiiiic e 1001

34.7. Canceling QUENES IN PrOgreSSucivuniiiieeiii e e e e e e e e e e e 1002

34.8. The Fast-Path Interfaceccouuiiiiiiiii e 1003

34.9. Asynchronous NOEIFICaEIONccvvuiiiiieie e 1004
34.10. Functions Associated with the COPY Commandcevevvvinieriiineeniiinnnn. 1005

17 B I o o g T (' P 1009
34.12. MisCellaneous FUNCLIONSc.uuuiiiiiiie i e e e 1012
G704 1 T L1 oY o=] o P 1015
R Y= | QY (1 PSP 1016
34.15. Environment VariableScuuieiiiiiieci e 1023

PostgreSQL 16.3 Documentation

34.16. The PassWord Filecoouuuiiiiiiie et 1025
34.17. The Connection Service Fileooouiiiiiiii e 1026
34.18. LDAP Lookup of Connection Parametersccoccuvveiiiieiiin i 1026
34,19, SSL SUPPOIT ..ttt 1027
34.20. Behavior in Threaded Programsccocevieiiiiiiiiiecii e 1032
34.21. Building [ibpg Programscccoeiiiiiiiiie e 1032
34.22. EXaMPIE PrOQramSciiiiiii e e e e e e e e e 1034
LS T I (0 (=l @ o= ox TS 1046
11300 1 o (8o [o 1046
35.2. Implementation FEAIUIESccouiiiiiii e e e 1046
R A O T 0| 1= = o= 1046
35.4. Server-Side FUNCHIONSoiveeiie it e e e e eae e e eanes 1051
35.5. EXAMPIE PrOgramccun ittt e e e e e e e e e e e e e 1052
36. ECPG — Embedded SQL iN C ..oovvuiiiiiiieeee e 1059
G T N I =T o o1 o 1059
36.2. Managing Database CONNECLIONScccuuiiiiieiiiiciiie e e e 1059
36.3. Running SQL ComMManScccueiiiiiiiiiieiii e ee e e e e e 1063
36.4. UsSing HOSt VariahleScovvniiii i 1066
36.5. DYNAMIC SQL .eevuiiiiiiiie it 1082
36.6. POLYPES LIbraryccovniiiiii e 1084
36.7. USING DESCIIPLOr ATEBScivvnieiiieeiiieeeie et e et e e e e e e e et e e ea e e aanees 1098
36.8. Error Handlingccoueiiiiiiii e 1112
36.9. PreproCessor DITECHIVESu.iiii i e e e e e e e e e 1119
36.10. Processing Embedded SQL Programsccoevvvieeiieeiiiieiiieeeieeeineeaieeeen, 1122
36.11. Library FUNCLIONScouiiiiici e e e e 1123
36.12. Large ObJECES ...cvvuiiii e e e e e e e e 1123
36.13. CH+ APPHICALIONS .. cevuiiiieeii e e r e e e e e aaas 1125
36.14. Embedded SQL COomMManScouuieiiiieiiiiieiiieeie e e e e e e e e 1129
36.15. Informix Compatibility MOdEcoovviiiiiii e, 1155
36.16. Oracle Compatibility MOOEcovviiiiiiii e 1171
T I A 101 1= 1 4 =SS 1172
37. The INfOrmation SCHEMAuiiiiiiii e 1175
37.1. The SChEMA ... i e e e 1175
A DT - B Y oS SPPPSRPRN 1175
37.3.informati on_schema _catal og nameccooccovviiiiiiiiin e, 1176
374.adm nistrable role authorizationsccooeviiiiiiiiiiiinecinneen, 1176
37.5.applicabl @ rol €S .., 1176
7.6, At LT DUL ES 1o e 1177
37.7. Char ACt BF SO S ittt e 1179
37.8.check_constraint_routiNe_USageccoeevviveiiiiiiiiiiciiiiecie e, 1180
37.9. CheCK_CONSErai NES i 1181
00 0 o o] N - Y A o) 1= PP 1181
37.11.col l ation_character_set _applicabilityccoooiiiiiiiiinnnnn. 1181
37.12. COl UM_COl UMN_USAQE ...ieiieiiii i e e 1182
37.13. COl UM_dOMBI N_USAQE ..ieviiiiiieiiii e e e e e e e e 1182
% o oY I W [40 0 T 0 o B o] o =P 1183
37.15. COl UMN_Pri Vil 0SS oo 1183
37.16. COl UNM_UAL _USAQE .uiiiiiieiii et e e e e 1184
B7.17. COL UMMIS Lot e e e e b e e eaeens 1185
37.18.constrai Nt _COl UNM_USAQE ...uuiiviniiiiieiii e e e e e 1188
37.19.constraint_tabl @ USAgeccooceviiiiiiiiii 1188
37.20.data_type priVvil €0esS .o 1189
37.21. dOMBI N_CONSE T Al NE'S toviiiiiiiii e e 1190
37.22. dOMBI N_UAL _USAQE .uiiiiieiii et e e e e e 1190

PostgreSQL 16.3 Documentation

72 T o (o] 11 U o K-S SRS 1191
37.24. €l EIMBNE L Y PES it 1193
37.25. €Nabl €A IOl €S .o 1195
37.26.forei gn_data wrapper_Opti ONScooceiviiiiiiiiiiiiie e, 1195
37.27.T0orei gn_dat @ W apPPEI'S cuiiiiiiiiii e 1196
37.28.fOrei gn_Server_OpPti ONS ..oiiiiii i 1196
Y B o =TI o | o Y=Y SR V4 =Y = T 1196
37.30.foreign_tabl e Options ..o 1197
37.3L.forei gn_tabl €S oo 1197
37.32. KEY_COl UM _USAQE .uiiiieiiii i et e e e e e e e et e e 1198
37,38, Par AT B B S ittt e 1199
3734 referential _constrainNtsccooeiiiiiiiiii i 1200
37.35. 10l €_COl UM_grant'S ..ooieuiiiiiiiciie e e 1201
37.36. 10l €_routiNe _grants ..ooiiiiiiiiiii e 1202
37.37.r0l e _tabl e _grants ..o 1202
37.38. 10l €_UAL _grant S c.oiiiiiiiiiii e 1203
37.39. 10l €_USAQE_grant S .iiuiiiiii i 1204
37.40. routi Ne_COl UNM_USAQE .ovuiiiiiiiiiii e 1204
374L routiNE_PrivVil BOBS i 1205
37.42. 1 OUL I NE_TOUL I NE_USAQE wuuiiviiiii e ee e eee e e e e e e e e e e aeaas 1206
37.43. 10Ut i NE_SEQUENCE _USAQE ..cvvvniiineeinieeiiieeiiieeaieeetneesteeeaneeaneeannns 1206
3744. routine_tabl @ USAQE .oocooiiiiiiiiiii e 1207
L o U N o 1= PSP 1208
37.46. SCREMAL @ oiiiiviiieii e 1212
Y T =To [T =] g [o =1 PP PPN 1213
37.48. SOl T AL UM BS it 1214
3749.sql _inplenmentation info ..., 1214
37.50. SOl PAIt S ciiiiiiiii i 1215
37.5L SOl ST ZI N e 1215
37.52. tabl @ CONStrai NES .o 1216
37.53. tabl € Pri Vil €S .o 1216
754, 1 AD] €S e 1217
755, 1 FANST OF ITB oot 1218
37.56.triggered _update Col UMMS ..o 1219
Y A0 W g e [0 =] =T PN 1219
37.58. Ut _Pri Vil @S .o 1221
37.59. USAQE _Pri Vil BOES .o 1221
37.60. user _defined tYPeS i 1222
37.61. user _mappPi NQ_OPL i ONS .o 1224
Y S N (Y T G 1= 1 o] o [[o 1 1224
37.63. Vi BW _COl UMM _USAQE civvniiii it e e e e e s 1225
37.64. Vi EBW T OUL T NE_USAQE tovuiiiiieiiiieiie et e e e e e e e e e e e e e an s 1225
37.65. Vi eW t @bl € _USAQE .oivviiiii e 1226
706, Vi BWS oeuuiieiiiii e ettt e ettt e e e e ettt aeaan s 1226
A S = A= . oo = 0 1 011 oo [1228
38. EXIENAING SQL ..evtiiiiiii et 1234
38.1. How Extensibility WOrKSccooiiiiiiiiii e 1234
38.2. The PostgreSQL TYPE SYSIEM ...vuiiiiieiii e e e e e e e 1234
38.3. User-Defined FUNCLIONSuiiiiiiiiieiii et e eaaan s 1238
38.4. User-Defined ProCeAUMESovieeiieieiii et e e e et e e e eanens 1238
38.5. Query Language (SQL) FUNCLIONSccvvniiiiieiie e e e e e e e 1238
38.6. FUNCtion OVErloadingviiiiiiiiiiciie e e 1256
38.7. Function Volatility CategOriEsccuuieiiiieiii e e ee e e e s e e e e 1257
38.8. Procedural Language FUNCLIONSccooviiiiiiiiiccie e 1259

PostgreSQL 16.3 Documentation

38.9. INternal FUNCLIONSuuiiiiii e e e e e eeaes 1259
38.10. C-Language FUNCLIONScivuiieii e ee e e e e e e e e e e e et e eeaneeees 1259
38.11. Function Optimization INfOrmMationcoeveiiiieiiieiin e 1281
38.12. User-Defined AQQregatesuueiunieiiieiieeeiie e e e e e e e e s e et e eaaeens 1282
38.13. USEr-DeEfiNEd TYPES ..vueiieiiieieiii ettt e et e e e e e e eae s 1289
38.14. User-Defined OPEratOrsciuueiii et eeii e e s e s e e e e e e e st e e e eanaaees 1294
38.15. Operator Optimization INfOrMationc.ccciieiiiieiiiieiii e e 1295
38.16. Interfacing EXteNSioNS tO INAEXESccvviiiiiiii e 1299
38.17. Packaging Related Objects into an EXtENSIONccvvvvviiiiiiieciiecc e, 1312
38.18. Extension Building INfrastruCtureccoveviiiiiiii i 1321
1 T I o o = PPN 1326
39.1. Overview of Trigger BENaVIOrociviiiiiii e 1326
39.2. Visibility of Data Changesucvvuiiiiiiiii e e e e 1329
39.3. Writing Trigger FUNCLIONS IN Cuuiiiiiiiic e 1330
39.4. A Complete Trigger EXampleco.uiiiiiiiiiieeiie e e e 1333
O V= o | o o (= PP 1337
40.1. Overview of Event Trigger BEhaviorcccccoiviiiiieiiiieciiecee e 1337
40.2. Event Trigger FIriNg MatriXoeiiiiiiiieci e 1338
40.3. Writing Event Trigger FUNCHIONSIN Covvniiiiiii e 1341
40.4. A Complete Event Trigger EXampleccuuviiiiiiiiieiii e 1343
40.5. A Table Rewrite Event Trigger EXamplecoovveiiiiiiiiii e, 1344
41, The RUIE SYSLEIM ...t e e e et e e e e 1346
I I 0 TN @ 111 YA (== T 1346
41.2. Views and the RUIE SYSIEMcoviiiiiii e 1348
41.3. MAEri@liZO VIBWS ... e a e e e 1355
41.4. Rules on | NSERT, UPDATE, and DELETEcccoiiiiiiiinieiiiiieeccie e 1358
41.5. RUIES aNd PriVIIEgES .. covcii e 1369
41.6. Rules and Command SEALUSuuieiiiiiieiiiiie ettt e e 1371
41.7. RUIES VEISUS THOOES cuuneiiiieiiii e et e e e e e e e e e e e e e e e et e et e e aaneeeens 1371
42. ProCedural LanQUBOESueeuneeiieeiiee e et e e e e et a e et e e e e et e e st e e et e e eaaeeaaneeaens 1375
42.1. Installing Procedural LanQUagEScccuuvviiiiiiieiiie e e e e e e e 1375
43. PL/pgSQL — SQL Procedural LangUagecccuueiuniiiiiieeiiieein e e eee e e e e 1378
A0, OVEIVIBW ..ottt e et e ettt e e e ettt e e ettt e e ettt s e e e et s e e e ettaeeeestnneeaees 1378
43.2. Structure of PL/PGSQL ..ueivinieii e 1379
A3.3. DECIArAHONS .. .ceeevie et e 1381
B q o (== 0] 1P 1388
43.5. BASIC SEALEIMENESuieiiiiiieeeiii ettt e et e e et e e e et s e e e et s e e e eren e eaees 1389
43.6. CONLTOl SITUCLUMESieiiii et e et e et e e et e e e e et e e e eeaenaeeees 1397
A O 1 1o = TP 1413
43.8. TransaCtion ManaQemENtcc.ueeiuiieiiiee e e e e e e e e e e e e aanas 1419
43.9. Errors and MESSA0ESuueieteiiiieiiee et e e e e e e e e e e e e e et e e e e r e a e aaa 1420
43.10. Trigger FUNCHIONSceeeiii e e e e e e e e e e e e e e e e e aneees 1423
43.11. PL/pgSQL under the HOOMcoovuiiiiiiiciii e 1432
43.12. Tips for Developing in PL/PGSQLcviniiiiei e 1435
43.13. Porting from Oracle PL/SQLccvvuiiiiiieiie e 1439
44, PL/Tcl — Tcl Procedural LanQUagEccvvueiiiieeii e e e e e e e e e e e 1450
A0, OVEIVIEW ..eevtiieeeeti e et e et e e ettt e e ettt e e e e ettt e e et et e e e et s e e eettaeeeestnaeeaees 1450
44.2. PL/Tcl Functions and ArQUMENEScceuniriiiieiiie e et e e e e e e e e eeanns 1450
44.3. Data Values in PLITCl .ooooveii e 1452
44.4. Globa Datain PLITCl .ouuuiiiii e 1453
44.5. Database AcCesS from PL/ITCl ...oovviiiiiiiiii e 1453
44.6. Trigger FUNCLIONS IN PLITCl .ouviiin e 1456
44.7. Event Trigger FUNCLIONS iN PLITCl c.vviiiiii e 1458
44.8. Error Handling in PLITCl ...oovniii e 1458

Xi

PostgreSQL 16.3 Documentation

44.9. Explicit SubtransaCtions in PLITClccuviiiiiiiiicci e 1459
44.10. Transaction ManagemMENtoeiiiiiiiiii e e eaa s 1460
44.11. PL/TCl CONfigUIralioncouunieiieeiieeei e e e e e e e e e e e et e et e e e e eaens 1461
4412, Tcl Procedure NAIMESuieeeiiiieeeiii ettt e e e e e s 1461

45, PL/Perl — Perl Procedural LanQUageccuuuieiuniiiiieiiieeeieeeiie e e e e e e eanaeeaen 1462
45.1. PL/Perl Functions and ArgUMENLSccuuveiiieiiiieeiie e eeiee e et e e eeeens 1462

45.2. Data Values in PLIPErl ..o 1467
45.3. BUIE-IN FUNCHIONS .eeviccce et 1467
45.4. Globa ValUES iN PLIPENToiviiiii e 1473

45,5, Trusted and Untrusted PL/PENuiiiiiiiiiiiiii e 1474

N T o I = 4 T e o 1= PN 1475
45.7. PL/IPErl EVENt TIIQOEIS . .evvneiii e e et e e e e e e e e e e e e e e e et e e e eaans 1476
45.8. PL/Perl Under the HOOoviiiiiiiiiiii e 1477

46. PL/Python — Python Procedural Languagecocvvviiiiiiiiiiiieiiiece e eeeaeee e 1479
46.1. PL/PythOn FUNCHIONS ... ccuuiiiiii e e e 1479
6.2, DA VAIUBSueiiiii et 1480

LRSS 17 4] ool D - U 1486

46.4. AnonymouS Code BIOCKScviiiiiiiiicii e 1486

46.5. Trigger FUNCLIONSciiieii e e e e e e e e e e e eaeees 1486

46.6. DAADASE ACCESSvvnieieiiii e et e et e e e et e e e e 1487

46.7. EXplicit SUDLraNSACiONScccuuiiiiieiiieec e e e e e e 1491
46.8. TransaCtion ManagemENtcc.ueiiuiieiiii e e e e e e e e e e e e eanas 1492

46.9. ULility FUNCHIONSuiiiiiii e e e e e e e e e e ees 1493
46.10. Python 2 vs. Python 3 ... 1494
46.11. Environment VariableSooviiiiiiiiiiii e 1494

47. Server Programming INtErfacecoovuiiiiii e 1496
A47.1. INterfaCe FUNCLIONS ... coiiii e e e e e 1496

47.2. Interface SUPPOrt FUNCLIONScccuiiiiieiii e e e e e e e 1539

47.3. MemOry ManagemMENTouuiniieiiiie ettt e e eas 1548

47.4. TransaCtion ManagemENtcouuieiuiieiiii e ee e e e e e e e e e e e aanas 1558

47.5. Visibility of Data Changesccuoviiiiiiiiiiciii e 1561

A7.6. EXAMPIES ..ottt e aee 1561

48. Background WOTKEr PrOCESSESuueiiieiiiieeiii e e e e e e e e e e e e e e e et e e eaneeeanees 1565
L R T o= I D<ol 1 1o PP 1569
49.1. Logical Decoding EXaMPIESccuviiiiiiiiii i 1569

49.2. Logical Decoding CONCEPLSuuivvueiiiieeiii e e e e e e e e e e e e e e eees 1573

49.3. Streaming Replication Protocol Interfaceccooveviiiiiiiiiii i, 1575

49.4. Logical Decoding SQL INtEIfateccvuviiiiiiiiieeie e 1575
49.5. System Catalogs Related to Logical Decodingceevvnvviiieiiiieiiiiieiieeainns 1575

49.6. Logical Decoding OULPUL PIUGINScovuiiiiiieiiiee e 1575

49.7. Logical Decoding OULPUL WIHTEIScvvueiiieiii e 1584

49.8. Synchronous Replication Support for Logical Decodingcoccvvvevvvneeeinnnns 1584

49.9. Streaming of Large Transactions for Logical Decodingccooevvvvevinnennnnn. 1584
49.10. Two-phase Commit Support for Logical Decodingcccovevvviieiineeinnnnnn. 1586

50. Replication Progress TraCKinNgeiueeeiiieiii e e e e e e e e e e e e e e eaneeees 1587
51. Archive MOUUIEScouiiiiii e e 1588
51.1. Initialization FUNCHIONScieieiieeieii e eeer e eees 1588

51.2. Archive Module Callbackscoviiiiiiiiiiiii e 1588

VL REFEIBNCE ... e et ettt et e et eaas 1590
S @ I o 4101970 P 1596
N =1 | PSP 1600
ALTER AGGREGATE ...ttt et e et a e et e eeeaaa e e e eee 1601
ALTER COLLATION .ttt ettt e et e e et eeaeaan e e eenees 1603
ALTER CONVERSION ...ooutiiiiiiiiiieiiiiis et e e e e e e e e e eaa e e eenenns 1606

Xii

PostgreSQL 16.3 Documentation

ALTER DATABASE ... 1608
ALTER DEFAULT PRIVILEGESccoooiii e, 1611
ALTER DOMAIN .o 1615
ALTER EVENT TRIGGER ...ttt 1619
ALTER EXTENSION ..ottt 1620
ALTER FOREIGN DATA WRAPPER ..o 1624
ALTER FOREIGN TABLE ...t 1626
ALTER FUNCTION ..ottt 1631
ALTER GROUP ..ottt 1635
ALTER INDEX ..o 1637
ALTER LANGUAGE ...t 1640
ALTER LARGE OBJECT ..ottt 1641
ALTER MATERIALIZED VIEWiiiiiiiii e 1642
ALTER OPERATOR ...coiiiiiii e 1644
ALTER OPERATOR CLASS ... 1646
ALTER OPERATOR FAMILY oo 1648
ALTER POLICY oot 1652
ALTER PROCEDUREcooiiiiiiiiic e 1654
ALTER PUBLICATION ..ot 1657
ALTER ROLE ... 1660
ALTER ROUTINE ..ot 1664
ALTER RULE ... 1666
ALTER SCHEMA L. o 1667
ALTER SEQUENCEo 1668
ALTER SERVER ..ot 1672
ALTER STATISTICS ... 1674
ALTER SUBSCRIPTIONcciiiiiiiiiiiiiie e 1676
ALTER SYSTEM .o 1679
ALTER TABLE ..o 1681
ALTER TABLESPACE ... oo 1700
ALTER TEXT SEARCH CONFIGURATIONcciiiviiiiiiiiiiiice e 1702
ALTER TEXT SEARCH DICTIONARY ...t 1704
ALTER TEXT SEARCH PARSERccooiiiiiiiii e 1706
ALTER TEXT SEARCH TEMPLATE ... 1707
ALTER TRIGGER ...t 1708
ALTER TYPE Lo 1710
ALTER USER ..o 1715
ALTER USER MAPPING ..ot 1716
ALTER VIEW .o 1718
ANALYZE ... o 1721
BEGIN o 1725
CALL e 1727
CHECKPOINT . 1729
LS . 1730
CLUSTER . 1732
COMMENT Lo 1735
COMMIT e 1740
COMMIT PREPAREDcooviiiiiiiiii e 1741
GO Y 1742
CREATE ACCESS METHODcccviiiiiiiiiiiciee e 1753
CREATE AGGREGATE ... 1755
CREATE CAST ot 1763
CREATE COLLATION .ottt 1768
CREATE CONVERSION ...t 1771

PostgreSQL 16.3 Documentation

CREATE DATABASE ..o 1773
CREATE DOMAIN ..ot 1778
CREATE EVENT TRIGGERcoiitiiiiiiiicic e 1781
CREATE EXTENSION ..oooiiiiiiiiii e 1783
CREATE FOREIGN DATA WRAPPERccoiiiiiiii e 1786
CREATE FOREIGN TABLE ...t 1788
CREATE FUNCTION L..ouiiiiiiii e 1793
CREATE GROUP ..ottt 1802
CREATE INDEX ...t 1803
CREATE LANGUAGE ..o, 1813
CREATE MATERIALIZED VIEW ..o 1816
CREATE OPERATOR ...ttt 1818
CREATE OPERATOR CLASS ..ot 1821
CREATE OPERATOR FAMILY .ot 1824
CREATE POLICY ..ttt 1825
CREATE PROCEDUREciiiiiiiiiii e 1831
CREATE PUBLICATION ..ottt 1835
CREATE ROLE ..ot 1839
CREATE RULE ..o 1844
CREATE SCHEMA ..o 1847
CREATE SEQUENCEiiiiiiiiiic e 1850
CREATE SERVER ...t 1854
CREATE STATISTICS ... 1856
CREATE SUBSCRIPTION ..ottt 1860
CREATE TABLE ... 1865
CREATE TABLE AS ... o 1889
CREATE TABLESPACE ..o 1892
CREATE TEXT SEARCH CONFIGURATION ..o, 1894
CREATE TEXT SEARCH DICTIONARY ...ouiiiiiiiiiiiie e 1896
CREATE TEXT SEARCH PARSER ...t 1898
CREATE TEXT SEARCH TEMPLATE ..o 1900
CREATE TRANSFORM ..ottt 1902
CREATE TRIGGERoiiiiiii 1905
CREATE TYPE .o 1913
CREATE USER ...coiiiii e 1923
CREATE USER MAPPING ..ot 1924
CREATE VIEW ..ot 1926
DEALLOCATE ..o 1932
DECLARE ..o 1933
DELETE . o 1937
DISCARD ... 1940
DO 1942
DROP ACCESS METHODccoviiiiiiiiiiici e 1944
DROP AGGREGATE ...t 1945
DROP CAST oot 1947
DROP COLLATION .ottt 1948
DROP CONVERSIONcoiiiiiiiiiiice e 1949
DROP DATABASE ..o 1950
DROP DOMAIN L.t 1952
DROP EVENT TRIGGERcciiiiiiiiiiii 1953
DROP EXTENSION ...oiiiiiiiiiei e 1954
DROP FOREIGN DATA WRAPPER ..o, 1956
DROP FOREIGN TABLE ..o, 1957
DROP FUNCTION .ot 1958

Xiv

PostgreSQL 16.3 Documentation

DROP GROUP ...t 1960
DROP INDEX ... ittt 1961
DROP LANGUAGE ... oot 1963
DROP MATERIALIZED VIEW ..o 1965
DROP OPERATOR ...ttt 1966
DROP OPERATOR CLASS ... 1968
DROP OPERATOR FAMILY .oiiiiiiii e 1970
DROP OWNEDciiiiiiiiiiiii e 1972
DROP POLICY ottt 1974
DROP PROCEDURE ...t 1975
DROP PUBLICATION ..ottt 1978
DROP ROLE ..ot 1979
DROP ROUTINE ...coiiiiiiiii e 1981
DROP RULE ..ot 1983
DROP SCHEMA ... e 1984
DROP SEQUENCEciiiiiiiii e 1986
DROP SERVER ..o 1987
DROP STATISTICS ... 1988
DROP SUBSCRIPTION ..ottt 1989
DROP TABLE ... 1991
DROP TABLESPACE ..o 1992
DROP TEXT SEARCH CONFIGURATIONooiiiiiiiiiiiiii e 1993
DROP TEXT SEARCH DICTIONARY ...couiiiiiiiiiiiici e 1994
DROP TEXT SEARCH PARSER ..ot 1995
DROP TEXT SEARCH TEMPLATE ..o 1996
DROP TRANSFORM ..ottt 1997
DROP TRIGGERouiiiiiiiiiiii e 1999
DROP TYPE ... 2000
DROP USER ..ottt 2001
DROP USER MAPPING ..ottt 2002
DROP VIEW .o 2003
END e 2004
EXECUTE .o 2005
EXPLAIN Lo 2006
FET CH 2012
GRAIN T 2016
IMPORT FOREIGN SCHEMA ... 2022
INSERT .o 2024
LISTEN o 2032
LOAD o 2034
L O CK e 2035
MERGE ... 2038
MOVE .o 2044
NOTIRY e 2046
PREPARE ... 2049
PREPARE TRANSACTIONcciiiiiiiiiiiiii e 2052
REASSIGN OWNEDoiviiiiiiiii e 2054
REFRESH MATERIALIZED VIEW ..o 2055
REINDEX ... 2057
RELEASE SAVEPOINT ..ot 2062
RE S E T e 2064
REVOKE ..o 2065
ROLLBACK o 2070
ROLLBACK PREPAREDoiiiiiiiiiiiin e 2071

XV

PostgreSQL 16.3 Documentation

ROLLBACK TO SAVEPOINT ...ttt ettt e e e e et eeeena e aees 2072
SAVEPOINT Lottt et e et e e et e e et eaeaans 2074
SECURITY LABEL ..ouuiiiiiii ettt e et e e e s 2076
S I PSP 2079
S I =0 I 1\ VI 1 R 2102
S P 2104
SET CONSTRAINTS ..ottt e e e e et s e e e eaeaeaees 2107
S I (O PP 2109
SET SESSION AUTHORIZATION ..ovuiiiiiiiiieeeei et e e 2111
SET TRANSACTION ..ttt e et e e e e 2113
SHOWY e e aaan 2116
START TRANSACTION ..ouiiiiiiiiie ettt e e e e et e e e e s 2118
TRUNGCATE ..ottt e s e et e e e et e e e eaa s 2119
UNLISTEN Lottt e et e e e et e e e et e e e et eas 2122
UP D A T E ittt e et et e et a e r e aee 2124
VACUUM L.t e e e e e et eeeera s 2129
VALUES ...t 2134
I1. PostgreSQL Client APPlCAIONSuuiiiiiiii e e e e e 2137
(o1 (o | o PP 2138
(o= 1= | o PP 2141
CTEBLEUSEY ... evuete ettt ettt et et et et e et e e e et e et e et e et e e ea et e et e et e e n e e e e e aeen e 2145
(010700 o PP 2150
(01 0] 11 2153
(< o¢ oo PRSPPI 2156
o101 =0 G 2159
PO _DESEDACKUD ... 2165
01007 o 2174
oo w0 0 T P 2200
oo 0 L8 T 1o TN 2203
PO AUMPAIL ..o 2218
Lo TS (= o |V S 2225
Lo T = o= AV L= P 2227
o To T (= w17 oo T NP 2232
10 (== (0] (PP P PSPPI 2236
PO VENTYDACKUD ..veiie e 2246
01 o | P 2249
(=070 1= | o TP 2295
A= e U110 1o o PPN 2299
[11. PostgreSQL Server APPlICaLiONSciuuiiiie e ee e e e e e eas 2305
TNEEAD e e 2306
PY_arChiVECIEANUDuiii e 2311
[oTo e 4= S 0 1P 2313
[oTo T w011 0] [=1 - P 2315
oo N o | 2316
[T T =5 = A1 | 2322
oo =111 o PN 2326
10 T (=S)Y/ 2330
o To === A (142 P 2331
o100 oo =" [T 2335
o102z Lo L1 4o o P 2344
01075 0 === PPN 2348
RV 1 01 =0T PP 2355
52. Overview of POStOreSQL INtErMalScuvuiiiiiciii e e 2362
52.1. The Path Of @ QUETYoiiiiieiiie e 2362

XVi

PostgreSQL 16.3 Documentation

52.2.

How Connections Are EStabliSNedcouiiniiniiiiii e

52.3. ThE Parsar SEAgE ..vuuivviiiii e et e e e e e e e e e e eaans
52.4. The PostgreSQL RUIE SYStEMccuiiiiiiiiiecie e

52.5.
52.6.

Planner/OPtiMIZErcouiiiiiee e e
EXECULOT ...t e et e e e ees

TSV 1< (IO [0 o PN

53.1.
53.2.
53.3.
53.4.
53.5.
53.6.
53.7.
53.8.
53.9.

(@ Y1 VL=V

[To = 11 0T o XSSP
PO At L rdef o

PO At tri BUL @ (oo
PO _AUL NI 0 e
PO_AUt h_MBNDEIS oo

L3 0 (O o o T o - 11 A PP
5311 PO Cl @SS it
53.12. PG _COl L At i ON coreiiii e
LY T K o To T o2 oY 1 13 A - VI o |
LY I IS o To T oF o A V2= G =Y I o
53.15. Pg_dat @DaSE ..iivuiii i
53.16. pg_db rol € SettiNg ccoveiiiiiiii i
53.17. pg_defaul t _acCl ..o
53.18. PO _AEPENA ..oiiiiii i
LY T L N o To o (Y=Y of g I o) A o o 1P
L3 2O A o To T =T 0 151 o (PP
LY T2 o To T =A V=1 0 | A A T [[P
e I o To T =) A A= 4 F=X 1o TP
53.23. pg_forei gn_dat a W apPer ...cocceeieiiiiieiiii e e
eI o To R oY= TR [=X = V4= G
53.25. pg foreign _tabl @ .o
e T2 T o To T T o [PN
B53.27. PO i NNEI T TS i
T S I o T T 2 VI S 1 Y2 TP
T2 I o To T B Y [0 [V = Vo = P
53.30. pg_l argeobj ECt .o
53.31L. pg_largeobject _netadatacccoeeeviiiiiiiiiiii e
538,32, PO NI S PACE ottt
53.33. PO _OPCl ASS wuiiiiiiiiiii i
5334, PO _ 0PI AL OF et
53.35. PG _OPF @M [Y oo
53.36. pg_paramBt €r _aCl ...cocoiiiiiii
53.37.pg_partitioned tabl eccooiiiiiiiii
53.38. PO POl i CY crrtiiii e
LSRG 1 A o To T o] (o 1o R PRSP
53.40. pg_PUbl i Cat i ON oo
53.41. pg_publicati ON_NAMESPACE ...cccovviiiiiieiiii e
53.42. pg_publicati on_rel .
R A o o T - 1 [0 =P PP
53.44.pg replicati On_Ori giN i e
LT o To T =X i A =PI
53.46. pg_Secl abel ..o
Xy oo T =To [UT=] o [off =P PRPTPEN
53.48. pg_ShAEPENd ...coveiie

PostgreSQL 16.3 Documentation

53.49. pg_ShAeSCIri PtiON .oiiiiiiiii e 2409
53.50. pg_shsecl abel ... 2409
G T R o To =) A= LA = A o 2410
53.52. PG St At i STi C_ XL i 2411
5353. pg_statistic_ext_dataccoooeiiiiiiiiiiiiii 2412
53.54. PG _SUDSCI I PLI ON coriiiii e e 2412
53.55. pg_SUDSCriptiOn_ el .o 2414
53.56. PG _t abl ESPACE ..uiiiiiiiii e 2414
B3 57, PG L ranST OF M 2415
TSt A o To T O e Lo 1= PN 2415
53.59. PO 1S CONT I G civriiiiiiii e 2417
53.60. PG tS _CONFi g IMBP «oiiieiieii e 2417
LG T o Yo T AT L o P 2418
D882, PO L S PaI SO ittt 2418
53.63. PO tS LEIMPI Al € oirriiiii i 2419
e o7 o o To T VA o 1 PSPPSR 2419
53.65. PG _USEI _ITAPPI NQ covnieiiiieiiiieei e e e e e e e e e e e e s e et eeaan e eaneas 2423
Y Y (= IV AT = TP 2424
DAL, OVEIVIEIW ..ttt ettt e et e et e et e e e e et e e e e et e e e e et eas 2424
54.2. pg_avail abl @ _ ext €NSi ONScociiiiiiiiiii e 2425
54.3. pg_avai l abl e_ext ensi 0N_Versi 0NSccccceveviiiiiiiieciiiiecie e, 2425
54.4. pg_backend _mendry CONtext s ..oooiiiiiiiiiiii e 2426
oY/ N ST o o TR oo 1 o) B o RN 2427
LoV o Lo T o UL =Y o] = PP 2427
BA7. PG _fil @ SELtiNgS coiiiiiiii e 2428
LoV T o Lo T o | a0 11 o I PP 2429
54.9. pg_hba fil e Ul €S i 2429
54.10. pg_ident _file MapPi NOS .o 2430
oY O o To R T ¢ Lo [0 €= 1N 2431
B54.12. PO | OCKS it 2431
oY R o To N .- Y AV = 1P 2434
oY S o To Y o o] B o =P 2435
54.15. pg_prepared_Stat EMBNES ...coiiiii i 2435
54.16. pg_prepar €d_XaCL S ..ooiiiiiiiiiiii e 2436
54.17. pg_publication_tabl €Sccoooiiiiiiiiii 2437
54.18. pg_replication origin_statuscccooviiiiiiiiiiiiiiie e, 2437
54.19. pg replicati on_SIOtS .o 2438
B54.20. PO T Ol B8 it 2439
oY N O o Yo N V1 =S PN 2440
54.22. pg_SECl ADEI S v 2440
54,23, PO _SEUUEBINCES ittt et 2441
oYy o T X =) A A 4 [P 2442
54.25. PG _SAUOWuiiiiiii 2444
54.26. pg_shmem al | 0Cat i ONScocoviiiiiii e 2445
DA, 27, PO St AL S ittt e 2445
5428, PO _St Al S BXt oo 2447
54.20. PO_St Al S _BXE X I S tiriiiiiiiii it 2448
54.30. PG _tAbl S ooriiii i 2450
54.31. pg_timezone _abbrevs ... 2450
54.32. PG _t i MBZONE _NAIMES .iivtuiiiiiiiiiieci et e e e e e e et e e e e 2451
LY A o To T U =1 = PP 2451
oY/ N o To TRV EY =1 g 11 Y 1 o L o 1T 2452
Y/ ST o T VA I =1 TP 2452
55. Frontend/Backend ProtOCO!iviiiiiiieiiiie e 2454

PostgreSQL 16.3 Documentation

56.

57.

58.
59.

60.

61.

62.

63.
64.

65.
66.
67.

68.

LI I @Y= VT T PP 2454
55.2. MESSAGE FIOW ...viiiiiiiiii e e 2456
55.3. SASL AULNENLICALIONciieiiieieiii e e e 2470
55.4. Streaming Replication ProtoColccccuiviiiiiiiiiiciie e, 2471
55.5. Logical Streaming Replication Protocolcccovvviiiiiiiiiiiici e, 2481
55.6. MESSAgE Dala TYPES ..vuiviiiieiiiii ittt ettt e 2483
55.7. MESSA0E FOMMELS . .vuivitiii it e e 2483
55.8. Error and Notice Message FieldSoooiiiiiiiiiiiii e 2501
55.9. Logical Replication Message FOrMEtSccuuveiiueeiiiieiiiieeiieeeiineeeieeeieeeae 2503
55.10. Summary of Changes since Protocol 2.0cc.oveviiiiiiiiiiiiinc e, 2513
PostgreSQL Coding CONVENLIONSuuiiiiieiiiieeiiie e e e e ee e e e e e e e et eeanaee 2514
LT I o 0= 1 o 2514
56.2. Reporting Errors Within the SErveroovvviiiiiii e, 2515
56.3. Error Message Styl€ GUIAEcuuiiiiiiiii e 2518
56.4. Miscellaneous Coding CONVENLIONSccvvuieiiiieiiieecii e e e 2522
Native Language SUPPOITuu it e e e e e e e e e e e e et s e et e e e e st e s eeaaeeeen 2525
57.1. FOr the TranSaloruieiiiii it e e e e eeens 2525
57.2. FOr the PrOgramimeriiii e e e e e e e e e aaas 2528
Writing a Procedural Language Handlerccooooiiiiiiiiiin e 2531
Writing a Foreign Data WIaDPEScvvueiiiieiiii e e e e e e e e e e e et e e s e e e e e ees 2533
59.1. Foreign Data Wrapper FUNCHIONSccvuiiiiieiie e e 2533
59.2. Foreign Data Wrapper Callback ROULINESoovvviiiiiiiiii e 2533
59.3. Foreign Data Wrapper Helper FUNCLIONScccvvviiiiieiiiccie e, 2550
59.4. Foreign Data Wrapper Query Planningcoooeiviiiieiiiiccieecieecee e, 2551
59.5. Row Locking in Foreign Data WIappeEr'Sevvieeiieeiiiiecie e e e e e e 2554
Writing a Table Sampling Methodc.oooviiiiii e, 2556
60.1. Sampling Method SUpport FUNCLIONScouvviiiiicii e, 2557
Writing a Custom SCan ProViderc..uiiiiiiiiii e 2560
61.1. Creating Custom Scan PathSccoiiiiiiiiii e 2560
61.2. Creating Custom SCan Planscocoviiiiiiii e 2561
61.3. EXECUING CUSLOM SCANSucvviieiiieeiii e e ee e e e e e e e e e e e e e e e ean e eaes 2562
GeNEtiC QUENY OPLIMIZEN ..uiiiieii e e e e e eees 2565
62.1. Query Handling as a Complex Optimization Problemccooiiiiieiis 2565
62.2. GENELIC AlQOTItNMS ... 2565
62.3. Genetic Query Optimization (GEQO) in POStgreSQLcovvvveivieiiieeiieeennnn, 2566
62.4. Further REAINGcccvniiii i 2568
Table Access Method Interface Definitioncoouiiieiiiiiiece e 2569
Index Access Method Interface DefiNitionc.vieiiiiiiiiiii e 2570
64.1. Basic APl Sructure for INAEXESccuviiiiiiiiieeii e 2570
64.2. Index Access Method FUNCLIONSoovvveiiiiiiiiiccic e 2573
64.3. INAEX SCANMNING ...evvneiiieiie et e e e e e e e e e e e e e et e e et e e eaneeeaes 2579
64.4. Index Locking ConSIAerationSoveiuieiiieiiieeie e e e 2580
64.5. Index Uniqueness ChECKSccouuiiiiiiiiie e e e 2582
64.6. Index Cost EStimation FUNCLIONSviiiiiiiieiiiineeeeiie e 2583
GENENIC WAL RECOIUSvuiiiiiii ettt e et e e et e e e ene 2586
Custom WAL ReSOUICE MaNAJENSvuiviiiieiieiee e e e e e e e e e e anaanas 2588
B-TrEE INUEXES ... et e e e e e 2590
L8 1 1 oo (8o o o S 2590
67.2. Behavior of B-Tree Operator ClasseSovvviiiiiieiiieeeii e e eee e e e e 2590
67.3. B-Tree SUPPOrt FUNCHIONSccuuiiiiicie e e e e e e e 2591
67.4. IMPIEMENLBLIONvuiiii e e e e e e e e e e eaans 2594
GIST INOEXES ..ottt ettt e e et e e et r e e e e b e e e e areas 2598
(61S 00 g1 o (8o (o o 2598
68.2. BUIIt-iN Operator ClaSSeSu.iivueiiiieiiiie e e e e e e e e e e e eaaaeeees 2598

XiX

PostgreSQL 16.3 Documentation

68.3. EXLENSIDIITY ovevviieiee e 2601

68.4. IMPIEMENLALIONvuiiii e e e e e e e e e e e e e eaans 2614

B8.5. EXBMPIES ...ttt 2615

B9. SP-GIST INUEXES ... eeeeiiieieei ettt e e et e e et e e eaan s 2616
LS1e 0 g1 0o (8o [o 2616

69.2. BUIIt-iN OPerator ClasSeSu.iivueiiiieiiii e e e e e e et e e e e eeen 2616

69.3. EXENSIDIITY ooevveiiee e 2618

69.4. IMPIEMENLBLIONvuiii e e e e e e e e e e e e e e eaens 2627

B9.5. EXBMPIES ...t 2629

T0. GIN TNAEXES ... ettt e e ettt e e e et e e e e e e e et e e eaanns 2630
405 1 g1 oo (8o o o 2630

70.2. BUIIt-iN Operator ClaSSeSu.iiuueiiiieiiii e e e e e e e et e e e eanaeeeen 2630

70.3. EXENSIDIITY ooeeviieiee e 2631

704, IMPIEMENEBLION .. .euuiiii e e e e e e e et e et e e e eeaens 2634

70.5. GIN TipS aNd THICKS ..uuuiiiiieiii e e e e e e e e e e e e eaens 2635

40X I T 1] = 1 o PP 2636

T0.7. EXBMPIES ..ttt 2636

71 BRIN INOEXES ..ottt e e et e e e aa e e e eaa e e e enenns 2637
4 5 1 1 o 1§ 1o o 2637
71.2. BUIlt-iN Operator ClaSSeS ...uu.eiuueiiiieiiii e ee e e e e e e e et e e e ean e eeen 2638

713, EXENSIDIITY oo 2646

T2, HESN INUEXES ...ttt e e et e e e e et e e e eatn e eeees 2651
2 O Y= a1 T PP 2651

72.2. IMPIEMENEALION .. eetiiii e e e e e e e e e e e e et e e eeanns 2652

73. Datahase PhySICal SIOraQgEcvvuiiii e e e e e e e e e 2653
73.1. Datahase FIle LayOUuLoceuuiiiii i e e e e e e e ees 2653

452 1 © 7S 1 LR 2655

T73.3. FIeE SPACE M ..vuiiiiiiiei i 2658

734, VISIDIIY MaD .. 2658

73.5. The INItidization FOTKoiiiiiiiiii e 2659

73.6. Datahase Page LayOuLcocevuieiinieiiii et e e e e e e e 2659

73.7. HEap-Only TUPIES (HOT) ..vuuiiiiiiieeiiiie ettt 2662

74, TranSaCtion PrOCESSINGcivuuiiii et e e e e e e e et e e e aan s 2663
74.1. Transactions and [deNtifiersovviiiiiiiiiiiin e 2663

74.2. Transactions and LOCKINGooieuiiiiiiiiie e 2663

T4.3. SUDEFBNSACLIONSeeevtiieeeii ettt e et e e e e e e 2663

T4.4. TWO-Phase TranSaCliONSoeveueeieiiiiie ettt r et e s 2664

75. System Catalog Declarations and Initial CONteNtSovevvvveiiiiieiiieeeiiiecie e, 2665
75.1. System Catalog Declaration RUIESc.viiiiiiiiiiiiic e, 2665

75.2. System Catalog INitial Datal........ccevviiiiiiiiiieeiiiiecie e e 2666

75.3. BKI Fil@ FOMMEL ...ccvvnieiiiiieeeee e 2671

75.4. BKI COMIMANGScevviiiieiiiie ettt e e e et e e et e e e e e 2672
75.5. Structure of the Bootstrap BKI Filecc.coeiiiiiiiiiiii e, 2673

75.6. BKI EXAMPIE c.eviiiiiei et 2673

76. How the Planner USES SEatiStCS ..vvvvuniiiiiiiiieiiiii ettt et 2674
76.1. Row EStimation EXamMPIESuoiiiiiiiiiici e e e e e e 2674

76.2. Multivariate StatisticsS EXampPleScovvviviiiiiiiii e 2680

76.3. Planner Statistics and SECUIMLYovvvniiiiii i 2683

77. Backup Manifest FOMMELovviiiiiiie e e e e e e e aanns 2685
77.1. Backup Manifest Top-level ObJECEocvvieiiiiiiii e, 2685

77.2. Backup Manifest File OBJECtiiiiiiiiiec e, 2685

77.3. Backup Manifest WAL Range ObJECtovvviiiiiiieiiiieciiec e 2686

RV LY o] =5 o [= 2687
A. POSIOreSOQL ETOr COUESuuiiiieii et e e e et e e e e aanas 2694

XX

PostgreSQL 16.3 Documentation

ST T (= T g LTS T o] oo o 2703
B.1. Date/Time Input INtErpretationoovvviiiiiicii e 2703
B.2. Handling of Invalid or Ambiguous TimesStampsccccoeveviiieiiinieiiiiecieeenn, 2704
B.3. Date/Time K&Y WOIASiviiiiiiicii e e e e e e e e e 2705
B.4. Date/Time Configuration FilEScocoiiiiii i 2706
B.5. POSIX Time Zone SPeCifiCationsuveiriiiiii i e e e e 2707
B.6. HIiStory Of UNItSoiiiiiiiiii e e e e 2709
B.7. JUAN DAESuuieeiiiii et 2710

C. SOL KEY WOIGS ... evieiiieeii et e e e e e e e e e e et e e et e e et e e eaneaeanaes 2712

D. SQL CONfOIMMANCEeviiiiiiii e e et e e e e e e et e e e e e e e e e enaeens 2738
D.1. SUPPOIEd FEALUIES ... cevueiiii e e e e e e e e e e aens 2739
D.2. UNSUPPOIEd FEAIUIESuieiiiiieii e ee e e e e e e e e e e e e anes 2751
D.3. XML Limits and Conformance to SQL/XMLcccoevviiiiiiiiiiiiiciieceeeeee, 2761

I e 1= S N o] (=< P 2764
E.L REEBSE 16.3 ... it 2764
E.2. REIEASE 16.2 ... 2770
E.3. REIEASE 16.1 ... 2776
B4 REIEBSE 16 ...ooeviiiiiiii e 2782
E.5. Prior REIEASESuiiiiii i 2803

F. Additional Supplied Modules and EXtENSIONSoivviieiiiieiiiieciie e e e 2804
F.1. adminpack — pgAdmin support toolpackccooveeiiiiiiiiiiiin e, 2806
F.2. amcheck — tools to verify table and index conNSIStENCYccccvvvvviievinnerinnnnnn. 2808
F.3. auth_delay — pause on authentication faillurecccccoeviiiiniiiiiin e, 2814
F.4. auto_explain — log execution plans of SIOW QUENIESccccevvveiiieiiineeiieeeen, 2815
F.5. basebackup_to_shell — example "shell" pg_basebackup module 2818
F.6. basic_archive — an example WAL archive modulec.ccceveviiiiiinnennnnn. 2819
F.7. bloom — bloom filter index access Methodovveiiiiiiieiiiii e, 2820
F.8. btree_gin — GIN operator classes with B-tree behaviorcccocoeveen. 2824
F.9. btree_gist — GiST operator classes with B-tree behaviorcccoeeee, 2825
F.10. citext — a case-insensitive character String typecovvveviiieiiiieiii e, 2827
F.11. cube — amulti-dimensional cube datatypeccoevvviieiiiieiiiieiii e 2830
F.12. dblink — connect to other PostgreSQL databasescoceevveviviveiiiieeinnnnnn, 2835
F.13. dict_int — example full-text search dictionary for integersccoeevvvneneen. 2868
F.14. dict_xsyn — example synonym full-text search dictionaryc.ee. 2869
F.15. earthdistance — calculate great-circle distancesccocevvvviiiiiiiiiciieeciee, 2871
F.16. file fdw — access data filesin the server'sfile systemcccooeviiiiiniinns 2873
F.17. fuzzystrmatch — determine string similarities and distancec..ccuue.. 2876
F.18. hstore — hstore key/value datatypec.oevviiiiiiieii e 2881
F.19. intagg — integer aggregator and enNUMETatorccuvvvviieeineeiiieeeieeeaneenn 2890
F.20. intarray — manipulate arrays of iNtEJErscovvvviveiiiieiiii i, 2892
F.21. isn — data types for international standard numbers (ISBN, EAN, UPC, etc.) 2896
F.22. 10 — manage large ObJECESiiiiiiii e 2900
F.23. Itree — hierarchical tree-like datatypeccoovevviiiiiiiiiii e, 2902
F.24. old_snapshot — inspect ol d_snapshot _threshol d state...................... 2910
F.25. pageinspect — low-level inspection of database pages.........ccoevvvvveviiieeinnnnn, 2911
F.26. passwordcheck — verify password strengthccoooiiiiiiiiiii i 2923
F.27. pg_buffercache — inspect PostgreSQL buffer cache statecoocvvvvevinnnnnn. 2924
F.28. pgcrypto — cryptographiC funCtionSc.ooeviiiiiiiiecii e, 2928
F.29. pg_freespacemap — examine the free space mapcccovvevvieeiiiieviineeinnnennn, 2939
F.30. pg_prewarm — preload relation datainto buffer cachesccooiviiiinn 2941
F.31. pgrowlocks — show atable's row locking informationccoevvvveennnnnns 2943
F.32. pg_stat_statements — track statistics of SQL planning and execution 2945
F.33. pgstattuple — obtain tuple-level statistiCSocovvvvieiiiiiiiiciin e, 2954
F.34. pg_surgery — perform low-level surgery on relation datacc.ccvvveevnnnnnen. 2959

XXi

PostgreSQL 16.3 Documentation

F.35. pg_trgm — support for similarity of text using trigram matching 2961
F.36. pg_visihility — visibility map information and utilitiesccceeeeennnn. 2967
F.37. pg_walinspect — low-level WAL INSpectioncccoeevviiiiiiiieiiieccicec e, 2969
F.38. postgres fdw — access data stored in external PostgreSQL servers 2973
F.39. seg — adatatype for line segments or floating point intervals 2984
F.40. sepgsgl — SELinux-, label-based mandatory access control (MAC) security

107070 L1 = PR 2988
F.41. spi — Server Programming Interface features/examplescccoeveviieeennnn. 2997
F.42. sslinfo — obtain client SSL informationcoovveviiiineiiiiiiiee e, 2999
F.43. tablefunc — functions that return tables (cr osst ab and others) 3001
F.44. tcn — atrigger function to notify listeners of changes to table content 3012

F.45. test_decoding — SQL -based test/example module for WAL logical decoding 3014
F.46.tsm_system rows— the SYSTEM ROWS sampling method for TABLESAMPLE 3015
F.47.tsm_system time— the SYSTEM TI ME sampling method for TABLESAMPLE 3016

F.48. unaccent — atext search dictionary which removes diacritics 3017

F.49. uuid-0Ssp — @ UUID QENEIatOrc.vuiiiiieiiiieeieeeie e e e e e e e e e eanees 3020

F.50. xml2 — XPath querying and XSLT functionalityccccooeviiiiiiiiiineeinen, 3022

G. Additional SUPPIIEd Programsccuuuieiiieiiiieeie e ee e e e e e e e et e e e eens 3027
G.1. Client APPIICAIONSceve e e e e e e e e e eees 3027

G.2. Server APPlICALIONSciiiicii e 3035

[R (= g = I 0= £ PP 3036
H. L CHENt INEEITACES .. evevei et e e 3036

H.2. AdMINIStration TOOISccuuuiiiiiiiiieiiiiie e 3036

H.3. Procedural LanQUAagESuuviiuniiiiieiiieee e e e e e e e e e e et e e e eaaees 3036

H.oA EXEENSIONS .vtuiiiiii ettt e et s e et s e e et e e e e et r e e e et e e e eaaaaeeennen 3036

I. The Source Code REPOSITOIY ... ccuuiiiiiieiiieeiii e et e e e e e e et e et e e e eeanees 3038
[.1. Getting the SOUrCE VIa Gitiiviieiiie e 3038

B B o o100 01 - 1o PP 3039
J L DOCBOOK ...ttt 3039

B oo S P 3039

J.3. Building the Documentation with Makecccoiviiiiiiiiicci e, 3042

J.4. Building the Documentation With MESONcoeeiiiiiiiiiiiiieci e 3043

J.5. Documentation AULNOIINGcovuniiiiiiiii e e 3044

JB. SEYIE GUITE ...evueeeeii et et e e e e 3044

K. POStOreSQL LIMItS ...iuvuiiiiiiii e e e e e e e e e e e e e e eaen 3047
[o {0017/ 1 1 PSPPI 3048
TS oY UPPRRPPP 3055
TR @C0] oS 0o o AP 3069
N.L When Color iSUSBAuiiiiiiiiieieiie e eeaees 3069

N.2. Configuring the COlOrSccuuuiiiiie e 3069

O. Obsolete or RENAMEM FEAIUMNEScccuviiiiiii et e e e eeeens 3070
O.1.recovery. conf filemergedintopostgresqgl.confc..coeveinennnnn. 3070

0.2. Default Roles Renamed to Predefined ROIEScuuviiiiiiiiiiiiiineccieeecie, 3070

0.3. pg_xI ogdunp renamed to pg_wal dunpcooovviiiiiiiiiii e 3070
0.4.pg_reset x|l og renamedto pg_resetwalccooeoiiiiiiiiiiiiiiiniees 3070

0.5. pg_recei vexl og renamedtopg_recei vewalcccceeeviiiiiiiiieiinenann, 3071

[T o] oo r="o] /N 3072
g0 1= USRI 3074

XXii

List of Figures

62.1. Structure of a Genetic AlGOrTM ..o e
T0.1. GIN INEEINEIS ...ttt ettt et e et e et e e e eba s
T3.1. PagB LAYOUL ...ttt et et

XXiii

List of Tables

4.1. BaCKSlash ESCAPE SEOUENCESceietieiiiti e et e et e et e et e et e et et e e e e et e e e e enaaes 38
4.2. Operator Precedence (highest t0 TOWESE)uiiiiiiiiieiiii e 44
5.1. ACL Privilege ADDreVIGtioNSoiiiiiiieeiiii et e e 83
5.2. SUMMary of ACCESS PriVIIEOESu it 84
S D - = Y o= TP PP 153
8.2, INUMENIC TYPES ..ttt ettt ettt ettt e et r e e e et e e et et e e e e eaa s 155
8.3, IMONELAIY TYPES ..ottt ettt ettt e et e 160
8.4, CAIACLES TYPES ..ot eeiiti ettt ettt ettt ettt e et e e et e ettt e et e e e e e e enaa s 161
8.5. SPECial CharaCler TYPES ..c.vuu ittt ettt ettt e e et e ettt e e et e e e e e bt e e eenaaeeees 163
8.6. BINAIY Daa TYPESvueeieitieeeett ettt e et e ettt e ettt e e et et r e e et et e e et et e e eeat e e eent e eeen 163
8.7. byt ea Literal ESCAPEI OCLELSuiiiiiiieeieii ettt e e 164
8.8. byt ea OUutput ESCAPEd OCLELScceiiiiieeiii et 165
8.9. DAE/TIME TYPES .. eetueeeiiti ettt ettt ettt ettt ettt e et e et e e e e et e e e e b e e eeaans 165
8.10. DB INPUL ...eeeeeet ettt et e et e 167
811, THME INPUL ..ttt ettt ettt ettt e et et e et e e e et e e e et e nb e e ennaas 168
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt et e ettt e e e et e e e e ana e eenees 168
8.13. Special DaE/TIME INPULScevuiiiiiie ettt e e e e e e enanns 170
8.14. DAe/TIME OULPUL SEYIES ...t eeees 171
8.15. Date Order CONVENTIONSeeeetteeeitti e ettt ettt e ettt e et e e ee b e e e e et e e e eete e e eeetanaeeees 171
8.16. 1SO 8601 Interval Unit ADDIreviationSc.uuiiiiiiiiiieii e 173
8.L7. INEIVEl TNPUL ...ttt ettt e e et e e e 175
8.18. Interval Output Style EXaMPIEScoovuiiiiiiii e 175
8.19. BOOIEAN DaLA TYPE ... eeeetieeeeeti ettt ettt ettt e et e et e et e e e e e e e aene 176
8.20. GEOMELNIC TYPES .. eeeti ettt ettt ettt et e et e et e et et e e e e et e eeeaa s 179
8.21. NEIWOIK AQArESS TYPES ... eeetiieteet ettt ettt ettt e e et e et eeena s 181
8.22. Ci dr Type INPUE EXAMPIEScoeiiieiei et 182
8.23. JSON Primitive Types and Corresponding PostgreSQL TYPEScccvvvnieiiiiiiieiiiiiieeeeiiiieeees 192
8.24.] SONPAt h Variahlesiiiiii e 200
8.25.] SONPAL N ACCESSOIS ... eieeetiie ettt ettt ettt ettt e e et et e e et eeaaan s 201
8.26. ODJECE 1dENLITIEr TYPES ... eeeiei ettt 226
827, PSRUUO-TYPES ..ttt ettt 228
9.1. COMPATSON OPEIGIOIS ...eetueeeetie ettt ettt e ettt et e e e et e et e et et e et e e e e e et e e e enn e eeenans 232
9.2. COMPAISON PraEdiCaLEScuuuieiiii ettt et 233
9.3. COmMPAISON FUNCLIONS ...ttt et e eaans 236
9.4. MathematiCal OPEIALOSceeeeueeeeii ettt ettt ettt ettt et et e et e e et e e eeaans 236
9.5. MathematiCal FUNCHIONScuuuuiiiiii ettt ettt e e e e e enaans 238
9.6. RANAOM FUNCLIONSceiiiieieii ettt ettt e et e e e e e e eenanns 241
9.7. TrigONOMELNIC FUNCHIONS ... ittt sttt ettt e e ettt e e e et e e e ena e eeens 242
9.8. HyperboliC FUNCHIONSiiiiiie et 244
9.9. SQL String FUNCLiONS 8N OPEIEIOISuieiiiiieeeiii ettt e ettt e ettt e e et e eeent e e e e e eees 245
9.10. Other String FUNCLIONS @Nd OPEIAEOIScveveiieieiiie ettt e ettt e e e 247
9.11. SQL Binary String FUNCtions and OPEraorsSuueiertiieieiiiaeeeiiae e et e e e e 255
9.12. Other Binary String FUNCLIONSc..uuiiiiitiee ittt e e e e e ena e eens 256
9.13. Text/Binary String CONVErsion FUNCLIONSccouuuiiiiiiieeiiii et e e e 258
9.14. Bit SINQG OPEIAIOIS «...vteieeii ettt ettt ettt e et e e et e e et et e e e eaaa s 259
9.15. Bit SINQG FUNCHIONS ...ttt et e et e et e e s 260
9.16. Regular EXpression MatCh OPEIELOrSccuuuu i eiiiiiieeieii ettt e et e e et e e e et e e eeea e eeens 264
9.17. Regular EXPression ATOIMISc.uuu ittt ettt e ettt e et e et e e e et e e e b 271
9.18. Regular EXpression QUANTITIENSuuuiiiiiiie e 271
9.19. Regular EXPression CONSITAINTScvevuueiiiii ettt e et e e 272
9.20. Regular Expression CharaCter-Entry ESCPESocvvuvuieiiiiiieiiiii et 274

XXiV

PostgreSQL 16.3 Documentation

9.21.
9.22.
9.23.
9.24.
9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.

Regular Expression Class-Shorthand ESCAPESveiviiiiiiiiiiii e e e e 275
Regular EXpression CoNStraint ESCAPESuvvuuiiinieiiieiiieee e ee e e e e e e e e e e e ean s 275
Regular EXpression Back REFEIENCESocivuiiiii e 275
ARE Embedded-Option LEErS ... couuiiii e e e e e e e e 276
Regular Expression FUNctions EQUIVAIENCIESc.uieiiiiiiiiiicce e 280
FOrmatting FUNCHIONSovuiiii e e e e e e e e e e e e e eens 281
Template Patterns for Date/Time FOrmMattingcccueeiiiieiiiiieiie e e e e e e 282
Template Pattern Modifiers for Date/Time FOrmattingcocevvveviiiiiiiiieiiiiecineeeeeeeis 284
Template Patterns for NUMeric FOrmattingcc.oveviiiiiiiiiiiii e 287
Template Pattern Modifiers for Numeric FOrmattingcoooevveeiiiiiiiiieiiineeieeceieeeeeeenn, 288
oo = L T 1 o)== 288
Date/TIME OPEIBIOIS ...vueeteeeii et ettt et e e e e e e e e e e e e et e e et e e et e e e e e st e eateeeanaeeannas 290
DA€/ TiME FUNCHIONSvuiee e e e et e e e et e e et e e eeaanns 291
AT TIME ZONE VANTANES ..uuiiiiiieeeiiie ettt e s e e a et s e e et e e e et e e e eaan e 303
ENUM SUPPOIt FUNCLIONSciie e e e e e e e e e e e e e ea e e aanees 306
(€101 0 L= (ol @] 1= - (0 = 307
GEOMELTTC FUNCLIONS ...ttt e et e e ettt e e e et r e e e eetereeeeabn s e eeeatnnaeeees 311
Geometric Type Conversion FUNCLIONSccouuiiiiiieiiie e e e e e e e e e 312
oo (o[£ SN @ o= = (0] £ 315
I[P AdAress FUNCLIONScovviiieiiiis ettt s e et e e e et e e e e at e e e e e 316
MAC AdAreSS FUNCLIONSoeviieiiiiie ettt e e et e e et e e et eeeeae s 317
LS == (o A IO 0= = 0] £ TP 318
SRS == T T (o PR 319
Text Search Debugging FUNCLIONScoouuiiiiieii e e e e e e e e e eaaes 324
J SON aNd | SOND OPEIAOIS . .civviiiii e e e e e e e e e e e e et e e et eeanaee 341
Additional | SOND OPEIAIOrSuuiiiiieiii e e e e e e e e eaaees 342
JSON Creation FUNCLIONSciiuiieeiiiiie et e et e e e et s e e e eat s e e e eat e e eeatn s e e aeaanaaaees 343
SQL/JISON TeStING FUNCHIONSuuiiiiiciie e e ee e e e e e e e et e et e e e e e e e aanees 345
JSON Processing FUNCLIONSiiiiiiii e e e e e e e et e e e e e e e e aanaees 346
j sonpat h Operators and MEethOOSccoouiiiiiiii e 356
j sonpat h Filter EXpression EIEMENESoiieiiiiiiiice e e e e 358
S = [0 1= g Tor Y W o 1T 361
F N = YO o= = (0] £ PRSPPI 365
F N 4 = YA U o 1 o 366
RANGE OB OIS . ettt ettt 369
MUILITANGE OPEIAEOIS . .evueiii i eiii et ettt e e e e et e e et e e e e e e e et e e et e e et e e an e eaaneeaaneeeens 371
[T (= U o o) 373
MUIITANGE FUNCHIONSuiiiii et e e e e e e e e e e et e e e e e aaeeeens 374
General-Purpose Aggregate FUNCLIONSo.uiiiiiiii e e e e e e e eaaes 376
Aggregate FUNCIONS fOr SEAtiStICSvvvuiiiiieiii e e 379
Ordered-Set Aggregate FUNCLIONScovuiiii e e e e e e e e e e e e e e aaneees 381
Hypothetical-Set Aggregate FUNCLIONScouuiiiiiiiciie e e e 382
CTCo TN o 1 (o [@] o 1= ¢ 1o o TP 382
General-Purpose Window FUNCLIONScciuiiiiiieiii e s e e e e e e e eane e 384
Series Generating FUNCHIONSccuuiiiiiei e e e e e e e e e e et e e ea e eens 391
Subscript Generating FUNCLIONSccuuiiiiiii e e e e e e e e e e eaa s 393
Session INFOrmMation FUNCHIONSuiiiiiii ittt e e 395
Access Privilege Inquiry FUNCLIONSoiiiiiiii e e e 398
= (o I =T 01 @] 1= - (o =P 400
ACT T T E@MIFUNCLIONS ...t e et e ettt e e et e e e erb s e e e eatnneeeees 400
Schema Visibility Inquiry FUNCLIONScuuiiiiiiiii e e 401
System Catalog INformation FUNCHIONSccuuiiiieiii e e e e 402
INAEX COIUMN PrOPEIMIES .. ovviiii et e e e e et e e e eaes 407
F g0 Lo = (0] 0= o 1= 407

XXV

PostgreSQL 16.3 Documentation

9.75. Index Access Method PrOpeErtiesciiiiiiii e 408
S 10 O "o PO 408
9.77. Object Information and Addressing FUNCLIONSccouuiiiiiiiiiie e 408
9.78. Comment INformation FUNCHIONSccuuuiiiiiiie et e s 409
9.79. Data Validity Checking FUNCLONScoouuiiiiiiiiii e e e e 410
9.80. Transaction ID and Snapshot Information FUNCLIONSc.ooeviiiiiiiiiiii e 411
9.81. SNAPSNOt COMPONENESuueetieeiii ettt e et e e e e et e e e e e e e et e e et e e et e eet e e et eetn e ranneeanaees 412
9.82. Deprecated Transaction ID and Snapshot Information FUNCLIONSccoeevviiiiiiieiineennn, 412
9.83. Committed Transaction Information FUNCLIONSccouuviiiiiiiiiieeiiiin e 413
9.84. CONtrol Data FUNCHIONSeiiiiieee it e ettt e e e et e e e et e e e e et s e e e eate s e e eeatnaaeeenes 414
9.85. pg_control _checkpoi nt Output CoOlUMNSccuuiiiiiiiiiii e e e 414
9.86. pg_control _syst emOUutput COIUMNSccouiieiiiieiiii e e 415
9.87.pg_control _init OUPUt COIUMNSceeuniiiiieeiie e e e e e e e e eaes 415
9.88. pg_control _recovery Output ColUMNScouiiiiieiiiieiie e e 415
9.89. Configuration Settings FUNCLIONSoiiiiiiii e e aens 415
9.90. Server SIgnaling FUNCHIONScuuiiiii e e e e e e e e e e 416
9.91. Backup Control FUNCLIONSuiiiiiiiiii e e e e e e e e e e e e e e e aaaas 418
9.92. Recovery INformation FUNCHIONScouuuiiii i e e e e e e e e e e e eaa e e aes 420
9.93. Recovery Control FUNCHIONSciueieiiii e e e e e e e e e e e e e e e e e e eaaeees 421
9.94. Snapshot Synchronization FUNCHIONSc.uuiiiiiiii e e e e e e e e e 422
9.95. Replication Management FUNCHIONScouuiiiiiciiii e e e e e e eeens 423
9.96. Database ObJeCt SIZ€ FUNCLIONSuiiiiicii et e e e e e e e e e e e eas 426
9.97. Database Object LOoCation FUNCHIONScouuiiiiiiiiiii e e e e e e 427
9.98. Collation Management FUNCLIONScouuuiiiieii e e e e e e e e e e e e an s 427
9.99. Partitioning INformation FUNCLIONSoiiiiiiiii e e e 428
9.100. Index MaintenanCe FUNCLIONSoiuuuieeeiii e e e e et e e 428
9.101. Generic File ACCESS FUNCLIONSuuuiiiiiiiiee ettt e e et eeeeaan e eeees 429
9.102. AdVISOry LOCK FUNCLIONScviiciiiicci e e e e e e e e e e e e e 432
9.103. BUIlt-1N Trigger FUNCHONSuiiiieiie e e e et e e e e e e e e e e e eaa e ee 433
9.104. Table Rewrite Information FUNCHIONScuuuriiiiiiiciee e 436
12.1. Default Parser's TOKEN TYPES ..vuuiiiieiii it et e e e e e e e e e e et e e e e e e et e e et e e e eanaas 489
13.1. Transaction 1S0lation LEVEISuuiiiiiiiieii e 514
13.2. Conflicting LOCK MOOESuuiiiiiiiiieci et e e e e e e e e e e e e 521
13.3. Conflicting ROW-LEVE LOCKSciuieiiicie e e e e e e e 523
19.1. SYSteM V IPC ParameterSvuiiiiiie et e e e e 614
19.2. SSL SarVEr FilE USAgE ...oui i e e e e e e 629
20.1. synchronous COMIMIt MOOESuiiiiniiii e e e e e e e e e e e et e e e e anaeees 657
20.2. MESSAE SEVENTY LOVEIS ..uuiiiii i e 686
20.3. Keys and Values of JSON LOG ENLIIESuiiuniiiiiciii e e e e e e 693
P I S 4 To A @ (o] T =Y 721
22.1. PredefiNed ROIESiiiiii e ettt e ettt e e ettt e e e et e e e e at e aea 752
24.1. ICU CoOllatioN LEVEIS ...uuieiiiii ettt e et e e et e e e a e e ennnns 771
24.2. ICU Coll@tion SEINGS .. cevueitieiiieiiiee et e e e e eeaa e esteeeanaaes 772
24.3. PoStgreSQL Charalter SELSciuvuiiii i ee et e e e e e e e e e e et e et e e aaeeeeas 775
24.4. Built-in Client/Server Character Set CONVEISIONSuuvviiiiieiiiiiieeeeiin e et e et eeeiines 780
24.5. All Built-in Character Set CONVEISIONScvcuuuueriiiiietiiineeeeiineeeeiieeeeetinaeseraaeeennns 781
27.1. High Availability, Load Balancing, and Replication Feature MatriXcccooevuivevinneennnnnns 815
28.1. DYNAMIC SEAISHICS VIBWS . ovuiiiiieei e et e e e e e e e e e e et e et e e eaa e eees 838
28.2. Collected SEAISHCS VIBWSceeviiee it e ettt e et e et e e et e e e e et s e e earanaeaeees 839
28.3.pg_Stat _aCti Vi ty VIBW oo e e 841
P2 L T o I/ o= PP 843
28.5. Wait Events Of TYPE ACT 1 Vi LY wuuiiiiiiiii e e eaa s 844
28.6. Wait Events of Type BUf f €5 Pi N ..o 844
28.7. Wait Events of TYPe Cl i €Nt ..oovniiiiiiii e e e e 844

PostgreSQL 16.3 Documentation

28.8. Wait Events of TYPE EXT €NST ON ..civvniiiiiciie e e 845
28.9. Wait EventS Of TYPE I O .ueiiiniiii it e e e e e e e e e e aes 845
28.10. Wait EVENtS Of TYPE I PC ..ouiiii i e e e e e 848
28.11. Wait EVents of TYPE LOCK ...civiiiii e e 850
28.12. Wait Events of TYPe LVWLOCK ...vuiiiieiii it e e e e e e e e 851
28.13. Wait Events of TYPE Ti IMBOUL ..uuiiiuieiiiii e e e e e e e e e e s e eaaees 854
28.14. pg_stat _repliCcati ON VIBW ... e e e 855
28.15.pg_stat _replicati on_SI OtS VIEW ..oiiiiiiiiii e 857
28.16. pg_stat _Wal _FeCEI VEI VIBW .ouiiiii it e e 858
28.17.pg_stat _recovery _prefetch VIew ... 859
28.18. pg_stat _SUDSCIipti ON VIBW ..o 859
28.19. pg_stat _subscription_sStats VIEW ...cccoiiiiiiiiiii e 860
28.20. PO ST AL SSI VIO coiiiiiiii e 861
28.21. PG St At _gSSAPI VIBW couiiiiii i e 861
28.22. pg_Stat _arChi VEI VIBW oouuiiiiiii e e e e e e e e e e 862
2 I T o To =X A= LS o VA =T P 863
28.24. pg_Stat _BOWE it &5 VIiBW coouniiiiiii e e 865
28.25. PG St At WAl VIBW couiiiiiii e 866
28.26. pg_stat _dat abase VIieWcccouiiiiii e 866
28.27. pg_stat _database _confliCts VIEW .cociiiiiiiiiiii e 868
28.28. pg_stat _all _tabl @S VIEW oo 869
28.29. pg_stat _all i NAEXES VIBW ..o e 870
28.30. pg_statio_all _tabl €S VIEBW ..o 871
283L. pg_statio_all i NAEXES VIBW .ccuiiiiiiiii e 872
28.32. pg_stati o _all _SeqUENCES VIBW ...ccuuiiiiiiiiii i e e 873
28.33. pg_stat _user _fUNCEi ONS VIBW ...uiiiiiiiiii e e e 873
28.34. PG St At S| I U VIBW i 874
28.35. Additional StatistiCS FUNCHIONSuuuiiiiiiie et e e e e e eeees 874
28.36. Per-Backend Statistics FUNCHIONSuiiiiiiice et e et 876
28.37.pg_stat_progress_anal YZe VIBWcccoiiiiiii i e 878
28.38. ANALY ZE PhESES ...cetuieieiii ettt sttt e e e e et e e et e e et e e e eaa e e aaanns 878
28.39. pg_stat _progress_ClUSt er VIBWcooiiiiiii e 879
28.40. CLUSTER and VACUUM FULL PhaSEScuuuiiiiiiiiieieiiie e e 880
28.41. pg_Stat _progress_COPY VIBW ..ot e e e e e e e et eeaneees 880
28.42.pg_stat_progress_create i NAeX VIBW ...cc.oiiiviiiiiiiiiii e 881
28.43. CREATE INDEX PhESES ...cevuiiiiiiiieeeiii e ettt e et e et e e et s e e e et e e eaaan e e esnens 882
28.44. pg_stat _progress_VAaCUUMVIBW ...couuiiiii i ee e e e e e e e et e e e e aneees 883
28.45. VACUUM PhESESuuiiiiiiiiieet ittt ettt e e e e et e e e et e e e e et e e e e aan e 884
28.46. pg_stat _progress_basebackup VIeWccooiiiiiiiiiii e, 885
28.47. Base BaCkup Phasescovviiii e 885
28.48. BUIlt-iN DTrace ProbESccviiiiiii e 886
28.49. Defined Types Used in Probe Parametersccuveviiiiiiiiiiii e 893
31.1. UPDATE Transformation SUMMEIYc.ueiiueeiiiiieieeeieeeie e e e e eine e e e eane e e e eanneeennaas 916
G 7 IS IV oo LI B TS o1 o 1030
34.2. Libpg/Client SSL FIlE@ USAQE ... ccuuiiiiiieiiie ettt e e e e e e e eaens 1031
35.1. SQL-Oriented Large Object FUNCLIONSciiiiiiiiici e e e e e 1051
36.1. Mapping Between PostgreSQL Data Typesand C Variable TYypeScccvvevviveviinevinnnnnn. 1069
36.2. Valid Input Formats for PGTYPESdat € from asccocceeviviiiiiiiiiin e, 1088
36.3. Vadid Input Formats for PGTYPESdat € fnt_asCccoooeviiiiiiiiiiii e, 1090
36.4. Valid Input Formats for rdef mtdat @cooooviiiiiiiiii 1091
36.5. Valid Input Formats for PGTYPESt i mest anmp_from asccccovevvieiiieciiiieciceecennn, 1092
37.1.informati on_schena_catal og_name Columnsccoeevviiiiiiieiiin i, 1176
37.2.adm ni strable rol e _authorizations Columns...........cccooevviiiiiiiiiiiiiccieeeenn, 1176
37.3. applicabl e rol €5 ColUMNSooiiiiiiiii e e 1177

PostgreSQL 16.3 Documentation

37.4. At L ri1 DUL €S COlUMNS ...ouiiiiiii e e e e e e e 1177
37.5.charact er _SetsS COlUMNSuiiiiiiiiii e e e e e e e e e eens 1180
37.6. check_constraint_routine_usage Columns...........cccovviiiiiiiiiiiiiineci e, 1180
37.7.check_constrai NtS COlUMNSiiiiiiiiiii e e e e e e een 1181
37.8. COl 1 @t i ONS COIUMNSuiiiiiiii et e e e e e eeaaa s 1181
37.9.collation_character_set _applicability Columns..........cccooeeiiiiiinininnnnnnn. 1182
37.10. col um_col umm_usage COlUMNSiiiiiiii e e e e e e e 1182
37.11. col um_domai N_uSage COIUMNSuiiiiiiiii e e e e e e e aa e 1182
37.12. col UMM_0Pt i ONS COlUMMNS .. .ccuuiiii e e e e e e e e e e e aen 1183
37.13. col um_pri vil €ges ColUMNSccouuiiiiiiiiii e e e 1184
37.14. col umMm_udt _USAQge COlUMNScoviiiii e e e e e e ees 1184
37.15. COl UMMS COIUMINS ...ttt e et e e et e e et e e e e et eeeeaan s 1185
37.16. constrai nt _col unm_usage ColUMNScoviiiiiiiiieiiiiecie e 1188
37.17.constraint _tabl e _usage ColUmMNScccieiiiiiiiiieiie e e 1189
37.18. data_type privileges ColumMNS.........coooiiiiiiiiiiiie e 1189
37.19. domai n_constrai Nt's COlUMNScoiiiiiiiiii e e 1190
37.20. domai N_udt _USAQe COIUMNSccuutiii e e e e e e e e e e eaa e ees 1190
2 Mo o) 1= T o E-R @] 110171 o 3PP 1191
37.22. el ement _t yPES COIUMNSovuiiiiii e e e e e e e ean e eaes 1193
37.23. enabl €d_r 0l €S COlUMNSuuiiiiiiii e e e e eaas 1195
37.24.forei gn_data wrapper_opti ons ColUmMNScccviviiiieiiiiieiiii e 1195
37.25. foreign_data W appers COlUMNScoooiiiiiiiiiiie e 1196
37.26.foreign_server_opti ons ColUMNScociuuiiiiiiiiiiiieiie e e e e 1196
37.27.forei gn_Servers COIUMNSiiiiii i e e e ae 1197
37.28.foreign_tabl e options ColUMNSccocouiiiiiiiiii e 1197
37.29. forei gn_tabl @5 COlUMNScocuiiiiiiiii e 1198
37.30. key_col umm_uSage COlUMNSuiiii e e e e e e e e e e e e e eanaeees 1198
37.3L. par anmBt €S COIUMNSciuuiiii e e e e e e e e e et e et e e e eeaens 1199
37.32.referential _constraints ColUMNS..........ccoevuiiiiiiiiiiii e 1201
37.33.role_col um_grants ColUMNSooiiiiiiiiiii e e e e 1201
37.34.role_routine _grants COlUMNSccoeuuiiiiiiiiiii e ee e e e e e e 1202
37.35.r0l e _tabl e grants ColUMNSc.ooiiiiiiiiiiiiie e e 1203
37.36.r0l e_udt _grants COlUMNSoiiiiiiiiiii e e e e e 1203
37.37.r0l e_usage_grant s ColUMNSc..oeiiiiiiiiiieiiie e e e e e e e eaae e 1204
37.38. routine_col umm_usage COolUMNSc.iiiiiiiiiiiieiie e e e e e e 1204
37.39. routine_privileges ColUMNSc.ooiiiiiiiiiii e e 1205
3740.routine_routine_usage COlUMNSccociiiiiiiiiiiiii e e 1206
3741 routine_sequence_usage COlUMNScoceuuiiiiieiiiiieeie e e e e e e 1207
3742. routine_tabl e _usage ColUMNScccouiiiiiiiiiii e e 1207
37.43. T OUL T NES COIUMNS ...oiiiiiieiii e e e e e e e et e e e et e e e eaen s 1208
37.44. SChemBt @ COIUMNSoouiiiiiii e e e e e e et eeeaen s 1212
37.45. SEqUENCES COIUMNS ...ttt e e e e e e e e e e e e e eaaas 1213
37.46. sl _feat ures COIUMNScouuiiiiii e e e e e e e eaas 1214
3747.sql _inplementation_ info ColumMNS.........ccooiiiiiiiiiiiiie e 1214
37.48. 5l _Part s COIUMNSccoiiiiiii e e e e e e e e eaaas 1215
37.49. Sl _Si ZIi NG COIUMNSiiiii e e e e e e e e eaans 1215
37.50.tabl e _constrai Nts ColUMNScccuuiiiiiiiiii e e e 1216
3751 tabl e privileges ColUMNSccocoiiiiiiiiiii e e e 1217
37.52. t @bl €S COIUMNScoiiiiiiei e 1217
37.53. tranSTf Or B COIUMMNSiiiiiii et e e 1218
37.54.triggered update_col ums ColumMNSc.coeviiiiiiiiiiii e 1219
At T o e [=T =T o] 1¥ T 410 TP 1219
37.56. udt _pri Vil eges COlUMNSccoiiiiiii e e e e e e e e e aes 1221
37.57. usage_pPri Vil eges ColUMNSoiiiiiiiiiie e e ea e 1222

XXVii

PostgreSQL 16.3 Documentation

37.58. user _defined _types COlUMNSoiiiiiiiiiiii e e e 1222
37.59. user _mappi Ng_0Pti ONS COlUMNScoouiiiiiei e e e e 1224
37.60. user _mBpPi NQGS COIUMNS e e e e e e e e e e e e e eaes 1224
37.61. vi ew_col umm_usage ColUMNScouuiiiiieiiii e e e e e e e eaae e 1225
37.62. view routine_usage COIUMNSoeiiiiiiiiiiii e e e e aae e 1225
37.63. view tabl e_usage ColUmNScoouiiiiiiiiii e e 1226
37.64. Vi @WS COIUMNS ..uuiiiiii ettt e et e e et e e e et e e e e et e e e e aaa s 1227
38.1. POlYMOIPNIC TYPES ..ottt ie et e et e e e e e e e e e e et e e e e e e e e e e et e ean s 1235
38.2. Equivalent C Types for Built-in SQL TYPESccvuiiiiiieiiiciie e e e e e e e e e 1263
G T T (= I = (=0 = 1300
K o oS S 1 = o 1= SR 1300
38.5. GIST Two-Dimensional “R-treg” Strat@gieSuveivuieiiiieiiiieeiie e ee e e e e 1300
38.6. SP-GIST POINE STAEIES ... eieeiiiieeeeii ettt e e et e e e et e e et e e e et e e e eaan s 1301
I € N N = YA = = o =S PP 1301
38.8. BRIN MiNMaX SIralEOIES .. cuuuiiinieiiiieiiii e e e e e e e e e e e e e e et e e et e e et e e e e e et e e eanaaeanaes 1301
38.9. B-Tree SUPPOIt FUNCLIONSiiii i e e e e e e e e e e e e e eaneees 1302
38.10. Hash SUPPOrt FUNCLIONSuuiiii e e e e e et e e e e e e aens 1302
38.11. GiST SUPPOIT FUNCLIONSivtiiiiiie e e e e e e e e e e e e e e e e eenas 1303
38.12. SP-GiST SUPPOIT FUNCHIONS .. .cvuiiiiiieii e e e e e e e e e e e e e e et e e e e aaeeeanns 1303
38.13. GIN SUPPOIt FUNCLIONS ... iiviiii e e e e e e e e e e e e e e e e eenas 1304
38.14. BRIN SUPPOIt FUNCLIONS .. .cuuiiiiiieciieee e e e e e e e e e e e st e et e e et e e et e e e aaeeaaneeeens 1304
40.1. Event Trigger Support by Command Tagccvvvieiiiiiiiieeii e e e e 1338
43.1. Available DiagnoStiCS ItEMSiiiiicii e e e e e e e e e e e e ees 1396
43.2. Error DIiagnOStiCS [TEIMS ...uuuiii e e e e e e e e 1411
292. Policies Applied by Command TYPEuviiiniiiii i e 1828
293. pghench Automatic Variablescouiiiiii i 2184
A Vo | o1c T A IO 0T = 0] £ T 2186
A ST 00 |o1= o Tor A U o 1 o 2188
53,1, SYSEEM CalAlOOS ... cvvvneiineiii et et e et e e e e e e e e et e e et e e et e e et e e e e e e e e e e et 2367
53.2. pg_aggregat € COlUMMSccoouiiiiiiiii e e e e e e e et e e eeaens 2369
TG T o o T =1 .4 1 o) 0o 10 2370
T o o[-V 1o o B o 18101 2371
53.5. PG_anPr OC COlUMMS .. .couiiiiiiii e e e e e e e e e e e e e e e et e e e e e e eaaaas 2372
53.6. pg_attrdef COlUMNScc.iiiiii e e e 2373
53.7.pg_attribut @ COolUMNScciiiiiii e e e 2373
53.8. pg_aut hi d COlUMNSuiiiiiii e e e e e e aaaas 2375
53.9. pg_aut h_menber s ColUMNSc..ooiiiii i e 2377
LY T (O o To o= =X A @] V0 1P 2377
LoYC T I O o T T o = £ =T 0 1 41T 2378
53.12. pg_col 1 ati on COIUMNSciuiiiii i e e e e e e eaas 2381
53.13. pg_CoNStrai Nt COIUMNSouuiiiii e e e e e e e e eaes 2382
53.14. pg_CONVET Si ON COIUMNSivtiiiiii e e e e e e e e e e e e et e e ean e eaes 2383
53.15. pg_dat abase COlUMNScouuiiiiiiiiii e e e e e e aans 2384
53.16. pg_db role_setting ColUMNScc.oeiiiiiiiiiiiii e e 2385
53.17. pg_defaul t _acl ColUMNScc.iiiiiiiii e e 2386
53.18. pg_depend COIUMNSccuuiiiiiei e e e e e e et e e eanas 2387
53.19. pg_descCri pti on COlUMNScouuiiiiiieiie e e e e e e e e e e e eaes 2389
LY 120 A o To =1 10 1 @] 070 TP 2389
53.21. pg_event _trigger COlUMNSoiiiiiiiiiiie e e e e e e e ees 2390
53.22. pg_ext €Nsi 0N COIUMNSciuuiiii i e e e e e e e e e eans 2390
53.23. pg_foreign_data wapper ColUMNSccooviuiiiiiiieiiiieein e 2391
53.24. pg_forei gn_server COolUMNSc.ieiiiiiiiiii e e e e e e e e 2391
53.25. pg _foreign_tabl @ ColUMNScoooiiiiiiiiiiii e e 2392
53.26. PG i NAEX COIUMMNS .. .cuuiiiiiii e e e e e e e e e et e e et e et e e e e eaanas 2392

PostgreSQL 16.3 Documentation

53.27. PG i NNEri 1S COlUMNSouuiiiieii e e e e e e e e e eens 2394
53.28. pg_ i Nit _Pri Vs COUMNSciiiiiiieii e e e e e e e e e e e eaes 2395
53.29. pg_| anguage COlUMNSciiuiieiiiei e e e e e e e e e e e et e et e e aaneeaens 2395
53.30. pg_| ar geobj €Ct COlUMNScoouiiiiiiieii e e e e aen 2396
53.31L. pg_l argeobj ect_netadat a ColumNSccoevviiiiiiiiiiiieci e 2396
53.32. pg_NAMESPACE COIUMNSuuiiiiieii e e e e e e e e e e e e eeas 2397
53.33. PG_0PCI @SS COIUMNSiiiiiiii e e e e e e e e e e e eaans 2397
53.34. pg_oper at O COlUMMNSiiiuiieii et e e e e e e e e e e e et e et e e aaneeeens 2398
53.35. pg_opfam [y COlUMNSoiiiiiiiiiei e e e e e aans 2399
53.36. pg_paranet er _acl ColUMNSccooiiiiiiiii e e 2399
53.37.pg_partitioned tabl € ColUMNScooiiiiiiiii e 2400
53.38. PG _POI i CY COIUMNSuiiiiiiii e e e e e e e e eanas 2400
S TC i N o To R o] e To @] 10 T PP 2401
53.40. pg_publ i cati on COlUMNScoouiiiiiiiii e e e e e e e e e aes 2404
53.41. pg_publication_namespace COlUMNScccceviiiiiiiiiiiieie e 2404
53.42. pg_publication_rel ColumNSccccooiiiiiiiiii e 2405
eI I o To T - Y [[T @0 1N T 410 TP 2405
53.44.pg replication_origin ColumMNSccooiuiiiiiiiiiiiiiei e 2406
53.45. PG reW i t € COIUMNSoiiiiiii e e e e e e e e et e e e e e eaens 2406
53.46. pg_secl abel ColUMNSccouiiiiiiei e e e 2407
53.47. pg_SEQUENCE COIUMMS .. .ouuiiiiieiiiee e e e e e e e e e e e e e et e e et e et e e aaneeeens 2407
53.48. pg_shdepend ColUMNScouuiiiiiiiiii e e e e aans 2408
53.49. pg_shdescri pti 0N ColUMNSoiiiiiiiii e e e 2409
53.50. pg_shsecl abel ColumNScc.iiiiiiiiiiii e 2409
5351 pg St ati StiC COUMNSuiiiiiii i e eaas 2410
53.52. pg_stati stiC_ext COlUMNSc..iiiiiieii e e e 2411
53.53. pg_statistic_ext_data ColumnScc.couiiiiiiiiiiiiiiii e 2412
53.54. pg_subscripti on COlUMNSccoiiiiiiiii e e 2413
53.55. pg_subscription_rel ColUmMNSc.cccoiiiiiiiiiiiic e e e 2414
53.56. pg_t abl eSpace COlUMNSccouiiiiiiii e e e e e eaes 2414
53.57. pg_transf or MCOIUMNScovniii e e eaas 2415
53.58. PG _tri gger COlUMNS ... oo e e e e e e e et e e e e e eaans 2415
53.59. pg tS _CONfi g COUMNSuuiiiiii i e eans 2417
53.60. pg_ts_confi g _MBP COlUMNSc.uiiiiiiiii e e e e e e ea e 2417
53.61L. PG tS_di Ct COIUMNSciiiiiii e e e e e e aans 2418
53.62. pg_tS_ParSer COIUMNSciuiiiii it e e e e e eaas 2418
53.63. pg_ts tenpl at @ COolUMNScoouiiiiiiiiii e e e e e e e e e 2419
53.64. PG L YPE COIUMNS ..ot e e e e e e e et e e et e e et e e e eaaaas 2420
NS T VA o Tt N =T Fo] YA ©Co o L= PP 2422
53.66. pg_user _mappi NG COIUMNSoiiiii e e e 2423
BA.1. SYSIEM VIBIWS ...ttt et e e e e e et e e e et e e e et e e e e et e e e e eaa s 2424
54.2. pg_avai |l abl e_ext ensi 0NS COlUMNSccouuiiiiiieiiii e e e 2425
54.3. pg_avai |l abl e_extensi on_versi ons ColumMNSccoeeviiiiiiiieiiiieein e, 2426
54.4. pg_backend _nenory_cont exts ColUMNSccccuiieiiiiiiiiieiiii e 2426
54.5. pg_CONFi g COlUMNSouiiiiiiiii e e e e e e e e e aaaas 2427
54.6. PG_CUISOI'S COIUMNSiiiiiiiieei et e e e e e e e aanas 2428
54.7.pg_file settings ColUMNSooiiiiiiiiiiiii e e e 2428
oY/ T oo [o [o 10T o I @] 1V 41 2429
54.9. pg_hba fil e rul s ColUmMNSccccouiiiiiiiiiii e e e 2429
54.10. pg_ident _file_mappi NgS COlUMNSociviiiiiiiiiiii e 2430
54.11. pg_i NAEXES COIUMNSiiiiiii e e e e e e e e et e e et e e eeaens 2431
54.12. PG | OCKS COlUMNS .. .cuuiiiiiiii e e e e e e e e et e e e e e eaanas 2432
54.13. pg_MBAt Vi WS COIUMMNS .. .couuiiiiiieii e e e e e e e e e e e e et e et e e aaneeeans 2434
54.14. pg_ POl i CIl €S COlUMNSouuiiiiieii et e e e e e e e e aa e eens 2435

XXX

PostgreSQL 16.3 Documentation

54.15. pg_prepared_stat ement s ColUMNScoouiiiiiiiiiiiicii e 2436
54.16. pg_prepared _Xact s COolUMNSccueiiiiiiiiii e e e e e e e 2436
54.17. pg_publication_tabl es ColumNScooiiiiiiiii i 2437
54.18. pg_replication_origin_status ColumNS.........cccooeeiiiiiiiiieiiiieeiin e, 2437
54.19. pg_replicati on_sl ots ColUMNSoiiiiiiiiiiiiiie e 2438
oY 0 I o To R oY =TT X0 1¥ 41T P 2439
54.21. PG T UL €S COIUMNS .. .ouuiiiici e e e e e e e e e et e et e e e e e e eaanas 2440
54.22. pg_secl abel s COlUMNScoouiiiiiiii e e e 2441
54.23. pg_SeqUENCES COIUMNSuuiiiiiiii e e e e e e e e e e e e e ean e eeas 2441
54.24. pg_SettiNGS COIUMNSouuiiiiiieii e e e e e e e e e e aa e aans 2442
54.25. pg_Shadow COIUMNSoouiiiiii e e e eaaas 2444
54.26. pg_shmem al | ocat i oNs COlUMNSoiiiiiiiiiiiciie e 2445
54.27. PG ST AL'S COIUMNS .. .euniiiiii e e e e e e e e e et e e e e e e aanas 2446
54.28. pg_stats_ext COIUMNScouuiiiiiiiiii e e e e e e e e eaas 2447
54.29. pg_stats_ext _exprs COlUMNSc..oeiiiiiiiiii e e e e 2448
54.30. pg_tabl €S COIUMNScouiiiiii e e e eaaas 2450
54.31. pg_ti mezone_abbrevs COolUMNSc.ccuiiiiiiiii e 2450
54.32. pg_ti mezone_Names COlUMMNScccouuiiiiiieiii e e e e e e e eane e 2451
oY/ o To T =1 @] V0 1P 2451
54.34. pg_user _mappi NGS COIUMNSiiiii e e e e e e e e eanaeees 2452
54.35. PG Vi EWS COIUMINS .. .cuuiiiiiiiii e e e e e e e e e e e et e e et e e et e e et e e aaneeaenas 2453
68.1. BUilt-iN GIST OPErator ClaSSESuueiitneiiieeiiiieiiie e et e e et e e e et e e e et eeataeeeaeaetnaes 2598
69.1. BUilt-in SP-GIST Operator ClaSSsESu.ciuuuieiiieiiiiieiiiee e e e e e e e s e et e e e e e aens 2616
70.1. BUilt-iN GIN OpPErator ClaSSEScuuueiiiieiieeiiiieee e e e et e e e e e et e e e e st e s e eaneeaen 2630
71.1. Built-in BRIN Operator ClassESciuuiiiiieiiiee et e e e e e e e e e e e st eeaaeeeaes 2638
71.2. Function and Support Numbers for Minmax Operator Classescovvvvveiveeiinievinneennnnnns 2648
71.3. Function and Support Numbers for Inclusion Operator Classescovevvvveviiieiiiineinnennn, 2648
71.4. Procedure and Support Numbers for Bloom Operator ClasseScvvvvvvivieeiinieviiieeiieeeenn. 2649
71.5. Procedure and Support Numbers for minmax-multi Operator Classesccoeevvvvevivnnennnnn. 2650
73.1. CONENES Of PCODAT A L.ttt ettt ittt e et e e et e e e et e e e eatt e e e et s e e e eatn s eeeeatnaaaaes 2653
73.2. PA0E LAYOULuiieiiii ettt e e 2659
73.3. PageHeaderData LayOULcccuiiiiiiiiii e ee et e e e e e e et e e e e e e ean s 2660
73.4. HeapTupleHeaderData LayOULcoceuuieiinieiiii e e e e e e e e e e e e eaanas 2661
AL POSIOreSQL ErrOr COUESuuiiiteiii e ettt et e e e e e e e e et e e et e e et e e e eeaens 2694
230 Vo g 11 I\ = 0 1P 2705
B.2. Day Of the WEeK NAIMESciiiiiiiiii e e e e e e 2705
B.3. Dae/Time Field MOGIfIErS ..o e e e e eees 2706
C.L. SOL KEY WOIASiiiieiiieii et e e e e e e e e e e et e e et e e et e et e e et e eeanaas 2712
[- Yo [o o= U Qi U 1 o 2806
F.2. Cube External REPreSENTAiONScvvvueii et ei e e e e e e e e e e e e e st e et e e e e eaanns 2830
G R OF oL @ o= = o] £ 2830
Fod. CUDE FUNCLIONS ... it e e e e e e et e e e et e e e e aaa s 2832
F.5. Cube-Based Earthdistance FUNCLIONScoovvuiiiiiiiis e 2871
F.6. Point-Based EarthdiStance OPeEratorscouueeiieiiiiieii e e e e e e e e e e e aens 2872
O 1 T=) o T @ o == (o) £ TN 2882
F.8. NSt Or @ FUNCHIONS ...ceviici e e e e e e e e as 2883
FO. intarray FUNCHONScoouiiii i e e e e e e e e e e et e e eanaeees 2892
[(ORI oL = L = | VA @ o= = o) = S 2893
L Y T 7 = T Y/ o= 2896
[2 IS o I U o o LR 2897
T I B YT @ o= = () £ 2904
[O T W T 1o PP 2905
F.15. pg_buffercache Columnscooiiiiiiiiii e 2924
F.16. pg_buf fercache_sumary() Output CoOlUMNScc.veriiieiiiiieiiieeeie e 2925

XXXI

PostgreSQL 16.3 Documentation

F.17. pg_buf f ercache_usage_count s() Output COlUMNScccvveiiiiieiiiieiiiieeieeennnn, 2925
F.18. Supported Algorithms fOr CryPt () covvveieieeii e e 2929
F.19. lteration CountS fOr CrYPL () covvieiiiiiii e e e e e 2930
F.20. Hash AlQOrithm SPEEOSciii e e 2930
F.21. pgr oW 0cks OUtPULt COIUMNSccuuiiiici e e e e eeas 2943
F.22. pg_stat_statements ColUMNScooiiiiiiiiii e e 2945
F.23. pg_stat_statements info ColUMNS.........ccocouiiiiiiiiiiii e, 2949
F.24. pgstatt upl @ OUtPUt COIUMNSuuiiii i e e e e e eaes 2954
F.25. pgstatt upl e_appr ox Output COlUMNSc.uiiiiiiiiiieiie e e e e 2958
F.26. POt F gMEUNCHONS . ..ouiiiiiii e e e e e e e e e e et e e eaa e eees 2961
.27, POt T OMOPEIEIONS ...t e e e aa 2962
F.28. seg External REPreSENtaliONSccuuiiiiieiiii i e i e e e e e e e e e e e e e e s e e e e eanaas 2985
F.29. Examples of Valid SEQ INPULcooveiiiiiii e e e e eeaans 2985
F.30. SEO GiST OPEIAIONS . oevuiiitieiit i eeeie et e et e et e e et e e e e e e e et e e et e e st e e st e estneeetnaeeanaeaes 2986
G = oo = | I 1 Tox o) Y 2995
F.32. t abl €f UNC FUNCHIONSoouviiiiiii e e e e 3001
F.33. CONNECT DY PalramMEterS ciii i e e e e e e e e e e e e ees 3008
F.34. FUNCions fOr UUID GENEIAHONccvvvieeiiii et e e e et e e 3020
F.35. Functions Returning UUID CONSLANESccvueiiiieiiiieeii e e e e e e e e e eai e e eeanes 3021
F.36. XTI 2 FUNCHIONS ...ttt e e et e e e et e e e e et 3022
F.37. xpat h_t abl @ ParameterSocouiiiiiicie e e e 3023
K.1. POStgreSQL LimitalionScccuuiiiiieiitieiiii e e ee e e e e e e e e e e e s e e e e et e e st e e eaneeeens 3047

XXXii

List of Examples

8.1. USING the CharaCter TYPES ... ittt ettt e e et e e et e e e ert e e eena e eees 162
8.2. USINg the DOOI €8N TYPE ...t 176
8.3. USING the Bit SIHNG TYPES .. ettt ittt ettt et e e e e et e e eebe e eeees 184
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoooiiviiiiiiiiiiiciieccie, 339
10.1. Square Root Operator Type RESOIULIONccevueieiiiii e 442
10.2. String Concatenation Operator Type RESOIULIONcoivviiiiiiiiieicii e 442
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccvuuiieiiiiiiiiiiiiieece e 442
10.4. Array Inclusion Operator TYPe RESOIULIONuuiiiiiiiiiiiiie et 443
10.5. Custom Operator 0N @ DOMaIN TYPEuneiiiiiiee it e et eei e 444
10.6. Rounding Function Argument TYpe RESOIULIONoeiiiiiieiiiiii e 446
10.7. Variadic FUNCtION RESOIULIONciiiitceeii ettt 446
10.8. Substring FUNCtion TYPEe RESOIULIONuuiiiiiiiieieii et 447
10.9. char act er Storage TYPE CONVEISIONcccuuuiieiiiiieeeiii e ettt e et e et e e et eeenaaes 449
10.10. Type Resolution with Underspecified Typesin aUnioncocviiveiiiiniiiiiineeeiie, 450
10.11. Type Resolution in @ SIMPIe UNIONooiiuiiiiiii e 450
10.12. Type Resolution in @ Transposed UNIONccoeuueiiriieeeiiie et eeein e e e eeii e 450
10.13. Type Resolution in @ Nested UNIONuiiiiiiiieiiiiie e e e 450
11.1. Setting up a Partial Index to Exclude Common ValUESuuvieiiiiiieiiiiiieecei e 459
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescoevviieiiiiiiieiiiiiieeceie 460
11.3. Setting up a Partial UNique INOEXccouuuiiiiieie et 461
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccooovevveiiineiiiiinneeiininnnn. 462
21.1. Example pg_hba. cONf ENtrESco.uuiiiiiiii e 730
21.2. An Example pg_i dent . conf File ... 734
34.1. libpg EXample Program Lottt 1034
34.2. 1ibpg EXampPle Program 2o.uui oo 1037
34.3. libpg EXample Program 3o 1040
35.1. Large Objects with libpg Example Programoocieuiieeiiiiieee e 1052
36.1. Example SQLDA PrOQraMciiiitieeeiii et e et e et e e et e e e et s e e eebi e e eeaaaeeeees 1109
36.2. ECPG Program Accessing Large ODJECESuuiiiiiiiiiiii e 1124
42.1. Manual Installation oOf PLIPENTccoouuiiii e 1376
43.1. Quoting Values in DYNamiC QUENTESiiiiiriieiiiii e et e et e et eeei e eeees 1394
43.2. Exceptions With UPDATE/I NSERTiiiiiiieiei et 1410
43.3. A PL/PgSQL Trigger FUNCLIONuiiiiiiieieei et 1424
43.4. A PL/pgSQL Trigger Function for AUditingcooeviiieiiiiiieii e 1425
43.5. A PL/pgSQL View Trigger Function for AUditinguiveieriniiiiiiin e 1426
43.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccoooveiiiiiiieiennnn, 1427
43.7. Auditing with Transition Tablescooeuuiiiiii e 1430
43.8. A PL/pgSQL Event Trigger FUNCLIONccouuuiiiiiiiieiiii et 1432
43.9. Porting a Simple Function from PL/SQL t0 PL/POSQLiviiiiiieeiiiieeeei e 1440
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1441
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/

0105 PP UPPT PPN 1443
43.12. Porting a Procedure from PL/SQL t0 PL/PGSQLcvvviiieiiiiieeieiii e 1444
F.1. Create a Foreign Table for POStgreSQL CSV LOGSccvvvunieiiiiiieeiiiiie e 2874

XXXl

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteersin parallel to the development of the PostgreSQL software. It describes all the func-
tionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part I documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

» Part 11l describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V containsinformation for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?

PostgreSQL isan object-relationa database management system (ORDBMS) based on POSTGRES, Ver-
sion 4.2%, devel oped at the University of California at Berkeley Computer Science Department. POST -
GRES pioneered many concepts that only became available in some commercia database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

e complex queries

* foreign keys

* triggers

 updatable views

e transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes
« functions
* operators
 aggregate functions

1 https://dsf berkeley.edu/postgres. html

XXXIV

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST -
GRES package written at the University of California at Berkeley. With decades of development behind
it, PostgreSQL is now the most advanced open-source database avail able anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POST GRES has undergone several major releases since then. The first “demoware” system became oper-
ational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in [ston90a],
wasrel eased to afew external usersin June 1989. In responseto acritique of thefirst rule system ([ston89]),
the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990 with the new rule
system. Version 3 appeared in 1991 and added support for multiple storage managers, an improved query
executor, and arewritten rule system. For the most part, subsequent releases until Postgres95 (see below)
focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: afinancial dataanalysis system, ajet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at severa universities. Finaly, Illustra Information Technologies
(later merged into Informix?, which is now owned by 1BM3) picked up the code and commercialized it.
In late }992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project”.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres9s

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a hew
name, Postgres95 was subsequently rel eased to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 https://www.ibm.com/anal ytics/informix
8 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXV

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

» A new program (psgl) was provided for interactive SQL queries, which used GNU Readline. Thislargely
superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgreso5 server.

» The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgresd5 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “ Postgres” (now rarely in al capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing problems
in the server code. With PostgreSQL , the emphasis has shifted to augmenting features and capabilities,
although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

Anadministrator isgenerally apersonwhoisin charge of installing and running the server. A user could be
anyone who is using, or wantsto use, any part of the PostgreSQL system. These terms should not be inter-
preted too narrowly; this book does not have fixed presumptions about system administration procedures.

XXXVi

Preface

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO' ligt,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL isan open-source project. Assuch, it depends on the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which isnot in the documentation, writeit up and contribute
it. If you add featuresto the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to seeif the bug happensthere. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhapsit is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining acommercial support contract.

5.1. Identifying Bugs

Beforeyou report abug, pleaseread and re-read the documentationto verify that you can really do whatever
itisyou aretrying. If it is not clear from the documentation whether you can do something or not, please
report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

S https://wiki.postgresql .org

6 https://wiki.postgresqgl.org/wiki/Frequently_Asked_Questions
! https://wiki.postgresqgl .org/wiki/Todo

8 https://www.postgresqgl.org

XXXVii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

» A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a“disk full” message, since you have to fix that
yourself.)

A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

» A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

* PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing listsfor help in tuning your applications. Failing to comply to the SQL standard is not necessarily
abug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to seeif your bug is aready known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare factsisrelatively
straightforward (you can probably copy and paste them from the screen) but al too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CREATE
TABLE and | NSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

Thebest format for atest casefor SQL -related problemsisafilethat can be runthrough the psgl frontend
that shows the problem. (Be sure to not have anything in your ~/ . psql r ¢ start-up file.) An easy way
to create thisfileisto use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. Y ou are encouraged to minimize the size of your example, but thisis not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files’ or “midsize
databases’, etc. since thisinformation is too inexact to be of use.

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
the terminal, if possible.

XXXViii

Preface

Note

If you are reporting an error message, please obtain the most verbose form of the message. In
psgl, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message from
the server log, set the run-time parameter log_error_verbosity to ver bose so that all details
are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the infor-
mation available. Please also look at the log output of the database server. If you do not keep
your server'slog output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisisnot what | expected.”, we might run it ourselves, scan the output, and think it looks
OK andisexactly what we expected. We should not haveto spend thetimeto decode the exact semantics
behind your commands. Especially refrain from merely saying that “ Thisis not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not afun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit thisitem.)

Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. Y ou can run the command SELECT ver si on(); to find out the version
of the server you are connected to. Most executable programs also support a- - ver si on option; at
least post gres --versionandpsql --versi on shouldwork. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 16.3 we will aimost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an
older release of PostgreSQL has already been fixed. We can only provide limited support for sitesusing
older releases of PostgreSQL ; if you require more than we can provide, consider acquiring acommercial
support contract.

Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have instal-
lation problems then information about the toolchain on your machine (compiler, make, and so on) is
also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input

XXXIX

Preface

files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. Thiswill
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still havetime
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL", sometimes “ Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes’. A crash of asingle backend processis quite different
from crash of the parent “postgres’ process; please don't say “the server crashed” when you mean asingle
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “ psql”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list a <pgsql - bugs@i st s. post -
gresql . or g>. You are requested to use a descriptive subject for your email message, perhaps parts of
the error message.

Another method is to fill in the bug report web-form available at the project's web sitet®. Entering a bug
report thisway causesit to be mailedtothe<pgsql - bugs@i st s. post gresql . or g> mailinglist.

If your bug report has security implications and you'd prefer that it not become immediately visible in
public archives, don't send it to pgsql - bugs. Security issues can be reported privately to <securi -
t y@ost gresql . org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql -sqgl @i sts. post -
gresql . org>or<pgsql -general @i sts. postgresql . or g>. These mailing lists are for an-
swering user questions, and their subscribers normally do not wish to receive bug reports. More impor-
tantly, they are unlikely to fix them.

Also, please do not send reports to the developers mailing list <pgsql - hackers@i st s. post -
gresql . org>. Thislist is for discussing the development of PostgreSQL, and it would be nice if we
could keep the bug reports separate. We might choose to take up a discussion about your bug report on
pgsqgl - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql -docs@i st s. post gresqgl . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to <pgsgl - hacker -
s@i sts. postgresqgl . org>, sowe (and you) can work on porting PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

° https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

xl

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://lists.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to Post-
greSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experienceis
required. Thispartismainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part |1 to gain a more formal
knowledge of the SQL language, or Part IV for information about devel oping applications for PostgreSQL . Those who
set up and manage their own server should also read Part 111.

Table of Contents

L. GEIING SEAMEAeeeeeii e ettt ettt eaaas 3
0 T 1 = = = 1o o 3
1.2. Architectural FUNDamENtalScouiiniii e 3
1.3. Creating @ Dalahaseccouuuieiiii e 4
1.4, ACCESSING 8 DAIANASEvuiieeiiei e 5
2. The SQL LBNGUBGEetun ettt ettt e ettt et e e e e et e e e eab e e eenenas 8
b2 I 1 11 oo U o 1) o [N 8
A O 04 /= o = PP 8
2.3. Creating @ NEW Table ..oo.unii e 8
2.4. Populating @ Table With ROWScoouiiiiiiii et 9
2.5, QUENYING A TADIE ...eeee e 10
2.6. J0INS BEIWEEN TAIESiviitiiiii it 12
2.7. AQOregate FUNCLIONSccutiieieiti ettt ettt et ettt e e et e et e e e et e e eenans 14
2.8 UPUELES ...ttt 16
R B L= = (0] 17
3. AGVANCED FEAIUIMNES .. ouitieeit et e e e e e e e e e et e e e e e ens 18
G 3 O 1 oo U o 11 o [18
I VA= VP 18
3.3 FOrEIgN KBYS ..ttt ettt aee 18
I I =01 o o1 19
3.5, WINAOW FUNCLIONScviiitii ettt e e e e e e e aees 21
IS T 101015 41 7= ot PP 24
G I o g Tox 11 Lo o T 26

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because the
system administrator already installed it. If that isthe case, you should obtain information from the oper-
ating system documentation or your system administrator about how to access PostgreSQL .

If you are not sure whether PostgreSQL is already available or whether you can useit for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
beinstalled by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set thingsup in the default way, you might have some morework to do. For
example, if the database server machineisaremote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom lineisthis: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL usesaclient/server model. A PostgreSQL session consistsof thefollowing
cooperating processes (programs):

» A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
caled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applications
can bevery diversein nature: aclient could be atext-oriented tool, agraphical application, aweb server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. Y ou should keep thisin mind, because the files that
can be accessed on aclient machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve thisit starts
(“forks’) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by theoriginal post gr es process. Thus, the supervisor server process
isalwaysrunning, waiting for client connections, whereas client and associated server processes come and
go. (All of thisis of courseinvisible to the user. We only mention it here for completeness.)

Getting Started

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsql/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/tnp/.s.PGSQ.5432"
failed: No such file or directory

Is the server running |locally and accepting connections on
t hat socket ?

This means that the server was not started, or it is not listening where cr eat edb expects to contact it.
Adgain, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tnp/.s.PGSQ. 5432"
failed: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are di stinct from operating system user accounts.)
If you are the administrator, see Chapter 22 for help creating accounts. Y ou will need to become the op-
erating system user under which PostgreSQL was installed (usually post gr es) to create the first user
account. It could also be that you were assigned a PostgreSQL user name that is different from your op-
erating system user name; in that case you need to use the - U switch or set the PQUSER environment
variable to specify your PostgreSQL user name.

Getting Started

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: error: database creation failed: ERROR pernission denied
to create database

Not every user has authorization to create new databases. |f PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site admin-
istrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of this
tutorial under the user account that you started the server as. !

Y ou can also create databases with other names. PostgreSQL allows you to create any number of databases
at agiven site. Database names must have an alphabetic first character and are limited to 63 bytesin length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You aways need to
specify it.) Thisaction physically removes all files associated with the database and cannot be undone, so

this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to interactively
enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipul ate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part V.

Y ou probably want to start up psql to try the examplesin thistutorial. It can be activated for the nydb
database by typing the command:

$ psql nydb

Lasan explanation for why thisworks: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user hame to connect as; if you don't, it will default to the same name as your current operating system account.
Asit happens, there will always be aPostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the - U option everywhere
to select a PostgreSQL user name to connect as.

Getting Started

If you do not supply the database name then it will default to your user account name. Y ou already dis-
covered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:

psql (16.3)
Type "hel p* for help.

mydb=>

Thelast line could also be:

nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Post-
greSQL instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of cr e-
at edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that you
can type SQL queriesinto awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

Post greSQ@. 16.3 on x86_64-pc-|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nydb=> SELECT 2 + 2;
?col um?

(1 row

The psqgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \ h

To get out of psql , type:

Getting Started

nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at the
psql prompt.) Thefull capabilitiesof psqgl are documented in psgl. In thistutorial wewill not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and isin no way a complete tutorial on SQL. Numerous books have
been written on SQL, including [melt93] and [date97]. Y ou should be aware that some PostgreSQL lan-
guage features are extensions to the standard.

In the examplesthat follow, we assume that you have created a database named ny db, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory sr c/
tutorial /. (Binary distributions of PostgreSQL might not provide thosefiles.) To use thosefiles, first
change to that directory and run make:

$ cd .../src/tutorial
$ nake

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\i command reads in commands from the specified file. psql 's- s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
inthefilebasi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of ahierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of aspecific datatype. Whereas columns have afixed order in each row, it isimportant
to remember that SQL does not guarantee the order of the rows within the tablein any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

Y ou can enter thisintopsql withthelinebreaks. psql will recognizethat the command isnot terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- -) introduce
comments. Whatever follows them isignored up to the end of the line. SQL is case-insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifiesadatatypethat can store arbitrary character strings up to 80 charactersin length.
i nt isthe normal integer type. r eal isatype for storing single precision floating-point numbers. dat e
should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types i nt, smal lint, real, doubl e precision,
char (N),varchar (N),dat e,ti me,ti mestanp,andi nt er val , aswell asother types of general
utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to popul ate a table with rows:

I NSERT | NTO weat her VALUES (' San Franci sco', 46, 50, 0.25,
'1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by singlequotes(*), asintheexample. Thedat e typeisactually quiteflexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The SQL Language

Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An aternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

Y ou canlist the columnsin adifferent order if you wish or even omit some columns, e.g., if the precipitation
is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many devel opers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter al the commands shown above so you have some datato work with in the following sections.

Y ou could aso have used COPY to load large amounts of data from flat-text files. Thisis usually faster
because the COPY command is optimized for this application while allowing lessflexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process, not

the client, since the backend process reads the file directly. Y ou can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, temp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | date

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

10

The SQL Language

--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29

(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (tenp_hi+tenp |lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ o,
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are alowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

11

The SQL Language

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed one table at atime. Queries can access multiple tables at once, or
access the same table in such away that multiple rows of the table are being processed at the same time.
Queries that access multiple tables (or multiple instances of the same table) at one time are called join
gueries. They combine rows from one table with rows from a second table, with an expression specifying
which rows are to be paired. For example, to return all the weather records together with the location of
the associated city, the database needs to compare the ci t y column of each row of the weat her table
with the nane column of al rowsintheci ti es table, and select the pairs of rows where these values
match.2 This would be accomplished by the following query:

SELECT * FROM weather JON cities ON city = nang;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)

(2 rows)

Observe two things about the result set:

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so
ORDER BY is unnecessary. But thisis not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the
rows to be ordered.

3 Thisis only a conceptual model. The join is usualy performed in a more efficient manner than actually comparing each possible pair of rows,
but thisisinvisible to the user.

12

The SQL Language

e Thereisnoresult row for the city of Hayward. Thisisbecausethereisno matchingentry intheci ti es
table for Hayward, so the join ignores the unmatched rowsin theweat her table. We will see shortly
how this can be fixed.

» There are two columns containing the city name. Thisis correct because the lists of columns from the
weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her JO N cities ON city = nane;

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her JO N cities ON weather.city = cities.nang;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't fail
if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in thisform:

SELECT *
FROM weat her, cities
WHERE city = nane;

This syntax pre-datesthe JO NON syntax, which was introduced in SQL-92. The tables are simply listed
in the FROMclause, and the comparison expression is added to the WHERE clause. The results from this
older implicit syntax and the newer explicit JO NON syntax are identical. But for areader of the query,
the explicit syntax makesits meaning easier to understand: Thejoin condition isintroduced by its own key
word whereas previously the condition was mixed into the WHERE clause together with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan theweat her table and for each row to find the matching ci t i es row(s). If no matching row is
found we want some “empty values’ to be substituted for theci t i es table'scolumns. Thiskind of query
iscalled an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON weather.city = cities. naneg;

city | temp_lo | tenp_hi | prcp | dat e | nane

| location
--------------- T LT T gy
o e e e e oo - - T ——

Haywar d | 37 | 54 | | 1994-11-29 |

|

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

13

The SQL Language

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will have
each of itsrowsin the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a |eft-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercisee Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
thetenp_l o andt enp_hi columns of each weat her row tothet enp_| o andt enp_hi columns
of al other weat her rows. We can do this with the following query:

SELECT wl.city, wl.tenp_lo AS |ow, wl.tenp_hi AS high,
w2.city, w2.tenp_lo AS |low, w2.tenp_hi AS high
FROM weat her wl JO N weat her w2
ONwl.tenmp_lo < w2.tenp_lo AND wl.tenp_hi > w2.tenp_hi;

city | low | high | city | low | high
--------------- T T LI pupup
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table aswl and w2 to be able to distinguish the left and right side of
thejoin. You can also use these kinds of aliasesin other queries to save some typing, e.g.:

SELECT *
FROM weat her w JON cities ¢ ON w.city = c.naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum avg (average), max (maximum) and mi n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l 0) FROM weat her;

14

The SQL Language

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_|l o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obvioudly it has to be evaluated before aggregate functions are computed.) However, asis often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

ThisisOK becausethe subquery isan independent computation that computesits own aggregate separately
from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
number of readings and the maximum |ow temperature observed in each city with:

SELECT city, count(*), max(tenp_l o)
FROM weat her
GROUP BY city;

city | count | max
_______________ e
Haywar d | 1| 37
San Franci sco | 2| 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, count(*), max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | count | max
_________ I .
Hayward | 1| 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Findly, if we
only care about cities whose names begin with “S”, we might do:

15

The SQL Language

SELECT city, count(*), max(tenp_l o)
FROM weat her
VWHERE city LIKE ' S% --
GROUP BY city;

city | count | max
_______________ T B,
San Franci sco | 2| 46
(1 row

The L1 KE operator does pattern matching and is explained in Section 9.7.

It isimportant to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

Another way to select the rows that go into an aggregate computation isto use FI LTER, which is a per-
aggregate option:

SELECT city, count(*) FILTER (WHERE tenp_lo < 45), nmax(tenp_| 0)
FROM weat her
GROUP BY city;

city | count | max
_______________ .
Haywar d | 1] 37
San Franci sco | 1| 46
(2 rows)

FI LTERis much like WHERE, except that it removes rows only from the input of the particular aggregate
function that it is attached to. Here, the count aggregate counts only rowswitht enp_| o below 45; but
the max aggregate is still applied to all rows, so it still finds the reading of 46.

2.8. Updates

Y ou can update existing rows using the UPDATE command. Suppose you discover the temperature read-
ings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
VWHERE date > '1994-11-28';

16

The SQL Language

Look at the new state of the data:

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T L L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

17

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL . Wewill now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examplesfound in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found inadvanced. sql
inthetutorial directory. Thisfile also contains some sample datato load, which isnot repeated here. (Refer
to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry in
theci t i es table. Thisis called maintaining the referential integrity of your data. In simplistic database
systems thiswould be implemented (if at al) by first looking at theci t i es tableto check if amatching
record exists, and then inserting or rejecting the new weat her records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

18

Advanced Features

CREATE TABLE weat her (

city varchar (80) references cities(nane),
temp_lo int,

t enmp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this ssimple
exampleinthistutorial, but just refer you to Chapter 5 for moreinformation. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransaction isthat
it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance bal ance - 100. 00
VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne

' Bob') ;

The details of these commands are not important here; the important point isthat there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need aguaranteethat if something goeswrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at al.

19

Advanced Features

We also want a guarantee that once atransaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to his
account will disappear in a crash just after he walks out the bank door. A transactional database guaran-
tees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before the
transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if onetransaction isbusy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but alsoin
termsof their visibility asthey happen. The updates made so far by an open transaction areinvisibleto other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, atransaction is set up by surrounding the SQL commands of the transaction with BEG N
and COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not issue
a BEG N command, then each individual statement has an implicit BEG N and (if successful) COWM T
wrapped around it. A group of statements surrounded by BEA N and COVMM T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepointsallow you to selectively discard parts of the transaction, while committing the rest. After
defining asavepoint with SAVEPQOI NT, you can if needed roll back to the savepoint with ROLLBACK TO.
All the transaction's database changes between defining the savepoint and rolling back to it are discarded,
but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it severa times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All thisis happening within the transaction block, so none of it isvisible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

20

Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice'saccount, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEG N,

UPDATE accounts SET bal ance
WHERE nane = 'Alice';

SAVEPO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = 'Vally';

COW T,

bal ance - 100. 00

bal ance + 100. 00

Thisexampleis, of course, oversimplified, but there'salot of control possiblein atransaction block through
the use of savepoints. Moreover, ROLLBACK TOisthe only way to regain control of atransaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting

again.
3.5. Window Functions

A window function performs a cal cul ation across a set of table rowsthat are somehow related to the current
row. Thisis comparable to the type of calculation that can be done with an aggregate function. However,
window functions do not cause rows to become grouped into a single output row like non-window aggre-
gate callswould. Instead, the rows retain their separate identities. Behind the scenes, the window function
is able to access more than just the current row of the query resullt.

Here is an example that shows how to compare each employee's salary with the average salary in his or

her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane)
FROM enpsal ary;

depnane | enpno | salary | avg
----------- T fE Ry
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value asthe current row. (This actually is the same function as the non-window

21

Advanced Features

avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). Thisiswhat syntactically distinguishesit from a normal function or non-window aggre-
gate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTI TI ON BY clause within OVER divides the rows into groups, or partitions,
that share the same values of the PARTI TI ON BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

Y ou can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Hereisan example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- S
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by awindow function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rowsis not important. It isalso possible
to omit PARTI TI ON BY, in which case there is asingle partition containing all rows.

There is another important concept associated with window functions: for each row, thereis a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rowsin the partition. ! Hereisan exampleusing sum

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

22

Advanced Features

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ Fom e a - -
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since thereis no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY isthe whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ i,
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such asin GROUP BY, HAVI NG and VWHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after non-window aggre-
gate functions. This meansit is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If thereis aneed to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

23

Advanced Features

(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but thisis duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example;

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of data-
base design.

Let'screatetwo tables: A tableci t i es andatablecapi t al s. Naturaly, capitalsare also cities, so you
want some way to show the capitals implicitly when you list al cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

nane t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

nane t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, el evation FROM non_capitals;

Thisworks OK asfar asquerying goes, but it getsugly when you need to update several rows, for onething.

A better solution isthis:

CREATE TABLE cities (

24

Advanced Features

name t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

Inthiscase, arow of capi t al s inheritsall columns (hane, popul ati on,andel evat i on) fromits
parent, ci ti es. The type of the column nane ist ext , a native PostgreSQL type for variable length
character strings. Thecapi t al s table has an additional column, st at e, which showsits state abbrevi-
ation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

which returns;

nane | elevation
___________ e e e e e m - -
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and not
tablesbelow ci t i es intheinheritance hierarchy. Many of the commandsthat we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

25

Advanced Features

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2 https://www.postgresqgl.org

26

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

Theinformationin this part isarranged so that anovice user can follow it start to end to gain afull understanding of the
topicswithout having to refer forward too many times. The chapters areintended to be self-contained, so that advanced
users can read the chaptersindividually asthey choose. The information in this part is presented in anarrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYINEBX vttt ettt ettt et e et e et e et et et e et e e et e e e 35
A1, LEXIiCal SIUCKUME ...ttt ettt ettt e e e e e enees 35
4.1.1. Identifiers and K&y WOITSuiiiiiiiiieiiii e 35
.02, CONSLANTSoeeeeeeie ettt et ettt 37
4.01.3. OPEIELOIS ...ttt ettt ettt ettt et 42
4.1.4. SPECial CharaCLEN'S ceeiii ettt e e eees 43
.05, COMMEBNES ... eeee ettt ettt e r e e e e e e e e e e en s 43
4.1.6. OPErator PrECEOBNCEceiitiieeiii et 44

4.2, VElUE EXPIESSIONSceiitiieeieii ettt ettt e ettt e et e et e et e et e e e aba s 45
4.2.1. ColUMN REFEIENCES ...ttt et 46
4.2.2. POSItiONal PalraMELErSuuiiiiiiieieei ettt e 46
A.2.3. SUDSCIIPES .. eevteeeeei ettt ettt et 46
424, Field SEIECHON ...ueiiiii e 47
4.2.5. OPErator INVOCELIONSccevuneiiitieee et e ettt et e e e et eeeeneaeeees 47
4.2.6. FUNCHON CallS ...t 48
4.2.7. AQOregate EXPIrESSIONSccuuueiiiiiieieiti ettt ettt ettt e et e e e e 48
4.2.8. WIindow FUNCHION CallSiiiiiiiiiiii e 50
4.2.9. TYPE CaSS .eviiiiieii et 53
4.2.10. Collation EXPreESSIONSoceevrieeiiiti ettt ettt e e e e e eeeans 54
4.2.11. SCAlAr SUDQUENTESceeeieeeeeii ettt ettt ettt e e e e enaens 55
4.2.12. Array CONSITUCLOIScevieitiiierie ettt et e e e e e ea e eees 55
4.2.13. ROW CONSITUCTONSevteeeieiete ettt sttt et e e e e 57
4.2.14. Expression Evaluation RUIESccooiiiiiiiiiii e 58

4.3, CalliNg FUNCLIONSeeeit ettt ettt et e e e e e e enan s 59
4.3.1. Using POSItional NOELIONccvvveieiiiiiieeeeeii et 60
4.3.2. UsiNg NamMed NOLATONccuvuiiiiiiie e 61
4.3.3. USING MiXEA NOLALTONevuieiiiiieeiiiii ettt e een e e e 61

5. Dal@ DEFINITION ..ottt et 63
DL TADIE BASICS .ottt 63
5.2, DEFAUIT VAIUBS ...ttt 64
5.3. Generated COIUMINScoouuiiiiiii ettt et e e e e e 65
B, CONSITAINTS ...ttt ettt ettt e et e et et e et et e et et e e e ena s 66
5.4.1. CheCk CONSITAINTScevuieiiiiie ettt ettt e e e e e e e 67
5.4.2. NO-NUII CONSIFAINES ...eeveieieiii et e e 69
5.4.3. UNIQUE CONSIFEINES ...e.veueieeii ettt ettt ettt e e e 70
B5AA, PHIMEANY KEYS ...ttt e e 71
545, FOrEIgN KEYS ...ttt 72
5.4.6. EXCIUSION CONSITAINTScovtieieiit et e ettt et e et e e e et e e e ene e eeees 76

5.5, SYStEM COIUMMNS ...t et e e 76
5.6. MOAITYING TADIES ...t 77
5.6.1. AddING @ COIUMN ...oiviiiiiiii e 78
5.6.2. ReEMOVING @ COIUMN ...couuiiiiiiii ettt eeans 78
5.6.3. AddING @ CONSIFAINTceevtieeiiiis ettt e e e e et e e e e e eeees 79
5.6.4. RemMOVING @ CONSITAINTccuviiiiiiii e 79
5.6.5. Changing a Column's Default Valuec.oiviiiiiiiiiiiii e 79
5.6.6. Changing a Column's Daa TYPEuueieuunieiiiiiee ittt 80
5.6.7. Renaming @ COIUMIN ... coiiiiiiiiii e 80
5.6.8. RENAMING @ TADIEciiiiiiiiiii e 80

BT PrIVIIEOES ..o 80
5.8. ROW SeCUNtY POIICIES ...oeuuieiiii e 85
5.9, SCREMAS ... 91

28

The SQL Language

5.9.1. Creating @ SCheMAc.uiiiiic e 92
5.9.2. The PUDIIC SChEMEooiiiiiiec e 93
5.9.3. The Schema Search Pathccoooiiiiiiiiiiiii e 93
5.9.4. Schemas and PrivVilEgEScoiuniiii i 95
5.9.5. The System Catalog SChEMAcovuiiiiiiieii e 95
5.0.6. USAQE PallerNSiviiiiii e 95
5.9.7. POMaDIITY ..vviiiiiiieee e 96

oI O T 1=) = Lo PP 96
oI L0 B O Y= (=3P 99

5.11. Table Partitioningociuueiiieiii et e e e e e e e e e e e e e e e e 100
oI S @ = 4= T PP 100
5.11.2. Declarative Partitioningcoceuiiiiiiiiiie e e e 101
5.11.3. Partitioning Using INNEFtanCeccoviiiiiiiiii e 106
5.11.4. Partition PrUniNgc.uoeiuiiiiii e e e e e e e e e e et eeaaaeeaes 111
5.11.5. Partitioning and Constraint EXCIUSIONc.veviiieiiiniiiii e 112
5.11.6. Best Practices for Declarative Partitioningcc.ccoeevviiieiiineeiiieriineecneeenn, 113

I o (= o o B I - PP 114
5.13. Other Database ODJECEScvvieiii e e e e e aens 114
5.14. DePendeNnCy TraCKiNgccuuueiiueiiiiie e e e e e e e e e e e e e e e e e e et e e e eanaeeeen 115
SR T = 1Y =T o 10 = 1 o PN 117
L 1= e (] aTo [D - - Y 117
LS UL = (] oo D = U 118
SRR D= 1 (] oo I - - P 119
6.4. Returning Data from Modified ROWScccuiiiiiiiiiii e 119
2 8 = 1= PN 121
8 T @ = 4T T ORI 121
A - o L=l (0 == Lo 121
7.2.1. ThE FROMCIBUSE ...cceviiiiiiie ettt ettt ettt e et e e e e 122
7.2.2. THE WHERE ClaUSEvvuieiiiiii ettt sttt e et e e e ean s 131
7.2.3. The GROUP BY and HAVI NG ClIaUSEScccvvuiiiiiiieeeiiiie e ee e 132
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPiiiiiiiiieiiieece e 134
7.2.5. Window FUNCEION PrOCESSINGcovuiiiiiieiiieeie e e e e e e e e 137

SRS = 1 o I £ U UPPPTSPPR 138
7.3. 1. SEECE-LISt [TOMS oot e 138
7.3.2. COlUMN LADEIS ...t e e eaans 139
7.3.3. Dl STINCT ettt e e et e e et s e e e et e e e eeaaaeeeees 139

7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT) ...cocvviiiiiiiiieeciiieeeceie e 140
7.5. Sorting ROWS (ORDER BY) ...iiuiiiiiiiciie et e e e e e e e e e e e et eeaneeas 141
T6. LIM T @8N0 OFFSET ..oiiiiiiiiie ettt e e e e et e e e as 142
TV A/ I S I I £ PP 143
7.8. W TH Queries (Common Table EXPreSSiONS)cc.uueeeiieiiiieriiieeiiieeiieeeeineesieeeaneens 144
7.8.1L SELECT iNW TH oo a s 144
7.8.2. RECUISIVE QUENIES ...uuiii ittt e e e e e e e e e e e et e e e eeaes 144
7.8.3. Common Table Expression Materializationccoeoviiiiiiiiiiiciiiiecie e 150
7.8.4. Data-Modifying Statements in W TH ..o, 151

S T D= = T Y/ o PRSPPI 153
S0 N [0 0= o Y == 154
e I 1 011 o = Y/ o PP 155
8.1.2. Arbitrary Precision NUMDBEISccoiiiiiiiiii e 155
8.1.3. Floating-POINt TYPES .ovun i e e e 158

ST S g Y/ o= PP 159

S I o g 1< = Y 1Y o< T PRSP 160
TG I O == o (= G Y/ o= PP 161
S = T g A T v T Y/ o 1= 163

29

The SQL Language

8.4.1. byt €a HEX FOIMELccuuiiiiiieii e 164
8.4.2. byt €a ESCApe FOIMAL ...c.uuiiiiiiii e e e e 164
R = =l T (ST Y/ 0= P 165
8.5.1. Date/TImME INPULeveniiiiiii e e e e e e e e e e e e e e e aaneees 167
8.5.2. DAE/TIME OULPULueeeeiiiieeeeeie e et e e e et e et e e et e e e et eeeeren e 170
8.5.3. TIME ZONES ...ttt e et e e et e e e eaa e aaee 172
8.5.4. INterval INPULoiieiii e e 173
8.5.5. INLEIVE OULPULueiiiitiee it e e e e e e e aa e e eannns 175
LS = ToTo =T N Y/ o= PN 176
A 1000 = =0 I Y/ o= 177
8.7.1. Declaration of Enumerated TYPES .. .cvuuiviueiiii e e e e 177
2 @ (o[1 o P 177
B.7.3. TYPE SAFELY eevviieiiii et 178
8.7.4. Implementation DELailScccuuiiiiiii e 178
R €= o 0 4= (o Y 1P 179
B.8. L. POIMES ...ttt e ettt e e a e aae 179
88,2, LINES ettt 179
8.8.3. LiNE SEOMENLSiviiiiii e e e 180
8814 BOXES ..t eiiiii e ettt ettt e et e a et a e aaaes 180
B85, PalNS ..ot 180
8.8.6. POIYQONS .. .ciiiiii i 181
S O] (o =~ PP 181
e I N\ = Y Yo (o (1= S Y o= 181
S35 R T 1= PSPPSR 182
SIS o o | S USRS 182
SR A I 1= VT o3 o | PSPPI 183
S I 1= U= Vo o | USSP 183
8.9.5. IMACATAN 8 .ouiiiiiiii e e e e e 183
IO T S (1o T I3 - 184
B.11. TeEXt SEACH TYPES o evn it 185
S 00 I O T = VT o3 A o PP PTRPTUPT 185
S I 2 A=Y o [U 1= PRSP 186
ST 2 U1 1 R I/ o= PR 188
ST Q. I 1Y/ o= PP 188
8.13.1. Creating XML ValUBSoeiiiiiiieiiiii ettt e e e 189
8.13.2. ENcoding Handlingccouuiiiiiiiii i 190
8.13.3. ACCESSING XML ValUESuiiiiiciii e 190
ST N S O NI Y/ o=~ PP 190
8.14.1. JSON Input and OULPUE SYNEAXevvvnieiieeiiiieciie e e e e e e e e e e eens 192
8.14.2. Designing JSON DOCUMENES .. .c.uuivieieineeiieeei e et e et eeeie e e e e san e eaneeennnas 193
8.14.3.] sonb Containment and EXIStENCEovviiiiiiii e 193
8.14.4. | SOND INUEXING ...evvneiii e e e e e e aaa s 195
8.14.5. | SOND SUBSCIIPLING .vuevvieiiiiee e e e e e e 198
8.14.6. TraNSFOMIS ... ettt ettt e e e e et e e e e 199
8.14.7.]SONPEEN TYPE . e 200
e I LN = Y PPN 201
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeei et e e e e e e e e e e eaneees 201
8.15.2. Array ValUE INPULcovniiii e e e e e e e 202
8.15.3. ACCESSING ATTAYS ..uevtneeiineeiieeete ettt e et e e e e et e et e et e e et e e et e e et e eaneeaens 204
8.15.4. MOAITYING ATTAYS ..vuieiiieii et e e e e e e e e e e e e e e e e eanaeees 206
8.15.5. SEaArChING IN ATTAYS «oovuieiii e e e e e e e e e eaens 209
8.15.6. Array Input and OULPUL SYNEEXccvuneiiieiiiieeiii e e e e e e e e e eaenns 210
8.16. COMPOSITE TYPES ..evueiiueiiiieeit ettt e et e e et e e et e e et e e et eeaa e e st ee et e e et eetnaeesnnaaannaaes 211
8.16.1. Declaration of COmMPOSItE TYPES ...cvvureiiiieiiieeiii e e e e e e e e anas 212

30

The SQL Language

8.16.2. Constructing CompoSIte VAUEScccuuiiiiiieiiii e 213
8.16.3. AcCeSSING COMPOSIEE TYPES ...vvvneiiiiieiiieeiiieeiiie et e e et e e eae e e e eateeeaeeanaas 213
8.16.4. Modifying COmMPOSITE TYPES ...cvvuniiiiieieii e e ee e e e e e e e e aa s 214
8.16.5. Using Composite TYPes iN QUENIESueiiieiiii i e e e e e e e eaaes 215
8.16.6. Composite Type Input and OULPUE SYNEAXccevvvvirnieiiieiiii e e e eenne 217

8.7, RANGE T S ittt ettt 218
8.17.1. Built-in Range and MUItIrange TYPES ...uuevivieii e e e e e 218
8.17.2. EXAMPIES .. ettt 219
8.17.3. Inclusive and EXCIUSIVE BOUNGSuiveiiiiiiieiiiiineeiiiiine et e et e i 219
8.17.4. Infinite (Unbounded) RaNGESocvvuiiiiii e 219
8.17.5. RaNge INPUL/OULPULovvniiiieeii e e e e e e e e e e e aes 220
8.17.6. Constructing Ranges and MUItIrangeSoevvviieiiie e 221
8.17.7. DISCrete RANGE TYPES . ovvniiiiieei et et e e e e e et e e e e e e e e e et e e et e een s 222
8.17.8. Defining New RaNGE TYPES ... cvvuiiiiieeii e e e e e e e e e eaaas 222
B.17.9. INAEXING ...uniiiieii e e 223
8.17.10. CONStraiNtS 0N RANGESuiiviieiiieiieee e ee e e e e e e e e e et eeaaaeeaes 223

ST T I T4 F= T T 1Y o1~ PN 225
8.19. ObJECt 1AENLITIEr TYPES .uuuiiii i e e e et e eaaaees 225
S22 o To TR =Y 0 T 1Y/ o= TN 228
ST I s = (o 0l 1N o1 228
9. FUNCLIONS @NO OPEIAIOIS .. .evvieeeieeei et e et e e e e e e e e e e e e e e e et e e et e e et e e st e eeaneeanaees 231
1o I oo o= @ o= = (] £ PP 231
9.2. Comparison FUNCtions and OPEraLOrScvuvuieerieeiiiieeiiiee e e e e e e e et e eaeeeens 232
9.3. Mathematical FUNCtioNS and OPEratorSc.uvveiuneeiiiieiiiie e e e e e 236
9.4. String FUNCtioNS and OPEIAtOrSuiiieneeiiieiie e e e e e e e e e e aaeeees 244
LS T o T g 112 1 TP TPPTRPPTRN 252

9.5. Binary String FUNctions and OPEraorsSuoveeuuieiiieiiiie e e e e e e eeaieesaneeees 255
9.6. Bit String FUNCLiONS and OPEratorScvvvuiiiiieiiie e e ee e e e e e e e e e e eeanns 259
A = (= g TN\ = (11 o P 261
O.7. 1. LEKE oot aaaan 261
9.7.2. SIM LAR TORegular EXPreSSiONScvuueiiiieriieeiiieeeiieeaeeeaieessineesnneeenns 262
9.7.3. POSIX RegQUIAr EXPIESSIONS ... ccvuiiiiieiiiieeiiieeeiiie et e et s e e et e e e e s e e e eannaas 264

9.8. Data Type Formatting FUNCLIONScovuiiiiiiiii e e 281
9.9. Date/Time FUNCLioNS and OPEratorScceuuiiiiiieiiieeeiie e e e e e e e e e e e eaaeeees 289
9.9.1. EXTRACT, dat € _Part .ouiiiiiiiiiiieeiii e e e e e aanas 297

e 72 - L A =T A ¥ [o o 301
0.9.3. dat @ DI N oo 302
9.9.4. AT TIME ZONE ...iiiiiiiiiii ettt e e e e et e e eeaens 303
9.9.5. CUITENt DAL/ TIME ..uuiiiieii ettt e e e 304
9.9.6. Delaying EXECULIONuuiiiei i eeie e e e e e e e e e e e e e e et e ea e eeas 305

9.10. ENUM SUPPOIt FUNCLIONSiieiiiii et e e e e e e e e e e e e e e eaens 306
9.11. Geometric FUNCiONS and OPEIAtOrSccvuueiiieeiiieeiiie e ee e e e e e e e e eanes 307
9.12. Network Address FUNCtions and OPEratorsc.ueeuuieiiieeiie e e e eeie e e 314
9.13. Text Search FUNCtiONS aNd OPEIELOrSuuueviieeiieeiieeeie e e e e e e et e e e eaaeees 318
.14, UUID FUNCLIONSiieiiiis ettt ettt e ettt e e et e e et e e et e e et s e e e et e e e e enanes 324
9.15. XML FUNCLIONS ... eiiiiiie ettt e e e e e e e et e e e et e e e e et e e e e eaen s 325
9.15.1. Producing XML CONENEccuuiiiiiiiiieeiieeeieee e e e e e e e e e e e e eanaeees 325
9.15.2. XML PradiCates ...ocvvueiiiii ettt e e e e e e s 329
9.15.3. ProcessiNg XML ...uuuiiiiiiieeii ettt 331
9.15.4. Mapping TableS t0 XMLccoviiiiiiii e 336

9.16. JSON FUNCLIONS aNd OPEIELOIScvvvieirieeiiieeeiee e e e e e e e e e e e e et e e et e e e e eennns 340
9.16.1. Processing and Creating JSON Dafal........c..oevvvuieiiiieiiiieeiiieeeiieeee e e e 340
9.16.2. The SQL/JSON Path LanQUAGEccvvvuieiiiiiieeeeiiieeeeeine e et e e et e e 353

9.17. Sequence Manipulation FUNCLIONSccouiiiiiiii e e e e 361

31

The SQL Language

9.18. Conditional EXPIrESSIONScuuueiiiieiiiieeiiieeii e et e e e e e e e e e e e e e e et e e aa e ean s 362
0.18. 1. CASE ...ttt e a e et aaae 362
9.18.2. COALESCEciiitiiieieii ettt ettt e et e e e et e e e e et e e e aatnnaeaee 364
O.18.3. NULLI F ettt e e et e et e e e et n e e e eraneeaees 364
9.18.4. GREATEST a@nd LEAST ...uiiiiiiiieeeee ettt 365

9.19. Array FUNCIONS and OPEIratOrSuiieneeeiiieiiieee e e e e e e e e e e e e et e e e e e e eanaees 365

9.20. Range/Multirange FUNCtions and OPEratorsvvvevueeiiieviiieeiieeeineeeeeeaeeeaenns 369

9.21. AQQregate FUNCLIONSuuiiii e e e e e e e e e e e eaes 375

9.22. WINAOW FUNCHIONSviieiiiiiieeeei et e e e e e e e et e e e et e e e e aaa s 383

SIS Yoo 01c AV o d (= 0] PN 385
S B S Y S TSP 385
S22 3 L N USSP 386
S22 R T\ | T\ ST 386
9.23.4. ANY/SOMEouiiiiiiiii ettt e e e et e e et e e e et a e 387
0,235, AL L ottt et a e e aaaes 387
9.23.6. SINGIE-ROW COMPAITSONceviiiiiieeiiee e e e e e e e e eaa s 388

9.24. Row and Array COMPANISONSceuuieiieerieeratieeeteeeteestneestneestnaeeaneestnaesrnaesnaaees 388
LS T N N PPN 388
2\ | T\ ST 388
9.24.3. ANY/SONE (BITAY) +eevvvtneeeetinieteeiiieeeeiiaeeeeti e eestiaeeease e resse e aesnaeresnnns 389
S I = - Y) OO SPR 389
9.24.5. Row Constructor COMPAIiSONeviuueeiinieiiiieeiieeeeineesieesaneessnaeeeneasnaaes 390
9.24.6. Composite TYPe COMPANISONuuverneeeiieiieeeieeeieeeeeeeeteeeeae e st aeeanaeaanaees 390

9.25. Set REtUrNING FUNCHIONS ... covuiiiiicii e e e e e e e e e et e e e aaa s 391

9.26. System Information FUNCtions and OPEratorsevevveeiiieiiiieeiiieeeieeeieeeaeeenes 395
9.26.1. Session INformation FUNCLIONSviiiiiiieeiiii e 395
9.26.2. Access Privilege Inquiry FUNCLIONSc..veiiiiiiiiiecce e 398
9.26.3. Schema Visibility Inquiry FUNCLIONScccoviiiiiiiiii e 401
9.26.4. System Catalog Information FUNCLIONScccviiiiiiiiiiiciie e, 402
9.26.5. Object Information and Addressing FUNCLIONScoevvviiiiiiieiiii e, 408
9.26.6. Comment INformation FUNCLIONScooviviiieiiiiiieeeeie e 409
9.26.7. Data Validity Checking FUNCLIONSeviiiiiiiiciie e, 410
9.26.8. Transaction ID and Snapshot Information FUNCLiONSccocceveiiieeiiennnn. 411
9.26.9. Committed Transaction Information FUNCLIONSuveiiiiiiiiiiiiiieeeiii e 413
9.26.10. Control Data FUNCLIONSuiiiiiiiiiciii e 413

9.27. System AdmIiNiStration FUNCLIONSccuuiiiiieiiiieeie e e e e e e e aens 415
9.27.1. Configuration Settings FUNCLIONSuiiiiiieiiiiecie e e e 415
9.27.2. Server SIgnaling FUNCLIONSoviiiiciiie e e s 416
9.27.3. Backup Control FUNCLIONSuiiiiieiii e e e e 418
9.27.4. Recovery Control FUNCLIONSccvviiiiii e 420
9.27.5. Snapshot Synchronization FUNCLIONSccuoveiiiieiiin e, 422
9.27.6. Replication Management FUNCLIONScouiveiiiiieii e 423
9.27.7. Database Object Management FUNCLIONSoveivieiiieiiin e e e e e 425
9.27.8. Index MantenanCe FUNCLIONSvoviiuiiieeiiiii e et et e e e e eeii e eens 428
9.27.9. Generic File ACCESS FUNCLIONSuuiiiiiiieeiii e 429
9.27.10. AdViSOry LOCK FUNCLIONScovuieiiiiiiiie e e e e e 431

LS 22 T I g o = gl oo 3 433

9.29. Event Trigger FUNCLIONScouuiiiiiiiiii e e e e e e e e e e e aen 434
9.29.1. Capturing Changes at Command ENdcccocoviieiiiniiiiiieiiecce e, 434
9.29.2. Processing Objects Dropped by a DDL Commandccocevvvevviieiiineeennnenn. 435
9.29.3. Handling a Table ReWrite EVENtcouviiiiiiii e 436

9.30. Statistics INfOrmMation FUNCLIONSiiiiiiiieiiiiii e e e e e e 437
9.30.1. INSPECEiNG MCV LiStS ..uiviiiiiiiieiii e e e e e e 437

O Y/ oL o017/ = T o PN 439

32

The SQL Language

O @ = oY1= Y PSP 439
O @ o< - o = TP 440
L0 R T o o o] o L P TPT 444
O R 0 IS (o] - o = 448
10.5. UNI ON, CASE, and Related CONSITUCESueviviiieiiiiie et e e et e e 449
10.6. SELECT OUIPUL COIUMNS ...vuiieiiiiiee ettt et e e et e e et e e e et e e e e ennas 451
T o (= =SSP 452
0 O oo [o PP 452
R 1 o L= G Y/ o === P 453
2 O e I = PP 453
L1.2.2. HASN .o 454
2 TR 11 PP 454
S 1 SO N 454
2 T 1 N 455
2 T = P 455

11.3. MUItICOIUMN INOEXES ...ttt e et e et e e e et eeeeaeaeeees 455
11.4. Indexes and ORDER BY ...iiuuiiiiiiiiiieiiiii ettt e et e et e et e e e 456
11.5. Combining MUItiple INAEXESciiiiiiiiece e 457
12.6. UNIQUE INAEXESiciiieiiie et e e e e e e e e e e e e e et e e et e e e e eaaaes 458
11.7. INAEXES ON EXPIrESSIONSivvieiiiieii e e e e e e e e e e e e e et e et e e et e e ean s 458
11.8. Partial INOEXES .. .ceevviieeeeii ettt e et e e e e ettt e e e et n e e e eranaaaaes 459
11.9. Index-Only Scans and Covering INAEXESc.uuiiviiiiiii e e 462
11.10. Operator Classes and Operator Famili€Scoevviiiiiiiiiiiiii e, 465
11.11. Indexes and COlAIONSuiiiieiieii e e s 467
11.12. EXxamining INAEX USAgEuucviiniiii ettt e e e et e et e e e aanes 467
2 T = S = o o PP 469
2 O 1 oo [0 o I PP 469
12.1.1. What 1S @ DOCUMENE? ..uuiieiiii ettt e e et e e e et e e e e e eeees 470
12.1.2. Basic Text MatChingooiiuiiiiiiciie e e 471
12.1.3. CONfIQUIBLIONSuuiiiieiieee e e e e e e e e e et e e e e e e e eaanas 473

12.2. TAhleS @A INOEXESeevveieieii ettt e e e e e e eeanns 473
12.2.1. Searching @ Tabl€ ...ovvuii e 473
12.2.2. Creating INAEXEScvvueiiieii e e e e e e e e e aeas 474

12.3. Controlling TEXE SEAICHiiiiicii e e e 475
12.3.1. ParSiNg DOCUMENESuiiiiiiii e cei e e e e e e e e e e e e e et e e e e eaens 475
12.3.2. ParSiNG QUETIES .. .cvuiiiiiieiiie e e e e e e e e e e e e e e e eaneees 476
12.3.3. Ranking Search RESUILSocvvuiiiiici e 479
12.3.4. Highlighting RESUILS ... ccvuiiiiiieei e e 482

12,4, AdAItioNal FEAIUMESeevvneeeiii e e e e e e 483
12.4.1. Manipulating DOCUMENESuuiiiiiieiiiie e e e e e e e e e e e e e aae e 483
12.4.2. Manipulating QUENIESciuieiii et e e e e e e aa s 484
12.4.3. Triggers for Automatic UpPdatesccevueeiiiiiiiieiiie e e e e, 487
12.4.4. Gathering DOCUMENE SEALISHCS ...vvuvvinieiieeii e e e e e e e 488

T T PSP 489
12.6. DICHONAITES ... eieeeii ettt ettt ettt et e et et r e e e et r e e e et e e e e et neeesaaaeeennen 491
12.6.1. SEOP WOIAS .. .ccvuiciii e et e e e e e e e e e e e e e et e e e eaaeees 492
12.6.2. SIMPIE DICHIONAIY .vuueiiiieiii e e e e e e e e e e e aanas 492
12.6.3. SYNONYM DICHONGNY ...covuiiiinieiiieii e ee e e e e e e e e e e e e e e e aan s 494
12.6.4. TheSaUrus DIiCtIONAIYcvvuniiiiieii e e e e e e eaa s 495
12.6.5. ISPEI DICHONAIY ...cvvniiiiieii e e e e e eaaas 498
12.6.6. SNOWDEIl DICHIONAIYcvveiiii e e e e aaas 500

12.7. Configuration EXAMPIEccuuiiiieiiii e e e e e e e e e e e e 501
12.8. Testing and Debugging Text Searchcovvviiiiii i, 502
12.8.1. Configuration TESLNGcvuueiiie i e e e e e e e e e e anes 502

33

The SQL Language

I o = g = oo 505
12.8.3. DICtioNary TESHNGuueiieeiiiieeii e e e e e e e e e e e e e e e e ean s 506

12.9. Preferred Index Types for Text SEarchooovviiiiii i 507
200 O T o 1= o [o] oo P 508
2 O R T 1] = o PP 511
G @0 o o1l = o [0y o 1 () 513
30 O 1 oo [0 1 o PP 513
13.2. TransaCtion I1SOIAHONcccuviieiiii e e 513
13.2.1. Read Commiitted 1SOlation LEVEluvviviiiiiiiiiiiieece e 514
13.2.2. Repeatable Read S0lation LEVEcccvviiiiiiiiii e 516
13.2.3. Serializable [S0lation LEVE!cceevviiieiii e 517

T (o[T I (T 519
13.3.1. TADIELEVE LOCKS ...evuniiiiiiieiiiii ettt 520
13.3.2. ROW-LEVEI LOCKS ...euvieiiiiiiee it e e e e s 522
13.3.3. PagE-LeVEl LOCKS ciiiiiii e e 523
13.3.4. DEAAIOCKS ... eeeieeieeii et ettt e s e e e et e s e e e e e e et e e e e e e 523
13.3.5. AGVISONY LOCKS ..uuiiiiicii et e e e e e e e e e aeas 524

13.4. Data Consistency Checks at the Application Levelcccooeviiiiiiiiiiiiciiceeeis 525
13.4.1. Enforcing Consistency with Serializable Transactionsccooeevviveeinnnnn. 525
13.4.2. Enforcing Consistency with Explicit Blocking LOckScccovviiiiiiiinnennnnn. 526

13.5. Seridization Faillure Handlingcoooiiiiiiiiiiii e e 527
ST O Y= SR 527
13.7. Locking and INAEXESccvuiiiiciie et e e e e e e e e e 528
= o (o0 1= 0 o= T T = 529
I I U = o T I A P 529
I o Y Y I AV 27 T o 529
14.2.2. EXPLAI N ANALYZEooviiiiii et e e e e e a e e avnanens 536
R O £ PSPPI 541

14.2. Statistics Used by the Planner ..o 542
14.2.1. SINgIE-ColUMN SEALISHICS . .evvueiiiieiiiie e e e e e e e e 542
A A 1= 00 (= IS - 1 P 544

14.3. Controlling the Planner with Explicit JO N ClaUSEScccvviiiiiiiiii e 547
14.4. Populating @ Databasecvviiiiiiiec e 549
14.4.1. Disable AULOCOMIMILvuuiiiiiiiee e e et e e e e et e eeeat e eeeee 549
A U L Y @ @ P 549
14.4.3. REMOVE INAEXES ...oevviieiiii et e et e e e 550
14.4.4. Remove Foreign Key CONSITaiNtScceuueeiiieiiiieiiie e ieeiiee e e s e eaneeaens 550
14.4.5. Increase mai nt enance_WOr K _MBmM.......coooiiiiiiii i, 550
14.4.6. Increase MAX_Wal _Si Z€ ..viiiiiiiii i 550
14.4.7. Disable WAL Archival and Streaming Replicationcc.ccoeveviiiiiiinennnnn. 550
14.4.8. RUN ANALYZE AFtEIWardScccevvvviiiiiiieeeeieeeiiiis s e e e eeeeeeiin s e e e e e eeeaannann s 551
14.4.9. Some Notes about PO AUMP ..o.vuiiiiiii e e e e e e e e 551

14.5. NON-DUrable SElINGSvuiieeiiiiei e e e e e e e e e eanas 551
ST = = O = o PP 553
15.1. How Parallel QUENY WOTKSoiiiiiiii i e e 553
15.2. When Can Parallel Query BE USEA?coviiiiiiiii e 554
15.3. Parallel PlanScccoiiiiiiiiii s e aaaaaae 555
15.3.1. Parallel SCaNSccvvvuiiiieeiiieiiie et e e 555
15.3.2. Parallel JOINSccvvviiiiei et e e 555
15.3.3. Parallel AQOregationociuiiiiiiieii e 556
15.3.4. Parallel APPENGcoviiiiii i 556
15.3.5. Parallel Plan TIPS ...ccuuuiieiiiiiii et e e e e e 557

15.4. Parallel SafElY ...oieeeieieeiii e aaaaa 557
15.4.1. Parallel Labeling for Functions and AQQregatesc.oovevvieiiiieiiiiieeiieeninnnns 557

34

Chapter 4. SQL Syntax

This chapter describesthe syntax of SQL. It formsthe foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, termi-
nated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, aliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not beif thereisno
ambiguity (which is generally only the case if a specia character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

Thisisasequence of three commands, one per line (although thisis not required; more than one command
can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a“SELECT”, an“UPDATE”", and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names’. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether atoken is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (). Subsequent charactersin an identifier or key word can be |etters,
underscores, digits (0-9), or dollar signs ($). Notethat dollar signsare not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard

35

SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAVEDATAL ENis 64 so the maximum identifier length
is63 bytes. If thislimit is problematic, it can be raised by changing the NAMEDATALEN constantinsr ¢/
i ncl ude/ pg_confi g_manual . h.

Key words and unquoted identifiers are case-insensitive. Therefore;

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

Thereisasecond kind of identifier: the delimited identifier or quoted identifier. It isformed by enclosing
an arbitrary sequence of characters in double-quotes (). A delimited identifier is aways an identifier,
never akey word. So" sel ect " could be used to refer to a column or table named “ select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where atable or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas ungquoted names are always folded to lower
case. For example, the identifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from thesethree and each other. (Thefolding of unquoted namesto lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to the standard. If
you want to write portabl e applicationsyou are advised to always quote aparticular name or never quoteit.)

A variant of quoted identifiersallowsincluding escaped Unicode charactersidentified by their code points.
Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spacesin between, for example U&" f 00" . (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or aternatively abacks ash followed by aplus sign followed by asix-digit hexadecimal
code point number. For example, the identifier " dat a" could be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

36

SQL Syntax

4.1.2.

U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, adouble quote, or awhitespace character. Note that the escape character iswritten in single quotes,
not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes thisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Constants

There are three kinds of implicitly-typed constants in PostgreSQL : strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL isan arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string'.Toincludeasingle-quote character within astring constant, write two adjacent
singlequotes, e.g.,' Di anne' ' s hor se' . Notethat thisisnot the same asadouble-quote character ().

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated asif the string had been written as one constant. For example:

SELECT ' f o0’
"bar';

isequivalent to:

SELECT ' f oobar"' ;

but:

SELECT ' f o0’ "bar';

isnot valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL isfollowing the stan-
dard.)

4.1.2.2. String Constants with C-Style Escapes

37

SQL Syntax

PostgreSQL also accepts“ escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
guote, e.g., E' f 0o' . (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
seguence, in which the combination of backslash and following character(s) represent a special bytevalue,
asshown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nterpretation

\'b backspace

\ f form feed

\n newline

\r carriage return

\t tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A-F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x = 0-9, A—F) 16 or 32-hit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ' , in addition
to the normal way of ' ' .

It isyour responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid charactersin the server character set encoding. A useful aternativeisto use Uni-
code escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then the server will
check that the character conversion is possible.

Caution

If the configuration parameter standard_conforming_stringsis of f , then PostgreSQL recognizes
backslash escapesin both regular and escape string constants. However, as of PostgreSQL 9.1, the
default ison, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f , but it is better to migrate away from using backslash escapes. If you need to use
a backslash escape to represent a specia character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters es
cape_string_warning and backslash_quote govern treatment of backslashesin string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spacesin between, for ex-

38

SQL Syntax

ampleU&' f 00" . (Notethat this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a
backslash followed by the four-digit hexadecimal code point number or alternatively abackslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ' dat a'
could be written as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, asingle
guote, a double quote, or a whitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makesthisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes, since each of those must be doubled. To
allow more readable queriesin such situations, PostgreSQL provides another way, called “dollar quoting”,
to write string constants. A dollar-quoted string constant consists of adollar sign ($), an optional “tag” of
zero or more characters, another dollar sign, an arbitrary sequence of characters that makes up the string
content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For example, here are
two different ways to specify the string “ Dianne's horse” using dollar quoting:

$$Di anne' s hor se$$
$SonmeTag$Di anne' s hor se$SoneTag$

Noticethat inside thedollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the

opening tag.

39

SQL Syntax

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
ismost commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ q[\t\r\n\vi\] g);
END;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi\] g representsadollar-quoted literal string[\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL . But since the sequence does
not match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect, but
$TAGHSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace; oth-
erwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Doallar quoting is not part of the SQL standard, but it is often a more convenient way to write compli-
cated string literals than the standard-compliant single quote syntax. It is particularly useful when repre-
senting string constants inside other constants, asis often needed in procedural function definitions. With
single-quote syntax, each backslash in the above example would have to be written as four backslashes,
which would be reduced to two backslashes in parsing the original string constant, and then to one when
the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed within bit-
string constantsare 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), eg., X 1FF' . Thisnotation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across linesin the sameway asregular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isone or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if oneis used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant, except for underscores, which

40

SQL Syntax

can be used for visual grouping as described below. Note that any leading plus or minussignisnot actually
considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

Additionally, non-decimal integer constants are accepted in these forms:

Oxhexdigits
Oooctdigits
Obbindigits

wherehexdi gi t s isoneor more hexadecimal digits(0-9, A-F), oct di gi t s isoneor moreoctal digits
(0-7), and bi ndi gi t s isone or more binary digits (0 or 1). Hexadecimal digits and the radix prefixes
can be in upper or lower case. Note that only integers can have non-decimal forms, not numbers with
fractional parts.

These are some examples of valid non-decimal integer constants:

0b100101
0B10011001
00273
00755
Ox42f
OXFFFF

For visual grouping, underscores can be inserted between digits. These have no further effect on the value
of the constant. For example:

1_500_000_000
0b10001000_00000000
0o_1 755
OXFFFF_FFFF

1.618 034

Underscores are not allowed at the start or end of a numeric constant or a group of digits (that is, imme-
diately before or after the decimal point or the exponent marker), and more than one underscore in arow
is not allowed.

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseit is presumed to betypebi gi nt if
itsvaluefitsin type bi gi nt (64 bits); otherwise it istaken to betype nuner i ¢. Constants that contain
decimal points and/or exponents are always initially presumed to be type nuner i c.

Theinitially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending

41

SQL Syntax

on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force anumeric value to be treated astyper eal (f | oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just specia cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

4.1.3.

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

"string' ::type

CAST ("string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. Theresult is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the

type the constant must be (for example, when it is assigned directly to a table column), in which case it
isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not all type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype ' string'
syntax can only be used to specify the type of asimple literal constant. Another restriction on thet ype
"string' syntaxisthat it does not work for array types; use: : or CAST() to specify the type of an
array constant.

The CAST() syntax conformsto SQL. Thet ype ' string' syntax isageneralization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL alows it for al types. The syntax
with : @ ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-F<>=~1 @#B & | ?

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or - , unless the name also contains at least one
of these characters:

42

SQL Syntax

4.1.4.

4.1.5.

~1@#%"& | ?

For example, @ isan allowed operator name, but * - isnot. Thisrestriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usually need to separate adjacent opera-
torswith spacesto avoid ambiguity. For example, if you have defined a prefix operator named @ you can-
not write X* @Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator names not one.

Special Characters

Some charactersthat are not alphanumeric have aspecial meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

+ A dollar sign ($) followed by digitsis used to represent a positional parameter in the body of afunction
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

» Parentheses(()) have their usual meaning to group expressions and enforce precedence. |n some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

e Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» Thesemicolon (;) terminates an SQL command. It cannot appear anywhere within acommand, except
within a string constant or quoted identifier.

» Thecolon (:) isused to select “dlices’ from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contextsto denote all thefields of atable row or compositevalue. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

e Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
ling, e.g.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment

* with nesting: /* nested block coment */
*/

43

SQL Syntax

4.1.6.

where the comment beginswith/ * and extends to the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have the
same precedence and are | eft-associative. The precedence and associativity of the operatorsis hard-wired
into the parser. Add parentheses if you want an expression with multiple operators to be parsed in some
other way than what the precedence rulesimply.

Table4.2. Operator Precedence (highest to lowest)

Oper ator/Element Associativity Description
left table/column name separator

s left PostgreSQL -style typecast

[1] left array element selection

+ - right unary plus, unary minus

COLLATE left collation selection

AT left AT TI ME ZONE

n left exponentiation

*| % left multiplication, division, modulo

+ - left addition, subtraction

(any other operator) left all other native and user-defined opera-
tors

BETWEENI NLI KEI LI KESI M LAR range containment, set membership,
string matching

<>=<=>=<> comparison operators

I ST SNULL NOTNULL IS TRUE,I'S FALSE, 1S NULL,IS
DI STI NCT FROM etc.

NOT right logical negation

AND left logical conjunction

R left logical digunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a“+" operator for some custom data
type it will have the same precedence as the built-in “+" operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other oper-
ator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

44

SQL Syntax

Note

PostgreSQL versions before 9.5 used dlightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETVEEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changeswill result in no behavioral change, or perhapsin “no such
operator” failures which can be resolved by adding parentheses. However there are corner cases
in which a query might change behavior without any parsing error being reported.

4.2. Value Expressions

Vaue expressions are used in avariety of contexts, such asin the target list of the SELECT command, as
new columnvaluesin| NSERT or UPDATE, or in search conditionsin anumber of commands. Theresult of
avalueexpressionissometimes called ascalar, to distinguish it from theresult of atable expression (which
is atable). Value expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax allows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:

+ A constant or literal value

* A column reference

» A positiona parameter reference, in the body of afunction definition or prepared statement
A subscripted expression

» A field selection expression

» An operator invocation

* A function call

* An aggregate expression

* A window function call

* A typecast

» A collation expression

* A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any genera syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

45

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

Column References

A column can be referenced in the form:

correl ati on. col utTmnane

correl ati on isthe name of atable (possibly qualified with a schema name), or an dlias for a table
defined by means of a FROMclause. The correl ation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused toindicate avaluethat is supplied externally to an SQL statement.
Parametersare used in SQL function definitionsand in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:
CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE narme = $1 $$
LANGUACGE SQ.;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields avalue of an array type, then a specific element of the array value can be extracted
by writing
expressi on[subscri pt]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expressi on[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

46

SQL Syntax

4.2.4.

4.2.5.

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col um[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dname

In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positional parameter. For example:

nmyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, aqualified column referenceis actually just a special case of the field selection syntax.) Animpor-
tant special caseis extracting afield from atable column that is of a composite type:

(conposi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not a table name, or
that myt abl e is atable name not a schema name in the second case.

You can ask for al fields of acomposite value by writing . *:

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are two possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or isa qualified operator name in the form:
OPERATOR(schenm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

47

SQL Syntax

4.2.6.

4.2.7.

Function Calls

The syntax for afunction call isthe name of afunction (possibly qualified with a schemaname), followed
by its argument list enclosed in parentheses:
function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notationscol (tabl e) andt abl e. col areinterchangeable. Thisbehaviorisnot SQL -standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields’.
For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate nane ([expression [, ...]]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname) and
expressi on isany value expression that does not itself contain an aggregate expression or a window
function call. The optional or der _by cl ause andfi |l ter_cl ause aredescribed below.

Thefirst form of aggregate expression invokes the aggregate once for each input row. The second formis
the same asthefirst, since ALL isthe default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The

48

SQL Syntax

fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generaly only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yieldsthetotal number of input rows; count (f 1) yieldsthe number of input
rowsinwhichf 1 isnon-null, sincecount ignoresnulls;andcount (di sti nct f1) yieldsthenumber
of distinct non-null values of f 1.

Ordinarily, theinput rows arefed to the aggregate function in an unspecified order. In many casesthis does
not matter; for example, m n produces the same result no matter what order it receivesthe inputsin. How-
ever, some aggregate functions (such asar r ay_agg and st ri ng_agg) produce results that depend on
the ordering of the input rows. When using such an aggregate, the optional or der _by_cl ause can be
used to specify the desired ordering. The or der _by_cl ause has the same syntax as for a query-level
ORDER BY clause, asdescribed in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT is specified in addition to an or der _by_cl ause, then al the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that isnot included
inthe DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when order-
ing the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an or der _by_cl ause is
required, usually because the aggregate's computation isonly sensiblein terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the or der _by cl ause iswritteninside W THIN GROUP (.. .), asshown
inthefinal syntax alternative above. The expressionsintheor der by cl ause are evaluated once per
input row just like regular aggregate arguments, sorted as per the or der _by _cl ause's requirements,
and fed to the aggregate function as input arguments. (Thisis unlike the case for anon-W THI N GROUP

49

SQL Syntax

4.2.8.

order by _cl ause, which is not treated as argument(s) to the aggregate function.) The argument ex-
pressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from the
aggregated argumentslisted intheor der _by_cl ause. Unlike regular aggregate arguments, direct ar-
guments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*) . (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY inconme) FROM
househol ds;
percentile_cont

which obtains the 50th percentile, or median, value of the i ncome column from table househol ds.
Here, 0. 5 isadirect argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FI LTER s specified, then only the input rows for which thefi | t er _cl ause evaluatesto true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the aggregate
isnormally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(andfil ter_cl ause if any) contain only outer-level variables: the aggregate then bel ongs to the near-
est such outer level, and is evaluated over the rows of that query. The aggregate expression as awholeis
then an outer reference for the subquery it appearsin, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVI NG clause applies with respect to
the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the selected

50

SQL Syntax

rows into a single output row — each row remains separate in the query output. However the window
function has accessto al the rows that would be part of the current row's group according to the grouping
specification (PARTI TI ON BY list) of the window function call. The syntax of a window function call
is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter _clause)] OVER (wi ndow definition)
function nanme (*) [FILTER (WHERE filter_clause)]
OVER w ndow_nane
function nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
| LAST} 1 [, ...11

[frane_cl ause]

The optiona f r ane_cl ause can be one of

{ RANGCE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wheref rame_start andfr ame_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

andf r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nane is areference to a named window specification defined in the query's W NDOWCclause.
Alternatively, afull wi ndow_defi ni ti on can be given within parentheses, using the same syntax as
for defining anamed window in the W NDOWclause; see the SELECT reference page for details. It'sworth
pointing out that OVER wnane is not exactly equivalent to OVER (wnane ...); thelatter implies
copying and modifying the window definition, and will berejected if the referenced window specification
includes a frame clause.

51

SQL Syntax

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI Tl ON BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

Thefranme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runsfromtheframe_start tothefrane_end. If
frame_end is omitted, the end defaults to CURRENT ROW

A frane_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the
partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends with
the last row of the partition.

In RANGE or GROUPS mode, af r ame_st art of CURRENT ROWmeansthe frame startswith the current
row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the current row),
while af r ame_end of CURRENT ROWmMmeans the frame ends with the current row's last peer row. In
ROWS5 mode, CURRENT ROWsimply means the current row.

Inthe of f set PRECEDI NGand of f set FOLLOW NGframe options, the of f set must be an expres-
sion not containing any variables, aggregate functions, or window functions. The meaning of the of f set
depends on the frame mode:

e In ROWE mode, the of f set must yield anon-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

* InGROUPS mode, the of f set again must yield anon-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row's peer
group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering. (There must
be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the of f set expression varies
depending on the data type of the ordering column. For numeric ordering columnsit istypically of the
same type as the ordering column, but for datetime ordering columnsitisani nt er val . For example,
if the ordering columnisof typedat e ort i mest anp, onecould write RANGE BETVEEN ' 1 day'
PRECEDI NG AND ' 10 days' FCOLLOW NG Theof f set isstill required to be non-null and non-
negative, though the meaning of “non-negative’ depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than el sewhere.

Notice that in both ROAS and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NG are equivalent to
CURRENT ROW Thisnormally holdsin RANGE mode aswell, for an appropriate data-type-specific mean-
ing of “zero”.

Thef r anme_excl usi on option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the frame, but not

52

SQL Syntax

4.2.9.

the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE BE-
TWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame to
be all rows from the partition start up through the current row's last ORDER BY peer. Without ORDER
BY, this means all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f ranme_end cannot be
UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list of
frame_start andfrane_end optionsthanthef rane_st art choice does— for example RANGE
BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot alowed. But, for example, RONS BE-
TWEEN 7 PRECEDI NG AND 8 PRECEDI NGisalowed, even though it would never select any rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
aFl LTER clause.

The built-in window functions are described in Table 9.64. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TION BY x ORDER BY y). Theasterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conformsto SQL; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shownin Section 4.1.2.7. A cast applied to an unadorned
string literal representsthe initial assignment of atypeto aliteral constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity asto the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” inthe system catal ogs. Other casts must beinvoked with explicit casting syntax. Thisrestriction
isintended to prevent surprising conversions from being applied silently.

It is also possible to specify atype cast using afunction-like syntax:

53

SQL Syntax

typenane (expression)

However, this only works for types whose names are al so valid as function names. For example, doubl e
preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the namesi nt er val ,
time,andti mest anmp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax isin fact just afunction call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obvioudly, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overridesthe collation of an expression. It isappended to the expressionit appliesto:

expr COLLATE collation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column isinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that has local e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Notethat in thelatter case the COLLATE clauseis attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis attached to,
becausethe collation that isapplied by the operator or function isderived by considering all arguments, and
an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 24.2.)
Thus, this gives the same result as the previous example;

SELECT * FROM tbl WHERE a COLLATE "C' > 'foo';

But thisisan error:

SQL Syntax

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
type bool ean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROMcities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individualy. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

55

SQL Syntax

SELECT ARRAY[ARRAY[1, 2], ARRAY[3, 4]];
array

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3,4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
| NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7, 8]])

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
array

{{{1,2},{3,4}},{{5,6},{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must ex-
plicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
iswritten with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5, 10}}
(1 row

56

SQL Syntax

The subquery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case al the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally aright parenthesis. For example:

SELECT RON1,2.5,'this is a test');
The key word ROWis optional when there is more than one expression in the list.
A row constructor can include the syntax r owal ue. *, which will be expanded to alist of the el ements

of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see Sec-
tion 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWt.*, 42) created atwo-field row whose first field was another row value. The new be-
havior is usually more useful. If you need the old behavior of nested row values, write the inner
row value without . *, for instance RONt, 42).

By default, the value created by a ROWexpression is of an anonymous record type. If necessary, it can be
cast to anamed composite type— either the row type of atable, or acomposite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nytabl e) RETURNS int AS ' SELECT $1.f1' LANGUAGE
SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

57

SQL Syntax

CREATE TYPE nyrowype AS (f1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROW11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
valuesortestarow withI S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROM table; -- detect all-null rows

For more detail see Section 9.24. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressionsis not defined. In particular, theinputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then somef unc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT sonefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions

58

SQL Syntax

(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For exam-
ple, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > O THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 38.7, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

islikely to result in a division-by-zero failure due to the planner trying to simplify the constant subexpres-
sion, even if every row inthetablehasx > 0 so that the EL SE arm would never be entered at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN ni n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() and avg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of m n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functionsthat have alarge number of parameters, sinceit

59

SQL Syntax

4.3.1.

makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parametersthat have default values given in the function declaration need not be written
inthecall at all. But thisis particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function def-
inition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is
one optional parameter upper case which defaultstof al se. Thea and b inputs will be concatenated,
and forced to either upper or lower case depending on the upper case parameter. The remaining details
of this function definition are not important here (see Chapter 38 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
exampleis:

SELECT concat _| ower _or_upper('Hello', '"Wrld', true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified ast r ue.
Another exampleis:

SELECT concat _| ower _or_upper (' Hello', "Wrld);
concat _| ower _or _upper

hell o worl d

(1 row

60

SQL Syntax

4.3.2.

4.3.3.

Here, theupper case parameter is omitted, so it receivesits default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted fromright to left solong asthey have defaults.

Using Named Notation

In named notation, each argument's nameis specified using => to separateit from the argument expression.
For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o worl d

(1 row

Again, the argument upper case was omitted so it isset to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or_upper(a => "Hello', b => "Wrld', uppercase =>
true);
concat _| ower _or _upper

HELLO WORLD
(1 row

SELECT concat _| ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat | ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat _| ower _or_upper(' Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

61

SQL Syntax

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

62

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In arelational data-
base, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how tables
are created and modified and what features are available to control what datais stored in the tables. Sub-
sequently, we discuss how tables can be organized into schemas, and how privileges can be assigned to
tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance, table
partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like atable on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much datais stored at a given moment. SQL does not make any guarantees about the order
of the rows in atable. When atable is read, the rows will appear in an unspecified order, unless sorting
isexplicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in atable. This is a consequence of
the mathematical model that underlies SQL but is usualy not desirable. Later in this chapter we will see
how to deal with thisissue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept amost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used datatypesarei nt eger for whole numbers, nu-
nmer i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, t i me for time-of-
day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first_tabl e with two columns. The first column is named
first_col um and hasadatatype of t ext ; the second column has the name second_col um and
thetypei nt eger . The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of datathey store. So let's ook at a more realistic example:

63

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tablesand columns. For instance, thereisachoice of using singular or plural nounsfor table names,
both of which are favored by some theorist or other.

Thereisalimit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusua and
often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE mny _first _table;
DROP TABLE products;

Attempting to drop atable that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columnswill befilled with their respective default values. A datamanipulation
command can al so request explicitly that acolumn be set to its default value, without having to know what
that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:
CREATE TABLE products (

product _no i nteger,
name text,

Data Definition

price numeric DEFAULT 9. 99
)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for at i mest anp column to have a default of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product no i nteger DEFAULT nextval (' products_product _no_seq'),

)

where the next val () function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columnswhat aview isfor tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage asif it werea
normal column. A virtual generated column occupies no storage and is computed when it isread. Thus, a
virtual generated columnissimilar to aview and astored generated columnissimilar toamaterialized view
(except that it is always updated automatically). PostgreSQL currently implements only stored generated
columns.

Tocreate agenerated column, usethe GENERATED ALWAYS AS clausein CREATE TABLE, for example:

CREATE TABLE peopl e (

hei ght _cm nureri c,
hei ght _i n numeri ¢ GENERATED ALWAYS AS (height_cm/ 2.54) STORED
)

The keyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot be
specified for agenerated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default is
evaluated once when therow isfirst inserted if no other value was provided; agenerated column is updated
whenever the row changes and cannot be overridden. A column default may not refer to other columns of
the table; a generation expression would normally do so. A column default can use volatile functions, for
exampler andon{) or functionsreferring to the current time; thisis not allowed for generated columns.

65

Data Definition

Several restrictions apply to the definition of generated columns and tables involving generated columns:

The generation expression can only use immutable functions and cannot use subqueries or reference
anything other than the current row in any way.

A generation expression cannot reference another generated column.

A generation expression cannot reference a system column, except t abl eoi d.

A generated column cannot have a column default or an identity definition.

A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance and partitioning:

If aparent column isagenerated column, its child column must also be agenerated column; however,
the child column can have adifferent generation expression. The generation expression that isactually
applied during insert or update of arow is the one associated with the table that the row is physically
in. (Thisis unlike the behavior for column defaults: for those, the default value associated with the
table named in the query applies.)

If aparent column is not a generated column, its child column must not be generated either.

For inherited tables, if you write a child column definition without any GENERATED clause in CRE-
ATE TABLE ... | NHERI TS, thenits GENERATED clause will automatically be copied from the
parent. ALTER TABLE ... | NHERI T will insist that parent and child columns already match as
to generation status, but it will not require their generation expressions to match.

Similarly for partitioned tables, if you write a child column definition without any GENERATED
clausein CREATE TABLE ... PARTI TI ON OF, thenits GENERATED clause will automatically
be copied from the parent. ALTER TABLE ... ATTACH PARTI TI ONwill insist that parent and
child columns already match asto generation status, but it will not requiretheir generation expressions
to match.

In case of multiple inheritance, if one parent column is a generated column, then all parent columns
must be generated columns. If they do not all have the same generation expression, then the desired
expression for the child must be specified explicitly.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So, it
is possible to arrange it so that a particular role can read from a generated column but not from the
underlying base columns.

Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints

Datatypesare away to limit the kind of datathat can be stored in atable. For many applications, however,
the constraint they provideistoo coarse. For example, acolumn containing aproduct price should probably
only accept positive values. But thereisno standard data type that accepts only positive numbers. Another

66

Data Definition

5.4.1.

issueisthat you might want to constrain column datawith respect to other columns or rows. For example,
in atable containing product information, there should be only one row for each product number.

To that end, SQL alows you to define constraints on columns and tables. Constraints give you as much
control over the datain your tables as you wish. If a user attempts to store data in a column that would
violate aconstraint, an error israised. Thisapplieseven if the value came from the default value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

Asyou see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store aregular price and adiscounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column def-
initions and these constraint definitions can be listed in mixed order.

67

Data Definition

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0 AND price > discounted_price)

)
It's amatter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted _price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null valuesin the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work
in simple tests, it cannot guarantee that the database will not reach a state in which the constraint

68

Data Definition

condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and restore to fail. The restore could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints to express cross-
row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a contin-
uously-maintained consistency guarantee, a custom trigger can be used to implement that. (This
approach avoids the dump/restore problem because pg_dump does not reinstall triggers until after
restoring data, so that the check will not be enforced during a dump/restore.)

Note

PostgreSQL assumes that CHECK constraints conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table dataisreally a special case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined functionin a
CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not notice if there are rowsin the table that now violate the CHECK constraint. That
would cause a subsequent database dump and restore to fail. The recommended way to handle
such achangeisto drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (

)

product no i nteger NOT NULL,
name text NOT NULL,
price nunmeric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (col utm_nanme |'S NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

)

product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

69

Data Definition

5.4.3.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all therowsin thetable. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)

when written as atable constraint.
To define aunique constraint for a group of columns, write it as atable constraint with the column names

separated by commas:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)

70

Data Definition

5.4.4.

)

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT rust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. By default, two null values are not considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rowsthat contain anull valuein at least one of the constrained columns. This behavior can be changed by
adding the clause NULLS NOT DI STI NCT, like

CREATE TABLE products (
product _no integer UNI QUE NULLS NOT DI STI NCT
name text,
price nuneric

)

or

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
UNI QUE NULLS NOT DI STI NCT (product _no)

)

The default behavior can be specified explicitly using NULLS DI STI NCT. The default null treatment in
unique constraints is implementation-defined according to the SQL standard, and other implementations
have a different behavior. So be careful when developing applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rowsin thetable. Thisrequires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,

71

Data Definition

5.4.5.

price nunmeric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can beidentified asthe primary key.) Relational
database theory dictatesthat every table must have aprimary key. Thisruleisnot enforced by PostgreSQL,
but it isusually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of atable to be
able to identify rows uniquely. There are aso various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

L et's al so assume you have atable storing orders of those products. We want to ensure that the orderstable
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (

72

Data Definition

order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in the
products table.

We say that in this situation the orderstabl e isthe referencing table and the productstable is the referenced
table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qgquantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c¢) REFERENCES ot her_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimesit is useful for the “ other table” of aforeign key constraint to be the sametable; thisis called a
self-referential foreign key. For example, if you want rows of atable to represent nodes of atree structure,
you could write

CREATE TABLE tree (
node_i d integer PRI MARY KEY,
parent _id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, whilenon-NULL par ent _i d entries would be con-
strained to reference valid rows of the table.

A table can have more than one foreign key constraint. Thisis used to implement many-to-many relation-
ships between tables. Say you have tables about products and orders, but now you want to allow one order

73

Data Definition

to contain possibly many products (which the structure above did not allow). You could use this table
structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products,
order_id integer REFERENCES orders,
qguantity integer,
PRI MARY KEY (product_no, order _id)

);

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
aproduct is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have afew options:

 Disalow deleting areferenced product
» Delete the orders aswell
» Something else?

Toillustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (viaor der _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,

74

Data Definition

PRI MARY KEY (product_no, order_id)
)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of a
referenced row. NO ACTI ONmeansthat if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choicesis that NO ACTI ON alows the check to be deferred until later in the transac-
tion, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is deleted, row(s)
referencing it should be automatically deleted as well. There are two other options: SET NULL and SET
DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or their de-
fault values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifies SET DEFAULT but the default value would
not satisfy the foreign key constraint, the operation will fail.

The appropriate choice of ON DELETE action depends on what kinds of objects the related tables repre-
sent. When the referencing table represents something that is a component of what is represented by the
referenced table and cannot exist independently, then CASCADE could be appropriate. If the two tables
represent independent objects, then RESTRI CT or NO ACTI ON is more appropriate; an application that
actually wants to delete both objects would then have to be explicit about this and run two delete com-
mands. In the above example, order items are part of an order, and it is convenient if they are deleted
automatically if an order is deleted. But products and orders are different things, and so making adeletion
of a product automatically cause the deletion of some order items could be considered problematic. The
actionsSET NULL or SET DEFAULT can be appropriateif aforeign-key relationship represents optional
information. For example, if the productstable contained areferenceto aproduct manager, and the product
manager entry gets del eted, then setting the product's product manager to null or adefault might be useful.

The actions SET NULL and SET DEFAULT can take a column list to specify which columns to set.
Normally, all columns of the foreign-key constraint are set; setting only a subset is useful in some special
cases. Consider the following example:

CREATE TABLE tenants (
tenant _id i nteger PRI MARY KEY

)

CREATE TABLE users (
tenant i d i nteger REFERENCES tenants ON DELETE CASCADE,
user _id integer NOT NULL,
PRI MARY KEY (tenant id, user_id)

)

CREATE TABLE posts (

tenant i d i nteger REFERENCES tenants ON DELETE CASCADE,

post _id integer NOT NULL,

aut hor _id integer,

PRI MARY KEY (tenant id, post_id),

FOREI GN KEY (tenant id, author_id) REFERENCES users ON DELETE SET
NULL (aut hor _id)
)

Without the specification of the column, the foreign key would also set the columnt enant _i d to null,
but that column is still required as part of the primary key.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same, except that column lists cannot be specified for

75

Data Definition

5.4.6.

SET NULL and SET DEFAULT. In this case, CASCADE means that the updated values of the referenced
column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
arenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail aMATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint, or are
columns from a non-partial unique index. This means that the referenced columns aways have an index
to allow efficient lookups on whether a referencing row has a match. Since a DELETE of arow from the
referenced table or an UPDATE of areferenced column will require ascan of the referencing table for rows
matching the old value, it is often a good idea to index the referencing columns too. Because this is not
always needed, and there are many choices available on how to index, the declaration of a foreign key
constraint does not automatically create an index on the referencing columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the nameisakey word or not; quoting a name will not allow you to escape these restrictions.) Y ou do not
really need to be concerned about these columns; just know they exist.

t abl eoi d
The OID of the table containing this row. This column is particularly handy for queries that select
from partitioned tables (see Section 5.11) or inheritance hierarchies (see Section 5.10), since without
it, it'sdifficult to tell which individual table arow came from. Thet abl eoi d can be joined against

theoi d column of pg_cl ass to obtain the table name.

Xm n

76

Data Definition

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of arow; each update of arow creates a new row version for the same logical row.)

cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possiblefor this column to be nonzero in avisiblerow version. That usually indicates that the del eting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although thect i d can be used to
locate the row version very quickly, arow'sct i d will changeif it is updated or moved by VACUUM
FULL. Therefore ct i d is useless as a long-term row identifier. A primary key should be used to
identify logical rows.

Transaction identifiers are a so 32-bit quantities. In along-lived database it is possible for transaction I1Ds
to wrap around. Thisis not afatal problem given appropriate maintenance procedures; see Chapter 25 for
details. It is unwise, however, to depend on the uniqueness of transaction 1Ds over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates ahard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is already
filled with data, or if thetableisreferenced by other database objects (for instance aforeign key constraint).
Therefore PostgreSQL provides afamily of commands to make modificationsto existing tables. Note that
thisis conceptually distinct from altering the data contained in the table: here we are interested in atering
the definition, or structure, of the table.

You can:

* Add columns

* Remove columns

« Add constraints

* Remove congtraints

e Change default values

» Change column data types
» Rename columns

* Renametables

77

Data Definition

5.6.1.

5.6.2.

All these actions are performed using the ALTER TABLE command, whose reference page contains de-
tails beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN descri ption text;

Thenew columnisinitially filled withwhatever default valueisgiven (null if you don't specify aDEFAULT
clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. |nstead,
the default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default valueisvolatile (e.g., cl ock_ti mest anp()) each row will need to be
updated with the value calculated at thetime ALTER TABLE is executed. To avoid a potentially
lengthy update operation, particularly if you intend tofill the column with mostly nondefault values
anyway, it may be preferable to add the column with no default, insert the correct values using
UPDATE, and then add any desired default as described below.

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUWN description text CHECK (description <>
)
In fact all the options that can be applied to a column description in CREATE TABLE can be used here.

Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. Y ou can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUWN descri pti on CASCADE;

See Section 5.14 for a description of the general mechanism behind this,

78

Data Definition

5.6.3.

5.6.4.

5.6.5.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_nane UNI QUE (product no);

ALTER TABLE products ADD FOREI GN KEY (product group_id) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane can
be helpful here; other interfaces might also provide away to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to makeit avalid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An exampleisthat aforeign key constraint depends on aunique or primary key constraint
on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop anot null constraint use:

ALTER TABLE products ALTER COLUWN product _no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:

79

Data Definition

5.6.6.

5.6.7.

5.6.8.

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

Thiswill succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It's often best to drop any constraints on the column before atering its type, and then add back suitably
modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product_no TO product _numnber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAMVE TO iternmns;

5.7. Privileges

When an object iscreated, it isassigned an owner. The owner isnormally therolethat executed the creation
statement. For most kinds of objects, theinitial stateisthat only the owner (or a superuser) can do anything
with the object. To allow other rolesto useit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REFER-
ENCES, TRI GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET and ALTER SYSTEM
The privileges applicable to a particular object vary depending on the object’s type (table, function, etc.).
More detail about the meanings of these privileges appears below. The following sections and chapters
will also show you how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 22.3.)

An object can be assigned to anew owner with an ALTER command of the appropriate kind for the object,
for example

80

Data Definition

ALTER TABLE t abl e_name OMER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the object
(or inherit the privileges of the owning role) and ableto SET RCOLE to the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and ac-
count s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 22.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
itispossibleto grant aprivilege“with grant option”, which givestherecipient theright to grant it inturnto
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is also needed to reference existing
column valuesin UPDATE, DELETE, or MERGE. For sequences, this privilege also allows use of the
cur rval function. For large objects, this privilege allows the object to be read.

| NSERT

Allows | NSERT of anew row into atable, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the | NSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM

UPDATE

Allows UPDATE of any column, or specific column(s), of atable, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR
UPDATE and SELECT ... FOR SHARE aso require this privilege on at least one column, in
addition to the SELECT privilege. For sequences, this privilege alows use of the next val and
set val functions. For large objects, this privilege allows writing or truncating the object.

81

Data Definition

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publications to be created within the database, and alows
trusted extensions to be installed within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.
CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictions imposed by pg_hba. conf).

TEMPORARY
Allows temporary tablesto be created while using the database.
EXECUTE

Allows calling afunction or procedure, including use of any operators that are implemented on top of
the function. Thisisthe only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, alows use of the language for the creation of functions in that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own priv-
ilege requirements are also met). Essentially this allows the grantee to “look up” objects within the
schema. Without this permission, it is still possible to see the object names, e.g., by querying system
catalogs. Also, after revoking this permission, existing sessions might have statements that have pre-
viously performed this lookup, so thisis not acompletely secure way to prevent object access.

For sequences, alows use of thecur r val and next val functions.

82

Data Definition

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control all “usage” of the type, such asvalues of the
type appearing in queries. It only prevents objects from being created that depend on the type. The
main purpose of this privilege is controlling which users can create dependencies on a type, which
could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create, alter,
or drop their own user mappings associated with that server.

SET

Allows a server configuration parameter to be set to a new value within the current session. (While
this privilege can be granted on any parameter, it is meaningless except for parameters that would
normally require superuser privilege to set.)

ALTER SYSTEM

Allows aserver configuration parameter to be configured to anew value using the ALTER SY STEM
command.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on sometypes of objectsto PUBLI Chy default when the objects are created.
No privilegesaregranted to PUBL | Cby default on tables, table columns, sequences, foreign datawrappers,
foreign servers, large objects, schemas, tabl espaces, or configuration parameters. For other types of objects,
the default privileges granted to PUBLI C are as follows; CONNECT and TEMPORARY (create temporary
tables) privileges for databases, EXECUTE privilege for functions and procedures; and USACE privilege
for languages and data types (including domains). The object owner can, of course, REVOKE both default
and expressly granted privileges. (For maximum security, issue the REVOKE in the same transaction that
creates the object; then there is no window in which another user can use the object.) Also, these default
privilege settings can be overridden using the ALTER DEFAULT PRIVILEGES command.

Table5.1 showsthe one-letter abbreviationsthat are used for these privilege typesin ACL (Access Control
List) values. Y ou will see these letters in the output of the psgl commands listed below, or when looking
at ACL columns of system catal ogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and ta-
ble-like objects), table column

| NSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table col-
umn

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEVA, TABLESPACE

CONNECT c DATABASE

83

Data Definition

Privilege Abbreviation Applicable Object Types

TEMPORARY T DATABASE

EXECUTE X FUNCTI ON, PROCEDURE

USAGE U DOVAI N, FOREI GN DATA WRAPPER,
FOREI GN SERVER, LANGUAGE, SCHEMA, SE-
QUENCE, TYPE

SET s PARAMVETER

ALTER SYSTEM A PARAMVETER

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also showsthe psgl command that can be used to examine privilege settings for each object type.

Table 5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psgl Command
Privileges

DATABASE CTc Tc \

DOMVAI N U U \ dD+

FUNCTI ON or PROCEDURE X X \ df +

FORElI GN DATA WRAPPER u none \ dew+

FORElI GN SERVER U none \ des+

LANGUAGE U U \dL+

LARGE OBJECT rw none \dl +

PARAMETER sA none \ dconfi g+

SCHEMA uc none \dn+

SEQUENCE rwJ none \dp

TABLE (and table-like objects) ar wdDxt none \dp

Table column ar wx none \dp

TABLESPACE C none \ db+

TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as alist of acl i t ementries,
each having the format:

grant ee=privil ege-abbreviation[*].../grantor

Eachacl i t emlistsall the permissions of one grantee that have been granted by a particular grantor. Spe-
cific privileges are represented by one-letter abbreviationsfrom Table 5.1, with* appended if the privilege
was granted with grant option. For example, cal vi n=r *w/ hobbes specifiesthat therolecal vi n has
the privilege SELECT (r) with grant option (*) as well as the non-grantable privilege UPDATE (w), both
granted by therolehobbes. If cal vi n also has some privileges on the same object granted by adifferent
grantor, those would appear asaseparateacl i t ementry. An empty granteefieldinanacl i t emstands
for PUBLI C.

Asan example, suppose that user i r i amcreatestablemyt abl e and does:

Data Definition

GRANT SELECT ON nytabl e TO PUBLI C,
GRANT SELECT, UPDATE, |NSERT ON nytable TO admi n;
GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schema | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- T
oo e e e e oo oo - S
public | nytable | table | mriamrarwdDxt/mriam+| col 1:

+|

| | | =r/mriam +| mriamrw=srw

mriam |

| | | adm n=arw/ mriam |
|
(1 row

If the “ Access privileges’ column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLI C depending on the object type, as
explained above. Thefirst GRANT or REVOKE on an object will instantiate the default privileges (produc-
ing, for example, i ri am=ar wdDxt / mi ri am and then modify them per the specified request. Simi-
larly, entriesare shown in“ Column privileges’ only for columnswith nondefault privileges. (Note: for this
purpose, “default privileges’ always means the built-in default privileges for the object's type. An object
whose privileges have been affected by an ALTER DEFAULT PRI VI LEGES command will always be
shown with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL -standard privilege system available through GRANT, tables can have row security
policiesthat restrict, on aper-user basis, which rows can be returned by normal queriesor inserted, updated,
or deleted by data modification commands. This feature is also known as Row-Level Security. By default,
tables do not have any policies, so that if a user has access privileges to a table according to the SQL
privilege system, all rowswithin it are equally available for querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
al normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table's owner istypically not subject to row security policies.) If no policy existsfor
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned
to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to apolicy, an expressionisrequired that returns
aBooleanresult. Thisexpression will be evaluated for each row prior to any conditionsor functionscoming
fromtheuser'squery. (The only exceptionstothisrulearel eakpr oof functions, which are guaranteed to

85

Data Definition

not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)
Rows for which the expression does not return t r ue will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed
to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRL S attribute always bypass the row security system when access-
ing a table. Table owners normally bypass row security as well, though a table owner can choose to be
subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of the
table owner only.

Policiesare created using the CREATE POLICY command, atered usingthe ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
usethe ALTER TABLE command.

Each policy has a name and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to agiven query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). Thisis similar to the rule that a given role
has the privileges of al roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As asimple example, here is how to create a policy on theaccount relation to alow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy aboveimplicitly providesaW TH CHECK clauseidentical toits USI NGclause, so that the con-
straint applies both to rows selected by acommand (so amanager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created vial NSERT or UPDATE).

If noroleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users on the
system. To alow all usersto access only their own row in auser s table, asimple policy can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user_nanme = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rowsthat are being added to the table compared to those rowsthat are visible,
multiple policies can be combined. This pair of policies would allow al users to view all rows in the
user s table, but only modify their own:

CREATE PCLI CY user_sel _policy ON users

86

Data Definition

FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below isalarger example of how thisfeature can be used in production environments. The tablepasswd
emulates a Unix password file:

-- Sinmple passwd-file based exampl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Admi nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admin', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash');
| NSERT | NTO passwd VALUES

("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh');
| NSERT | NTO passwd VALUES

("alice',"xxx",2,1," Alice','098-765-4321" ,null,"/home/alice','/bin/
zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies

-- Adm nistrator can see all rows and add any rows

CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);

-- Nornmal users can view all rows

CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);

-- Normal users can update their own records, but

-- limt which shells a normal user is allowed to set

CREATE PCLI CY user _nmod ON passwd FOR UPDATE

87

Data Definition

USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user _name, uid, gid, real _name, home_phone, extra_info, hone_dir,
shel 1)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for table passwd

post gres=> sel ect

user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root | /
bi n/ dash

bob | Bob | 123-456-7890 | | /home/ bob | /
bi n/ zsh

88

Data Definition

alice | Alice | 098-765-4321 | | /hone/alice | /
bi n/ zsh
(3 rows)

post gr es=> update passwd set user_nane = 'joe';
ERROR: permi ssion denied for table passwd

-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane =
"admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for table passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for table passwd

-- Alice can change her own password; RLS silently prevents updating
ot her rows

post gr es=> update passwd set pwhash = 'abc’;
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple poli-
cies are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add arestrictive policy to require the administrator
to be connected over alocal Unix socket to access the records of the passwd table:

CREATE PCLI CY admi n_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _name | hone_phone | extra_info
| home_dir | shell

89

Data Definition

(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references, al-
ways bypass row security to ensure that dataintegrity is maintained. Care must be taken when devel oping
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contextsit isimportant to be sure that row security is not being applied. For example, when taking
abackup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of f . This does not in itself
bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could alow information
leskage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),

90

Data Definition

('very secret', 5);
ALTER TABLE i nfornati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decidesthat mal | ory
should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id = 1 WHERE user_nane = '"mallory';

UPDATE i nformation SET info = 'secret frommallory' WHERE group_id =
2;

COW T;

That looks safe; there is no window wherein mal | or y should be able to see the “secret from mallory”
string. However, there is arace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possible for her to see “secret from mallory”.
That happensif her transaction reachesthei nf or nmat i on row just after al i ce'sdoes. It blockswaiting
for al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from user s, because that
sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mal | or y's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the ref-
erenced table (here user s) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could
be embedded into a security definer function.) Also, heavy concurrent use of row share locks on the ref-
erenced table could pose a performance problem, especially if updates of it are frequent. Another solution,
practical if updates of the referenced table are infrequent, isto take an ACCESS EXCLUSI VE lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.
Or one could just wait for al concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

91

Data Definition

5.9.1.

A PostgreSQL database cluster contains one or more named databases. Roles and afew other object types
are shared across the entire cluster. A client connection to the server can only access data in a single
database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe intwo databases
in the same cluster; but the system can be configured to allow j oe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas a so contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used
in different schemas without conflict; for example, both schenal and myschenma can contain tables
named myt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many users to use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA nyschenmm;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by adot:

schema. tabl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisisjust for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

92

Data Definition

5.9.2.

5.9.3.

CREATE TABLE myschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHENMA nyschenma CASCADE;
See Section 5.14 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into aschemanamed “public’. Every new database contains such
aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schemanameinto applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which isalist of schemas
tolook in. The first matching table in the search path is taken to be the one wanted. If thereisno matchin
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The ahility to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, amalicious user ableto create

93

Data Definition

objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

Thefirst schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schemain which new tableswill be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns;

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschenm, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mnyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schemawithout explicit qualification. Thereisnothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipul ate the schema search path.

The search path worksin the same way for data type names, function names, and operator names asit does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, thereis a special provision: you must write

OPERATOR(schemma. oper at or)

94

Data Definition

5.9.4.

5.9.5.

5.9.6.

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of the
schema must grant the USACE privilege on the schema. By default, everyone has that privilege on the
schemapubl i c. To allow usersto make use of the objectsin a schema, additional privileges might need
to be granted, as appropriate for the object.

A user can also beallowed to create objectsin someone el se's schema. To allow that, the CREATE privilege
on the schema needs to be granted. In databases upgraded from PostgreSQL 14 or earlier, everyone has
that privilege on the schemapubl i c. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C

(Thefirst “public” is the schema, the second “public” means “every user”. In the first senseit is an iden-
tifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines from
Section 4.1.1.)

The System Catalog Schema

Inadditionto publ i ¢ and user-created schemas, each database containsapg_cat al og schema, which
containsthe system tablesand all the built-in datatypes, functions, and operators. pg_cat al ogisaways
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer a
conflict if somefutureversion definesasystem table named the same asyour table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents un-
trusted users from changing the behavior of other users queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to the
empty string or otherwise removing schemas that are writable by non-superusers from sear ch_pat h.
There are afew usage patterns easily supported by the default configuration:

 Constrain ordinary usersto user-private schemas. Toimplement this pattern, first ensure that no schemas
have public CREATE privileges. Then, for every user needing to create non-temporary objects, create a
schemawith the same name as that user, for example CREATE SCHEMA al i ce AUTHORI ZATI ON
al i ce. (Recall that the default search path startswith $user , which resolvesto the user name. There-
fore, if each user has a separate schema, they access their own schemas by default.) This pattern is a

95

Data Definition

5.9.7.

5.10

secure schema usage pattern unless an untrusted user is the database owner or has been granted ADM N
OPTI ONon arelevant role, in which case no secure schema usage pattern exists.

In PostgreSQL 15 and later, the default configuration supports this usage pattern. In prior versions,
or when using a database that has been upgraded from a prior version, you will need to remove the
public CREATE privilegefromthepubl i ¢ schema (issue REVOKE CREATE ON SCHEMA public
FROM PUBLI C). Then consider auditing thepubl i ¢ schemafor objects named like objectsin schema
pg_cat al og.

» Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Then, grant privileges to create
in the public schema. Only qualified names will choose public schema objects. While qualified table
references are fine, calls to functions in the public schema will be unsafe or unreliable. If you create
functionsor extensionsin the public schema, usethefirst patterninstead. Otherwise, likethefirst pattern,
this is secure unless an untrusted user is the database owner or has been granted ADM N OPTI ON on
arelevant role.

» Keep the default search path, and grant privileges to create in the public schema. All users access the
public schema implicitly. This simulates the situation where schemas are not available at al, giving
a smooth transition from the non-schema-aware world. However, this is never a secure pattern. It is
acceptable only when the database has a single user or a few mutually-trusting users. In databases up-
graded from PostgreSQL 14 or earlier, thisis the default.

For any pattern, to install shared applications (tablesto be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privilegesto allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

Portability

Inthe SQL standard, the notion of objectsin the same schemabeing owned by different usersdoesnot exist.
Moreover, someimplementations do not allow you to create schemasthat have a different name than their
owner. Infact, the concepts of schemaand user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names
torealy consist of user _nane. t abl e_nane. Thisis how PostgreSQL will effectively behave if you
create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and | ater define atypeinheritance feature, which differsin many respectsfrom the features described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
itinheritsfromci ti es:

96

Data Definition

CREATE TABLE cities (

name t ext,
popul ati on fl oat,
el evati on i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthiscase, thecapi t al s tableinherits all the columns of its parent table, ci t i es. State capitals also
have an extracolumn, st at e, that showstheir state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of atable or al rows of atable plus al of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM cities
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables below
ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

Y ou can also writethetable name with atrailing * to explicitly specify that descendant tables are included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

97

Data Definition

Writing * isnot necessary, since thisbehavior isawaysthe default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns:

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin with
pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.elevation
FROM cities ¢, pg _class p
WHERE c. el evati on > 500 AND c.tableoid = p.oid;

which returns:

rel name | name | elevation
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use ther egcl ass alias type, which will print the table OID
symbolicaly:

SELECT c. tabl eoi d: : regcl ass, c.nane, c.elevation
FROM cities c
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tablesin
the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (nanme, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
I NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossibleto redirect theinsertion
using arule (see Chapter 41). However that does not help for the above case because theci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

98

Data Definition

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique, pri-
mary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columnsare“merged” so that thereisonly one such columninthe child table. To be merged, columns
must have the same datatypes, else an error israised. Inheritable check constraints and not-null constraints
are merged in asimilar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause of
the CREATE TABLE statement. Alternatively, atable which is already defined in a compatible way can
have anew parent relationship added, using the | NHERI T variant of ALTER TABLE. To do thisthe new
child table must aready include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO | NHERI T variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child isto use the LI KE
clausein CREATE TABLE. This createsanew table with the same columns asthe sourcetable. If thereare
any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to LI KE
should be specified, as the new child must have constraints matching the parent to be considered compat-
ible.

A parent table cannot be dropped whileany of itschildren remain. Neither can columnsor check constraints
of child tables be dropped or atered if they are inherited from any parent tables. If you wish to remove a
table and all of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columnsthat are depended on by other tablesis only possiblewhen
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission ontheci t i es table implies permission to update rowsin the capi t al s table as
well, when they are accessed through ci t i es. This preserves the appearance that the datais (also) in
the parent table. But the capi t al s table could not be updated directly without an additional grant. In
asimilar way, the parent table's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child table€'s policies, if any, are applied only when it isthe table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database

99

Data Definition

5.11

maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables and
do not support recursing over inheritance hierarchies. Therespective behavior of each individual command
is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign key
constraints only apply to singletables, not to their inheritance children. Thisistrue on both the referencing
and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If wedeclaredci t i es.nane tobe UNI QUE or aPRI MARY KEY, thiswould not stopthecapi t al s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci ti es. In fact, by default capi t al s would have no unique
congtraint at al, and so could contain multiple rows with the same name. You could add a unique
congtraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if we were to specify that ci ti es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative partition-
ing. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful for
your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.11.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in asingle partition or asmall number of partitions. Partitioning
effectively substitutes for the upper tree levels of indexes, making it more likely that the heavily-used
parts of the indexes fit in memory.

» When queriesor updates access alarge percentage of asingle partition, performance can beimproved by
using a sequential scan of that partition instead of using an index, which would require random-access
reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern is
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or doing
ALTER TABLE DETACH PARTI TI ON, is far faster than a bulk operation. These commands also
entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which atable will benefit from partitioning depends on the application, although a rule of thumb
isthat the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:

100

Data Definition

Range Partitioning

The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date
ranges, or by ranges of identifiers for particular business objects. Each range's bounds are understood
as being inclusive at the lower end and exclusive at the upper end. For example, if one partition's
rangeisfrom1 to 10, and the next one'srangeisfrom 10 to 20, then value 10 belongs to the second
partition not the first.

List Partitioning
Thetableis partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, aternative methods such as
inheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL allowsyou to declare that atableisdivided into partitions. Thetablethat isdivided isreferred
to as a partitioned table. The declaration includes the partitioning method as described above, plus alist
of columns or expressions to be used as the partition key.

The partitioned table itself isa“virtual” table having no storage of its own. Instead, the storage belongs to
partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition stores
a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table will be
routed to the appropriate one of the partitions based on the values of the partition key column(s). Updating
the partition key of arow will cause it to be moved into a different partition if it no longer satisfies the
partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all par-
titions must have the same columns as their partitioned parent, partitions may have their own indexes,
constraints and default values, distinct from those of other partitions. See CREATE TABLE for more de-
tails on creating partitioned tables and partitions.

Itisnot possibleto turn aregular table into a partitioned table or vice versa. Howeveyr, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove apartition from apar-
titioned table turning it into a standalone tabl e; this can simplify and speed up many maintenance process-
es. See ALTER TABLE to learn more about the ATTACH PARTI TI ON and DETACH PARTI TI ON
sub-commands.

Partitions can aso be foreign tables, athough considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions aswell. See CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

101

Data Definition

CREATE TABLE measur enent (

)

city_ id int not null,
| ogdat e date not null,
peakt enmp int,

uni t sal es i nt

We know that most querieswill accessjust the last week's, month's or quarter's data, since the main use of
thistable will beto prepare online reports for management. To reduce the amount of old data that needsto
be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet al of our
different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1

Create the neasur enent table as a partitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANGE in this case) and the list of column(s) to use as the
partition key.

CREATE TABLE neasurenent (

city_id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdate);

Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's values
would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at atime. So the commands might [ook like:

CREATE TABLE neasur enment _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006- 02-01') TO (' 2006-03-01");

CREATE TABLE neasur enment _y2006n03 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-03-01') TO (' 2006-04-01");

CREATE TABLE neasur enent _y2007nl1 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE neasur enent _y2007nl2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01") TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasur enent _y2008n01 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-01-01") TO ('2008-02-01")
WTH (paral l el _workers = 4)
TABLESPACE f astt abl espace;

102

Data Definition

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as ex-
clusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clausein the commands
used to create individual partitions, for example:

CREATE TABLE neasurenent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any datainserted into neasur enment that
is mapped to measur enent _y2006n02 (or data that is directly inserted into neasur emen-
t _y2006nm02, whichisallowed provided its partition constraint is satisfied) will be further redirected
to one of its partitions based on the peakt enp column. The partition key specified may overlap with
the parent's partition key, athough care should be taken when specifying the bounds of a sub-partition
such that the set of data it accepts constitutes a subset of what the partition's own bounds allow; the
system does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Itisnot necessary to manually create table constraints describing the partition boundary conditionsfor
partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), aswell as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual dataisin child indexes on the individual partition tables.

CREATE | NDEX ON neasur enent (| ogdate);
4. Ensure that the enable partition_pruning configuration parameter is not disabled in post -
gresgl . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain static.
It is common to want to remove partitions holding old data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasur enent _y2006n02;

Thiscan very quickly delete millions of records becauseit doesn't haveto individually delete every record.
Note however that the above command requirestaking an ACCESS EXCLUSI VE lock on the parent table.

Another option that is often preferableisto remove the partition from the partitioned table but retain access
toitasatableinitsown right. This has two forms:

103

Data Definition

ALTER TABLE measur enment DETACH PARTI TI ON measur enment _y2006nD2;
ALTER TABLE measurenment DETACH PARTI TI ON nmeasur ement _y2006n02
CONCURRENTLY;

These allow further operations to be performed on the data before it is dropped. For example, thisis often
auseful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful timeto
aggregate datainto smaller formats, perform other data manipulations, or run reports. Thefirst form of the
command requiresan ACCESS EXCLUSI VE lock on the parent table. Adding the CONCURRENTLY qual-
ifier asin the second form allowsthe detach operation to require only SHARE UPDATE EXCLUSI VE lock
on the parent table, but see ALTER TABLE ... DETACH PARTI Tl ONfor details on the restrictions.

Similarly we can add anew partition to handle new data. We can create an empty partition inthe partitioned
table just asthe origina partitions were created above:

CREATE TABLE neasur enent _y2008n02 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

Asan alternative, it is sometimes more convenient to create the new table outside the partition structure,
and attach it as a partition later. This allows new data to be loaded, checked, and transformed prior to it
appearing in the partitioned table. Moreover, the ATTACH PARTI TI ON operation requires only SHARE
UPDATE EXCLUSI VE lock on the partitioned table, as opposed to the ACCESS EXCLUSI VE lock that
isrequired by CREATE TABLE ... PARTI TI ON OF, soitismorefriendly to concurrent operations
on the partitioned table. The CREATE TABLE ... LI KE optionis helpful to avoid tediously repeating
the parent table's definition:

CREATE TABLE neasur enent _y2008n02
(LI KE nmeasur enment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enment _y2008nmD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008- 03-01");

\ copy neasurenent _y2008n02 from ' measurenent _y2008nD2'
-- possibly sone other data preparati on work

ALTER TABLE neasurenment ATTACH PARTI TI ON nmeasur enment _y2008n02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01');

Before running the ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint on
the table to be attached that matches the expected partition constraint, as illustrated above. That way, the
system will be able to skip the scan which is otherwise needed to validate the implicit partition constraint.
Without the CHECK constraint, the table will be scanned to validate the partition constraint while holding
an ACCESS EXCLUSI VE lock on that partition. It is recommended to drop the now-redundant CHECK
constraint after the ATTACH PARTI Tl ONis complete. If the table being attached is itself a partitioned
table, then each of its sub-partitions will be recursively locked and scanned until either a suitable CHECK
constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table hasa DEFAULT partition, it isrecommended to create a CHECK constraint
which excludesthe to-be-attached partition's constraint. If thisisnot done then the DEFAULT partition will
be scanned to verify that it contains no records which should belocated in the partition being attached. This

104

Data Definition

operation will be performed whilst holding an ACCESS EXCLUSI VE lock onthe DEFAULT partition.
If the DEFAULT partition isitself apartitioned table, then each of its partitionswill be recursively checked
in the same way as the table being attached, as mentioned above.

As explained above, it is possible to create indexes on partitioned tables so that they are applied automat-
ically to the entire hierarchy. Thisis very convenient, as not only will the existing partitions become in-
dexed, but also any partitions that are created in the future will. One limitation is that it's not possible to
use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock times, it is
possibleto use CREATE | NDEX ON ONLY the partitioned table; such an index is marked invalid, and the
partitions do not get theindex applied automatically. The indexes on partitions can be created individually
using CONCURRENTLY, and then attached to the index on the parent usng ALTER | NDEX .. ATTACH
PARTI Tl ON. Once indexes for all partitions are attached to the parent index, the parent index is marked
valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX CONCURRENTLY neasur enent _usl s 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);

ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s_200602_i dx;

This technique can be used with UNI QUE and PRI MARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY neasurenent ADD UNIQUE (city id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city id, |ogdate);
ALTER | NDEX neasurenent _city id_| ogdate_key
ATTACH PARTI TI ON neasur enent _y2006n02_city id_| ogdate_key;

5.11.2.3. Limitations

The following limitations apply to partitioned tables:

» To create aunique or primary key constraint on a partitioned table, the partition keys must not include
any expressions or function calls and the constraint's columns must include al of the partition key
columns. Thislimitation exists because theindividual indexes making up the constraint can only directly
enforce uniqueness within their own partitions; therefore, the partition structure itself must guarantee
that there are not duplicates in different partitions.

» Thereisnoway to create an exclusion constraint spanning the whole partitioned table. It isonly possible
to put such a constraint on each leaf partition individually. Again, this limitation stems from not being
able to enforce cross-partition restrictions.

* BEFORE ROWtriggerson | NSERT cannot change which partition isthefinal destination for anew row.

* Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the par-
titioned table is permanent, so must be its partitions and likewise if the partitioned table is temporary.
When using temporary relations, all members of the partition tree have to be from the same session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However, it
isnot possible to use all of the generic features of inheritance with declaratively partitioned tables or their

105

Data Definition

partitions, as discussed below. Notably, a partition cannot have any parents other than the partitioned table
it is a partition of, nor can a table inherit from both a partitioned table and a regular table. That means
partitioned tables and their partitions never share an inheritance hierarchy with regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance hier-
archy, t abl eoi d and all the normal rules of inheritance apply as described in Section 5.10, with afew
exceptions:

* Partitions cannot have columns that are not present in the parent. It is not possible to specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-the-
fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... ATTACH
PARTI TI ONonly if their columns exactly match the parent.

» Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO | NHERI T are not allowed to be created on partitioned tables.
You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

» Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there are
no partitions. Once partitions exist, using ONLY will result in an error for any constraints other than
UNI QUE and PRI MARY KEY. Instead, constraints on the partitions themselves can be added and (if
they are not present in the parent table) dropped.

» Asapartitioned table does not have any dataitself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.11.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some circum-
stances where amore flexible approach may be useful. Partitioning can be implemented using table inher-
itance, which allows for several features not supported by declarative partitioning, such as:

» For declarative partitioning, partitions must have exactly the same set of columns as the partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

 Tableinheritance alows for multiple inheritance.

 Declarative partitioning only supportsrange, list and hash partitioning, whereastable inheritance allows
data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion is
unable to prune child tables effectively, query performance might be poor.)

5.11.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above. Use
the following steps:

1. Create the “root” table, from which al of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. Thereis no point in defining any indexes or unique constraints on it, either. For our
example, the root table isthe measur enment table asoriginally defined:

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp i nt,

106

Data Definition

uni t sal es i nt
)
. Create several “child” tables that each inherit from the root table. Normally, these tables will not add
any columnsto the set inherited from the root. Just as with declarative partitioning, these tablesarein
every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE nmeasur enent _y2006n02

() INHERI TS (rmeasurenent);
CREATE TABLE measur enent _y2006n03 (

I NHERI TS (neasurenent);

~— —

CREATE TABLE neasurenent _y2007nll () I NHERI TS (measurenent);
CREATE TABLE neasurenent _y2007nl2 () I NHERI TS (measurenent);
CREATE TABLE neasurenent _y2008n01 () I NHERI TS (measurenent);
. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typica exampleswould be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outlet| D BETWEEN 100 AND 200)
CHECK (outlet| D BETWEEN 200 AND 300)

Thisiswrong sinceit isnot clear which child table the key value 200 bel ongsin. Instead, ranges should
be defined in this style:

CREATE TABLE measur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006- 02-01' AND | ogdate < DATE
' 2006- 03-01")
) INHERI TS (measurenent);

CREATE TABLE measur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006- 03-01' AND | ogdate < DATE
' 2006- 04- 01")
) INHERI TS (measurenent);

CREATE TABLE measur enent _y2007nl1 (
CHECK (| ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE
'2007-12-01")
) INHERI TS (rmeasurenent);

CREATE TABLE measur enent _y2007nl2 (
CHECK (| ogdate >= DATE ' 2007-12-01' AND | ogdate < DATE
' 2008-01-01")
) INHERI TS (rmeasurenent);

107

Data Definition

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008- 02-01")
) INHERI TS (measurenent);
. For each child table, create anindex on the key column(s), aswell asany other indexesyou might want.

CREATE | NDEX measur enent _y2006n02_| ogdat e ON neasur enent _y2006n02
(1 ogdate);
CREATE | NDEX measur enent _y2006n03_I| ogdat e ON neasur enent _y2006n03
(1 ogdate);
CREATE | NDEX measur enent _y2007nml1_| ogdat e ON neasur enent _y2007nill
(1 ogdate);
CREATE | NDEX measur enent _y2007nml2_| ogdat e ON neasur enent _y2007ni2
(1 ogdate);
CREATE | NDEX measur enent _y2008n01_I| ogdat e ON neasur enent _y2008n01
(1 ogdate);
. Wewant our applicationto beabletosay | NSERT | NTO neasur enent ... and havethedatabe
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger function
totheroot table. If datawill be added only to the latest child, we can use avery simpletrigger function:

CREATE OR REPLACE FUNCTI ON neasurement _i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
I NSERT | NTO measur enment _y2008nmD1 VALUES (NEW *);
RETURN NULL;

END,

$$

LANGUAGE pl pgsql ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurenent _trigger
BEFORE | NSERT ON neasur enent
FOR EACH ROW EXECUTE FUNCTI ON neasur enent i nsert _trigger();

We must redefine the trigger function each month so that it always insertsinto the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasuremnent _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006- 03-01') THEN
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);
ELSIF (NEW | ogdate >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006- 04-01') THEN
I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

108

Data Definition

ELSIF (NEW I ogdate >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO measur enment _y2008nm01 VALUES (NEW *);
ELSE
RAI SE EXCEPTION ' Date out of range. Fix the
measur enent _insert _trigger() function!';
END | F;
RETURN NULL;
END,
$$
LANGUAGE pl pgsal ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While thisfunction is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger'stestsin the same order asin other parts of thisexample.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead of
atrigger, on the root table. For example:

CREATE RULE neasurenent _insert_y2006n02 AS
ON I NSERT TO measur ement WHERE
(logdate >= DATE ' 2006- 02- 01' AND | ogdate < DATE
' 2006- 03-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008n01 AS
ON I NSERT TO measur ement WHERE
(logdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
' 2008-02-01")
DO | NSTEAD
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into the
correct child table rather than directly into the root. COPY doesfiretriggers, so you can useit normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the root table instead.

. Ensurethat the constraint_exclusion configuration parameter isnot disabledinpost gr esql . conf;
otherwise child tables may be accessed unnecessarily.

109

Data Definition

Aswe can see, acomplex table hierarchy could require asubstantial amount of DDL. Inthe above example
we would be creating a new child table each month, so it might be wise to write a script that generates
the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein itsown
right:

ALTER TABLE neasur enent _y2006nD2 NO | NHERI T neasur enent;

To add anew child table to handle new data, create an empty child table just asthe original children were
created above:

CREATE TABLE measur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01")
) INHERI TS (neasurenent);

Alternatively, one may want to create and popul ate the new child table before adding it to the table hier-
archy. This could alow data to be loaded, checked, and transformed before being made visible to queries
on the parent table.

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasuremnment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008n02 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01');
\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasur enent _y2008n02 | NHERI T nmeasur enent ;

5.11.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereisno automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates child tables and creates and/or modifies associated objects than to write
each by hand.

* Indexes and foreign key constraints apply to single tables and not to their inheritance children, hence
they have some caveats to be aware of .

» The schemes shown here assume that the values of arow's key column(s) never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them on
each child tableindividually. A command like:

110

Data Definition

ANALYZE nmeasur enent ;
will only process the root table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON CON-
FLI CT action is only taken in case of unique violations on the specified target relation, not its child
relations.

» Triggersor ruleswill be neededto routerowsto thedesired child table, unlessthe applicationisexplicitly
aware of the partitioning scheme. Triggers may be complicated to write, and will be much slower than
the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively parti-
tioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that the
partition need not be scanned because it could not contain any rows meeting the query's WHERE clause.
When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they have
not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=188.76..188.77 rows=1 wi dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_ y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_ y2006nD3 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenment_ y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenment y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)

111

Data Definition

Filter: (logdate >= '2008-01-01'::date)

Someor all of the partitions might use index scansinstead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable partition
pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n01 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether an
index needs to be created for a given partition depends on whether you expect that queries that scan the
partition will generally scan a large part of the partition or just a small part. An index will be helpful in
the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisis useful as it can alow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of a
nested loop join. Partition pruning during execution can be performed at any of the following times:

» During initialization of the query plan. Partition pruning can be performed here for parameter values
which are known during the initialization phase of execution. Partitions which are pruned during this
stage will not show up in the query's EXPLAI N or EXPLAI N ANALYZE. It is possible to determine
the number of partitions which were removed during this phase by observing the “ Subplans Removed”
property in the EXPLAI N output.

» During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. Thisincludes values from
subqueries and values from execution-time parameters such as those from parameterized nested loop
joins. Since the value of these parameters may change many times during the execution of the query,
partition pruning is performed whenever one of the execution parameters being used by partition pruning
changes. Determining if partitions were pruned during this phase requires careful inspection of the
| oops property inthe EXPLAI N ANAL YZE output. Subplans corresponding to different partitionsmay
have different values for it depending on how many times each of them was pruned during execution.
Some may be shown as(never execut ed) if they were pruned every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purposes,
including with declarative partitioning.

Constraint exclusionworksinavery similar way to partition pruning, except that it uses each table's CHECK
constraints— which givesit its name — whereas partition pruning uses the tabl €'s partition bounds, which

112

Data Definition

exist only in the case of declarative partitioning. Another difference is that constraint exclusion is only
applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declarative-
ly-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be ableto elide
additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion isneither on nor of f , but an intermediate
setting called par ti ti on, which causes the technique to be applied only to queriesthat are likely to be
working oninheritance partitioned tables. The on setting causesthe planner to examine CHECK constraints
in al queries, even ssmple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusion isonly applied during query planning, unlike partition pruning, which can also be
applied during query execution.

 Constraint exclusion only works when the query's WHERE clause contains constants (or externally sup-
plied parameters). For example, a comparison against a non-immutable function such as CURREN-
T_TI MESTAMP cannot be optimized, since the planner cannot know which child table the function's
value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, asillustrated in the preceding examples. A good rule of thumb isthat partitioning
congtraints should contain only comparisons of the partitioning column(s) to constants using B-tree-
indexable operators, because only B-tree-indexable column(s) are allowed in the partition key.

» All constraints on al children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheritance
based partitioning will work well with up to perhaps a hundred child tables; don't try to use many
thousands of children.

5.11.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning and
execution can be negatively affected by poor design.

One of the most critical design decisionswill be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRI MARY KEY or a UNI QUE constraint. Removal
of unwanted data is aso afactor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such away that
all datato be removed at onceislocated in asingle partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision to
make. Not having enough partitions may mean that indexes remain too large and that datalocality remains
poor which could result in low cache hit ratios. However, dividing the table into too many partitions can
also cause issues. Too many partitions can mean longer query planning times and higher memory con-
sumption during both query planning and execution, as further described below. When choosing how to
partition your table, it's also important to consider what changes may occur in the future. For example, if
you choose to have one partition per customer and you currently have a small number of large customers,
consider the implications if in several years you instead find yourself with a large number of small cus-

113

Data Definition

5.12

5.13

tomers. In this case, it may be better to choose to partition by HASH and choose a reasonable number
of partitions rather than trying to partition by L1 ST and hoping that the number of customers does not
increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsin the partition key. Either of
these can easily lead to excessive numbers of partitions, so restraint is advisable.

It isimportant to consider the overhead of partitioning during query planning and execution. The query
planner is generaly able to handle partition hierarchies with up to a few thousand partitions fairly well,
provided that typical queries allow the query planner to prune al but a small number of partitions. Plan-
ning times become longer and memory consumption becomes higher when more partitions remain after
the planner performs partition pruning. Another reason to be concerned about having a large number of
partitions is that the server's memory consumption may grow significantly over time, especially if many
sessions touch large numbers of partitions. That's because each partition requires its metadata to be loaded
into the local memory of each session that touchesiit.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OL TP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload,
it isimportant to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are atype of constraint within the database.)

Foreign datais accessed with help from aforeign data wrapper. A foreign datawrapper isalibrary that can
communicate with an external datasource, hiding the details of connecting to the data source and obtaining
datafromit. There are someforeign datawrappersavailableascont r i b modules; see Appendix F. Other
kinds of foreign data wrappers might be found asthird party products. If none of the existing foreign data
wrappers suit your needs, you can write your own; see Chapter 59.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of theremote data. A foreign
table can be used in queries just like a normal table, but aforeign table has no storage in the PostgreSQL
server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the external
source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelationa database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use

114

Data Definition

5.14

and management of the data more efficient or convenient. They are not discussed in this chapter, but we
giveyou alist here so that you are aware of what is possible:

* Views

 Functions, procedures, and operators
» Datatypesand domains

 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objectsthat other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.4.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no _fkey on table orders depends on
tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objectswill be removed, aswill any objectsthat depend on them, recursively. Inthis
case, it doesn't remove the orderstable, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will
do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the abject. Y ou can also write RESTRI CT instead of CAS-
CADE to get the default behavior, which isto prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRI CT or CASCADE varies across systems.

If aDROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence of aforeign
key referencing t ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

115

Data Definition

For a user-defined function or procedure whose body is defined as a string literal, PostgreSQL tracks
dependencies associated with the function's externally-visible properties, such as its argument and result
types, but not dependencies that could only be known by examining the function body. As an example,
consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQ.;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function depends on the r ai nbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or_not e todepend onthemy_col or s table, and so will not drop the function if the tableis
dropped. While there are disadvantages to this approach, there are also benefits. The functionis still valid
in some sense if the table is missing, though executing it would cause an error; creating anew table of the
same name would allow the function to work again.

Ontheother hand, for a SQL -language function or procedure whose body iswritten in SQL-standard style,
the body is parsed at function definition time and all dependencies recognized by the parser are stored.
Thus, if we write the function above as

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS t ext
BEG N ATOM C

SELECT note FROM ny_col ors WHERE col or = $1;
END;

then the function's dependency ontheny_col or s table will be known and enforced by DROP.

116

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it istime
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableiscreated, it contains no data. The first thing to do before a database can be of much useisto
insert data. Dataisinserted onerow at atime. Y ou can aso insert more than one row in asingle command,
but it is not possible to insert something that is not a complete row. Even if you know only some column
values, a complete row must be created.

To create anew row, usethe INSERT command. The command requiresthe table name and column val ues.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To avoid
thisyou can aso list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
9.99);

| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99,
1);

Many users consider it good practice to always list the column names.

If you don't have values for al the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

| NSERT | NTO products (product_no, name) VALUES (1, ' Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

117

Data Manipulation

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;
| NSERT | NTO products DEFAULT VALUES;

Y ou can insert multiple rows in a single command:

| NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread, 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexibleasthe INSERT command, but ismore efficient. Refer to Section 14.4 for moreinformation
on improving bulk loading performance.

6.2. Updating Data

Themodification of datathat isalready inthe databaseisreferred to asupdating. Y ou can updateindividual
rows, all the rows in atable, or a subset of al rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Thereforeit is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access toolsrely on thisfact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

118

Data Manipulation

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. Asusual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clauseisan
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean resullt.

Y ou can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from atable. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify
the exact row. But you can also remove groups of rows matching a condition, or you can remove all rows
in the table at once.

Y ou use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimesit is useful to obtain datafrom modified rows while they are being manipulated. The | NSERT,
UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use of
RETURNI NG avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNI NG *, which selects all columns of the target table in order.

119

Data Manipulation

Inan| NSERT, thedataavailableto RETURNI NGistherow asit wasinserted. Thisisnot souseful intrivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using aser i al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, lastnane text, id serial prinmary
key);

I NSERT | NTO users (firstnane, |astnane) VALUES ('Joe', 'Cool"')
RETURNI NG i d;

The RETURNI NG clause isaso very useful with| NSERT ... SELECT.

In an UPDATE, the data available to RETURNI NGis the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today’
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case for
RETURNI NG,

120

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH with_queries] SELECT select |ist FROMtabl e_expression
[sort _specification]

Thefollowing sections describe the detail s of the select list, the table expression, and the sort specification.
W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that thereisatable called t abl el, this command would retrieve al rows and all user-defined
columnsfromt abl el. (The method of retrieval depends on the client application. For example, the psgl
program will display an ASClI-art table on the screen, while client libraries will offer functionsto extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl e1 has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimplekind of table expression: it reads just one table. In general, table expressions
can be complex constructs of basetables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could call

afunction this way:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions simply refer to atable on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

121

Queries

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transformations
produce avirtual table that provides the rows that are passed to the select list to compute the output rows
of the query.

7.2.1. The FROMClause

The FROMclause derives atable from one or more other tables given in acomma-separated table reference
list.

FROM tabl e_reference [, table reference [, ...]]

A tablereference can be atable name (possibly schema-qualified), or aderived table such asasubquery, a
JA N construct, or complex combinations of these. If more than one table reference islisted in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FROMIist is an intermediate virtua table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVI NG clauses and isfinally the result of the overall table expression.

When atable reference names atabl e that isthe parent of atableinheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write* after the table name to explicitly specify
that descendant tables are included. Thereis no real reason to use this syntax any more, because searching
descendant tablesis now alwaysthe default behavior. However, it issupported for compatibility with older
releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (rea or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined table is

Tl join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables. Paren-
theses can be used around JO N clauses to control the join order. In the absence of parentheses, JO N
clauses nest left-to-right.

Join Types

Crossjoin

Tl CROSS JAON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain arow consisting of all columnsin T1 followed by all columnsin T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivadentto FROM T1 INNER JON T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

122

Queries

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA Nbinds moretightly than comma. For example FROM T1 CROSS JO N T2 | NNER
JO N T3 ON conditionisnotthesameasFROM T1, T2 INNER JO N T3 ON
condi ti on becausethecondi ti on canreference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

The words | NNER and OQUTER are optional in al forms. | NNER is the default; LEFT, Rl GHT, and
FULL imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are;
I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null values in columns of T2. Thus, the joined
table aways has at least one row for each row in T1.

Rl GHT QUTER JO N

First, aninner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, ajoined row isadded with null valuesin columns of T1. Thisisthe converse
of aleft join: the result table will always have arow for each row in T2,

FULL OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null valuesin columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, ajoined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind asis used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list

123

Queries

of the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) producesthejoinconditionON T1. a
= T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: thereisno need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of
the listed column pairs (in the listed order), followed by any remaining columns from T1, followed
by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG it forms a USI NGlist consisting of all column
names that appear in both input tables. Aswith USI NG, these columns appear only once in the output
table. If there are no common column names, NATURAL JO NbehaveslikeJO N ... ON TRUE,
producing a cross-product join.

Note

USI NGis reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to
either relation that cause a new matching column name to be present will cause the join to
combine that new column as well.

To put this together, assume we have tablest 1:

_____ N,
1] a
2| b
3] ¢

andt 2

then we get the following results for the various joins;

=> SELECT * FROMt1l CROSS JO N t 2;
num| name | num| val ue

+
I
I
I
I
I
I
I

124

Queries

31 ¢ | 31 yyy
3] c | 5| zzz
(9 rows)

=> SELECT * FROMt1 INNER JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1 INNER JO N t2 USING (num;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USI NG (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 51| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

125

Queries

3| ¢ | 3| yyy
| | 5| zzz

(4 rows)

Thejoin condition specified with ON can a so contain conditionsthat do not relate directly to thejoin. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| nanme | num| val ue
----- B T Ty
1| a | 1| xxx
2] b | |
3] ¢ | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1 LEFT JONt2 ON t1.num = t2. num WHERE t 2. val ue =

XXX ;
num| nanme | num| val ue
----- T ey S

1| a | 1| xxx
(1 row

Thisisbecause arestriction placed in the ON clause is processed before the join, while arestriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a
lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. Thisiscalled atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference alias
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long_table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, thisis not valid:

126

Queries

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining atable
to itself, e.g.:

SELECT * FROM peopl e AS nother JO N people AS child ON nother.id =

chi l d. mot her _i d;

Parentheses are used to resolve ambiguities. In the following example, the first statement assignsthe alias
b to the second instance of my _t abl e, but the second statement assigns the alias to the result of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny _table AS b ...
SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing givestemporary namesto the columns of thetable, aswell asthetableitself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of aJO N clause, the alias hides the original name(s) within the
JA N. For example:

SELECT a.* FROM ny_table AS a JO N your table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your_table AS b ON...) AS c

isnot valid; thetable alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses. They may be assigned atable dlias
name, and optionally column alias names (asin Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

Thisexampleisequivalentto FROM t abl el AS al i as_nane. Moreinteresting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:
FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable alias is optional. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

127

Queries

According to the SQL standard, atable alias name must be supplied for asubquery. PostgreSQL alowsAS
and the alias to be omitted, but writing one is good practice in SQL code that might be ported to another
system.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like atable, view, or subquery in the FROMclause of
a query. Columns returned by table functions can be included in SELECT, JO N, or WHERE clauses in
the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROMsyntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table alias [(columm_alias

[, ... DII
ROAS FROM function_call [, ...]) [WTH ORDI NALI TY]

[[AS] table alias [(colum_alias [, ... 1)11]

If the W TH ORDI NALI TY clause is specified, an additional column of type bi gi nt will be added to
thefunction result columns. This column numbersthe rows of the function result set, starting from 1. (This

is a generalization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.) By default,
the ordinal column is called or di nal i ty, but a different column name can be assigned to it using an
AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table alias [(colum_alias [, ...])11]

If notabl e_al i as is specified, the function name is used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis also
the same as the function name. For afunction returning acomposite type, the result columns get the names
of theindividual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonanme text);

CREATE FUNCTI ON get f 0o(i nt) RETURNS SETOF foo AS $$
SELECT * FROM f oo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;
SELECT * FROM f 00

WHERE f oosubid IN (
SELECT foosubid

128

Queries

FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

)
CREATE VI EW vw_get f oo AS SELECT * FROM get f 0o(1);

SELECT * FROM vw_get f 00;

In some casesit is useful to define table functions that can return different column sets depending on how
they areinvoked. To support this, the table function can be declared as returning the pseudo-typer ecor d
with no QUT parameters. When such a function is used in a query, the expected row structure must be
specified in the query itself, so that the system can know how to parse and plan the query. This syntax
looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (colum_definition [, ...])
ROA5 FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the ROAS FROM) syntax, the col urm_def i ni ti on list replaces the column alias
list that could otherwise be attached to the FROMitem; the namesin the column definitions serve as column
aliases. When using the ROAS FROM) syntax, acol unm_def i ni ti on list can be attached to each
member function separately; or if thereis only one member function and noW TH ORDI NALI TY clause,
acol umtm_def i ni ti on list can be written in place of acolumn aiaslist following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM pg proc')
AS t1(proname nane, prosrc text)
VWHERE pronane LI KE 'bytea%;

The dblink function (part of the dblink module) executes aremote query. It isdeclared toreturnr ecor d
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROAS FROM

SELECT *
FROM ROA6 FROM

(
json_to_recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a | NTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, a, s)
ORDER BY p;

40 | foo | 1
100 | bar | 2
| | 3

129

Queries

It joins two functions into a single FROMtarget. j son_t o_recor dset () isinstructed to return two
columns, thefirsti nt eger andthesecondt ext . Theresult of gener at e_seri es() isuseddirectly.
The ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROMican be preceded by the key word LATERAL . Thisallowsthem to reference
columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated indepen-
dently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan also be preceded by the key word LATERAL, but for functionsthe
key word is optional; the function's arguments can contain references to columns provided by preceding
FROMitemsin any case.

A LATERAL item can appear at the top level in the FROMIist, or within aJO Ntree. In the latter case it
can also refer to any itemsthat are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each row of
the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROMitems providing
the columns, the LATERAL item is evaluated using that row or row set's values of the columns. The
resulting row(s) are joined as usual with the rows they were computed from. Thisis repeated for each row
or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisis not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar _id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s) to
bejoined. A common applicationis providing an argument value for aset-returning function. For example,
supposing that ver t i ces(pol ygon) returns the set of vertices of a polygon, we could identify close-
together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CRCSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

or in severa other equivalent formulations. (Asalready mentioned, the LATERAL key word isunnecessary
in this example, but we useit for clarity.)

130

Queries

7.2.2.

It is often particularly handy to LEFT JO Nto a LATERAL subquery, so that source rows will appear
in the result even if the LATERAL subquery produces no rows for them. For example, if get _pr oduc-
t _names() returnsthe names of products made by a manufacturer, but some manufacturersin our table
currently produce no products, we could find out which ones those are like this:

SELECT m nane

FROM manuf acturers m LEFT JO N LATERAL get_product_names(mid) pnane
ON true

VWHERE pnane | S NULL;

The WHERE Clause

The syntax of the WHERE clauseis

WHERE sear ch_condition

where sear ch_condi ti on is any value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROMclause is done, each row of the derived virtua table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROMclause; this is not required, but otherwise the WHERE clause
will befairly useless.

Note

Thejoin condition of aninner join can bewritten either in the WHERE clause or inthe JO Nclause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JON b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROMclause is
probably not as portable to other SQL database management systems, even though it isin the SQL
standard. For outer joins there is no choice: they must be done in the FROM clause. The ON or
USI NG clause of an outer join is not equivalent to a WHERE condition, because it results in the
addition of rows (for unmatched input rows) as well asthe removal of rowsin the final result.

Here are some examples of WHERE clauses:

SELECT ... FROMfdt WHERE cl > 5

131

Queries

7.2.3.

SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 = fdt.cl +
10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t 2 WHERE c2 =

fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 > fdt.c1l)

f dt isthe table derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt is referenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column in
the derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. Thisexample shows how the column naming scope of an outer query extendsinto itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVI NG clause.

SELECT select |i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_r ef erence
[, grouping _colum_reference]...

The GROUP BY clauseis used to group together those rows in atable that have the same valuesin all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. Thisis done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM test1;

x|y
T .
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a

b

c

(3 rows)

132

Queries

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY X, becausethere
isno single valuefor the columny that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In generdl, if atableis grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressionsis:

=> SELECT x, sun{y) FROMtest1l GROUP BY x;
X | sum

c |
(3 rows

o
~ N 0

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a col-
umn. This can aso be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sun(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct _i d, p. nane, and p. pri ce must bein the GROUP BY clause
since they are referenced in the query select list (but see below). The column s. uni t s does not have to
be in the GROUP BY list sinceit is only used in an aggregate expression (sunt . . .)), which represents
the sales of aproduct. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, pr oduct _i d isthe primary key, then it would be enough to
group by pr oduct _i d in the above example, since name and price would be functionally dependent
on the product 1D, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to aso alow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

133

Queries

7.2.4.

Expressions in the HAVI NG clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sun{y) FROMtestl GROUP BY x HAVI NG sun{y) > 3;
X | sum

e
a | 4
b | 5
(2 rows)

=> SELECT x, sun{y) FROMtestl GROUP BY x HAVING x < 'c';
X | sum

e
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product _id, p.name, (sun{s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
WHERE s. date > CURRENT _DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the exampl e above, the WHERE clause is selecting rows by a column that is not grouped (the expression
isonly true for sales during the last four weeks), while the HAVI NG clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
asingle group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG). The same
istrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ Fmm e e e e e - - -
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

134

Queries

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ .
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columns or expressions and isinterpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set meansthat all rows
are aggregated down to asingle group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null valuesin result rows for grouping
setsin which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9.63.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)
representsthe given list of expressionsand all prefixes of the list including the empty list; thusit is equiv-

dent to

GROUPI NG SETS (

(el, e2, e3, ...),
.(.él, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

is equivalent to

GROUPI NG SETS (
(a b, c),
(a b)

135

Queries

AN AN AN AN AN
O T
(9]

— O N N N

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CuBE ((a, b), (c, d))

is equivalent to

GROUPI NG SETS (
(a b, c, d),

(a b).
(c, d),
()
)
and

ROLLUP (a, (b, c), d)

isequivalent to

GROUPI NG SETS (
(a b, c, d)
(a b, c),

(a)

()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
aGROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the effect is the
same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping sets
isthe cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to
GROUP BY GROUPI NG SETS (

(a, b, ¢, d), (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),

136

Queries

(a, d), (a, e)
)

When specifying multiple grouping itemstogether, the final set of grouping sets might contain duplicates.
For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

is equivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, b),
(a, c),
(a),
(a),
(a, c),
(a),
0)

)

If these duplicates are undesirable, they can be removed using the DI STI NCT clause directly on the
GROUP BY. Therefore:

GROUP BY DI STINCT ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (

(a, b, c),
(a, b),
(a, c),

(a),
()
)

Thisisnot the sameasusing SELECT DI STI NCT because the output rows may still contain duplicates.
If any of the ungrouped columns contains NULL, it will be indistinguishable from the NULL used when
that same column is grouped.

Note

The construct (a, b) isnormally recognized in expressions as a row constructor. Within the
GROUP BY clause, thisdoes not apply at thetop levels of expressions, and (a, b) isparsedasa
list of expressions as described above. If for some reason you need arow constructor in agrouping
expression, use RON a, b).

7.2.5. Window Function Processing

137

Queries

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these func-
tions are evaluated after any grouping, aggregation, and HAVI NG filtering is performed. That is, if the
guery uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions are the
group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated in
asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does
not uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTI TI ON BY or ORDER BY specifications. (In such cases a sort step is typicaly
required between the passes of window function evaluations, and the sort is not guaranteed to preserve
ordering of rowsthat its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered ac-
cording to one or another of the window functions PARTI TI ON BY/ORDER BY clauses. It is not rec-
ommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

Asshown in the previous section, the table expression in the SEL ECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

Select-List Iltems

Thesimplest kind of select listis* which emitsall columnsthat the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
asinthe HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, thl2.a, tbhll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT thbl1.*, tbhl2.a FROM. ..
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. Thevalue expression is evaluated once for each result row, with the row'sval ues substituted
for any column references. But the expressions in the select list do not have to reference any columnsin
the table expression of the FROMclause; they can be constant arithmetic expressions, for instance.

138

Queries

7.3.2.

7.3.3.

Column Labels

Theentriesin the select list can be assigned names for subsequent processing, such asfor usein an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS key word is usually optional, but in some cases where the desired column name matches a Post-
greSQL key word, you must write AS or double-quote the column name in order to avoid ambiguity. (Ap-
pendix C shows which key words require AS to be used as a column label.) For example, FROMis one
such key word, so this does not work:

SELECT a from b + ¢ AS sum FROM . ..
but either of these do:
SELECT a AS from b + ¢ AS sum FROM . ..

SELECT a "front, b + ¢ AS sum FROM . ..

For greatest safety against possible future key word additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select
list isthe one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this.

SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT thekey word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DI STINCT ON (expression [, expression ...]) select_list

139

Queries

Hereexpr essi on isanarhitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT ON processing
occurs after ORDER BY sorting.)

TheDI STI NCT ONclauseisnot part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueriesin
FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNI ON, | NTERSECT,
EXCEPT)

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gueryl UNI ON [ALL] query?2
qgueryl | NTERSECT [ALL] query2
gueryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.

UNI ON effectively appendstheresult of quer y 2 to theresult of quer y 1 (although thereis no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from itsresult, in the same way as DI STI NCT, unless UNI ON ALL isused.

| NTERSECT returnsall rowsthat are both in theresult of quer y1 andintheresult of quer y2. Duplicate
rows are eliminated unless| NTERSECT ALL is used.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (Thisis
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”’, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNI ON query2 EXCEPT query3

whichis equivalent to

(queryl UNI ON query2) EXCEPT query3
As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNI ON
and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two operators. Thus

queryl UNI ON query?2 | NTERSECT query3

means

140

Queries

gueryl UNI ON (query2 | NTERSECT query3)

You can aso surround an individual quer y with parentheses. This is important if the quer y needs to
use any of the clauses discussed in following sections, such as LI M T. Without parentheses, you'll get
a syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNI ON (SELECT x FROMy LIM T 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select _|i st
FROM t abl e_expr essi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An exampleis:

SELECT a, b FROMtablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the
sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller values
first, where“smaller” isdefined in terms of the < operator. Similarly, descending order is determined with
the > operator.

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort asif larger than any non-null value;
thatis, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

1 Actualy, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

141

Queries

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which is not the same as ORDER BY x
DESC, y DESC.

A sort _expressi on can aso bethe column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name hasto stand aone, that is,
it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROMtabl el ORDER BY sum + c; -- wong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. Thiswould only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in this
caseit is only permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select |i st
FROM t abl e_expr essi on
[ORDER BY ...]
[LIMT { number | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LI M T ALL is the same as omitting the LI M T clause, asisLI M T with a
NULL argument.

OFFSET saysto skip that many rows before beginning to return rows. OFFSET 0 isthe same as omitting
the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and L1 M T appear, then OFFSET rows are skipped before starting to count the LI M T
rows that are returned.

When using LI M T, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows. Y ou might be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takesL1 M T into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you givefor LI M T and OFFSET. Thus,
using different LI M T/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. Thisisnot abug; itisaninherent

142

Queries

conseguence of the fact that SQL does not promise to deliver the results of aquery in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressionsgeneratesarow inthetable. Thelistsmust all have the same humber
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules asfor UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, 'two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assignsthe namescol unml, col um?2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
soit'susually better to override the default names with atable dliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"two'), (3, 'three')) AS't
(numletter);
num| letter

1]

2] two

3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e _expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNI ON, or attach a
sort _specificati on(ORDER BY,LI M T, and/or OFFSET) toit. VALUES is most commonly used
as the data source in an | NSERT command, and next most commonly as a subquery.

143

Queries

For more information see VALUES.

7.8. W THQueries (Common Table Expres-
sions)

W TH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tablesthat exist just for one query. Each auxiliary statement in aW TH clause can bea SELECT, | NSERT,
UPDATE, or DELETE; and the W TH clauseitself is attached to a primary statement that can bea SELECT,
| NSERT, UPDATE, DELETE, or MERGE.

7.8.1. SELECT in WTH

Thebasic value of SELECT in W THisto break down complicated queriesinto simpler parts. An example
is:

W TH r egi onal _sal es AS (
SELECT regi on, SUM anount) AS total _sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT region
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT r egi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE region I N (SELECT regi on FROM t op_r egi ons)
GROUP BY region, product;

which displays per-product salestotalsin only thetop salesregions. TheW TH clause definestwo auxiliary
statementsnamed r egi onal _sal es andt op_r egi ons, wherethe output of r egi onal _sal es is
used int op_r egi ons and the output of t op_r egi ons isused in the primary SELECT query. This
example could have been written without W TH, but we'd have needed two level s of nested sub-SELECTS.
It'sabit easier to follow thisway.

7.8.2. Recursive Queries

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature that
accomplishes things not otherwise possiblein standard SQL. Using RECURSI VE, aW THquery can refer
to itsown output. A very simple example is this query to sum the integers from 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

144

Queries

)
SELECT sunm{n) FROMt;

The general form of a recursive W TH query is aways a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain a reference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and aso place them in a temporary working
table.

2. Solong asthe working tableis not empty, repeat these steps:

a. Evauate the recursive term, substituting the current contents of the working table for the recur-
sive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and rows that
duplicate any previousresult row. Include all remaining rowsin the result of therecursive query,
and also place them in atemporary inter mediate table.

b. Replacethe contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

While RECURSI VE alows queries to be specified recursively, internally such queries are evalu-
ated iteratively.

In the example above, the working table has just asingle row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful exampleis
this query to find all the direct and indirect sub-parts of aproduct, given only atable that showsimmediate
inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"'
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity * pr.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

7.8.2.1. Search Order

When computing atreetraversal using arecursivequery, you might want to order theresultsin either depth-
first or breadth-first order. This can be done by computing an ordering column aongside the other data

145

Queries

columns and using that to sort the results at the end. Note that this does not actually control in which order
the query evaluation visits the rows; that is as aways in SQL implementation-dependent. This approach
merely provides a convenient way to order the results afterwards.

To create adepth-first order, we compute for each result row an array of rows that we have visited so far.
For example, consider the following query that searchesatablet r ee using al i nk field:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, path || t.id
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

In the general case where more than one field needs to be used to identify arow, use an array of rows. For
example, if we needed to track fieldsf 1 and f 2:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAYRONt.f1l, t.f2)]
FROM tree t

UNI ON ALL
SELECT t.id, t.link, t.data, path || RONt.f1l, t.f2)
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

Tip

Omit the ROW) syntax in the common case where only onefield needsto betracked. Thisallows
asimple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

146

Queries

W TH RECURSI VE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, depth + 1
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY dept h;

To get astable sort, add data columns as secondary sorting columns.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order. How-
ever, thisis an implementation detail and it is perhaps unsound to rely on it. The order of the rows
within each level is certainly undefined, so some explicit ordering might be desired in any case.

There is built-in syntax to compute a depth- or breadth-first sort column. For example:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search_tree st
WHERE t.id = st.link
) SEARCH DEPTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

W TH RECURSI VE search_tree(id, link, data) AS (

SELECT t.id, t.link, t.data

FROM tree t

UNI ON ALL

SELECT t.id, t.link, t.data

FROMtree t, search_tree st

WHERE t.id = st.link
) SEARCH BREADTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

This syntax is internally expanded to something similar to the above hand-written forms. The SEARCH
clause specifies whether depth- or breadth first search is wanted, the list of columns to track for sorting,
and a column namethat will contain the result datathat can be used for sorting. That column will implicitly
be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead of
UNI ON ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
acycle does not involve output rows that are completely duplicate: it may be necessary to check just one

147

Queries

or afew fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider again the following
query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM sear ch_graph;

This query will loop if the | i nk relationships contain cycles. Because we require a “depth” output, just
changing UNI ON ALL to UNI ON'would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
i s_cycl e and pat h to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path) AS

(
SELECT g.id, g.link, g.data, O,

fal se,
ARRAY[g. i d]
FROM graph g

UNI ON ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
g.id = ANY(path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path) AS
(
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[RONg.f1, g.f2)]
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
RONg.f1, g.f2) = ANY(path),
path || RONg.f1l, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle

148

Queries

)
SELECT * FROM search_graph;

Tip

Omitthe RON() syntax in the common case where only onefield needsto be checked to recognize
acycle. Thisallowsasimplearray rather than acomposite-type array to be used, gaining efficiency.

Thereis built-in syntax to simplify cycle detection. The above query can also be written like this:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM search_graph;

and it will be internally rewritten to the above form. The CYCLE clause specifies first the list of columns
to track for cycle detection, then a column name that will show whether a cycle has been detected, and
finally the name of another column that will track the path. The cycle and path columns will implicitly
be added to the output rows of the CTE.

Tip

The cycle path column is computed in the same way as the depth-first ordering column show inthe
previous section. A query can have both a SEARCH and a CYCLE clause, but a depth-first search
specification and acycle detection specification would create redundant computations, so it'smore
efficient to just use the CYCLE clause and order by the path column. If breadth-first ordering is
wanted, then specifying both SEARCH and CYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in the
parent query. For example, this query would loop forever without theLI M T:

W TH RECURSI VE t (n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIM T 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
guery's results or join them to some other table, because in such cases the outer query will usually try to
fetch al of the W TH query's output anyway .

149

Queries

7.8.3. Common Table Expression Materialization

A useful property of W THqueriesisthat they are normally evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling W TH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a W TH query to avoid
redundant work. Ancther possible application is to prevent unwanted multiple evaluations of functions
with side-effects. However, the other side of this coin is that the optimizer is not able to push restrictions
from the parent query down into a multiply-referenced W TH query, since that might affect all uses of
the W TH query's output when it should affect only one. The multiply-referenced W TH query will be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

However, if a W TH query is non-recursive and side-effect-free (that is, it is a SELECT containing no
volatile functions) then it can be folded into the parent query, allowing joint optimization of the two query
levels. By default, this happens if the parent query references the W TH query just once, but not if it
referencesthe W THquery morethan once. Y ou can overridethat decision by specifying MATERI ALI ZED
to force separate calculation of the W TH query, or by specifying NOT MATERI ALI ZED to force it to
be merged into the parent query. The latter choice risks duplicate computation of the W TH query, but it
can still give anet savings if each usage of the W TH query needs only a small part of the W TH query's
full output.

A simple example of theserulesis

WTH w AS (
SELECT * FROM bi g_t abl e

)
SELECT * FROM w WHERE key = 123;

ThisW TH query will be folded, producing the same execution plan as

SELECT * FROM bi g_tabl e WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in

WTH w AS (
SELECT * FROM bi g_table
)
SELECT * FROMw AS wl JON w AS w2 ON wl. key = w2.ref
WHERE w2. key = 123;

the W TH query will be materialized, producing atemporary copy of bi g_t abl e that isthenjoined with
itself — without benefit of any index. This query will be executed much more efficiently if written as

W TH w AS NOT MATERI ALI ZED (
SELECT * FROM bi g_table
)
SELECT * FROMw AS w1l JON w AS w2 ON wl. key = w2.ref
WHERE wW2. key = 123;

so that the parent query's restrictions can be applied directly to scans of bi g_t abl e.

150

Queries

7.8.4.

An example where NOT MATERI ALI ZED could be undesirable is

WTH w AS (
SELECT key, very_expensive_function(val) as f FROM sone_t abl e

)
SELECT * FROMw AS w1l JON w AS w2 ON wlL.f = w2.f;

Here, materialization of the W TH query ensuresthat ver y_expensi ve_f unct i on isevaluated only
once per table row, not twice.

The examples above only show W TH being used with SELECT, but it can be attached in the same way
to | NSERT, UPDATE, DELETE, or MERGE. In each case it effectively provides temporary table(s) that
can be referred to in the main command.

Data-Modifying Statements in W TH

Y ou can use most data-modifying statements (I NSERT, UPDATE, or DELETE, but not MERGE) in W TH.
This allows you to perform several different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
WHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved rows;

This query effectively movesrowsfrom pr oduct s to pr oduct s_| og. The DELETE in W TH deletes
the specified rows from pr oduct s, returning their contents by means of its RETURNI NG clause; and
then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above exampleisthat the W TH clauseisattached to thel NSERT, not the sub-SELECT
withinthel NSERT. Thisisnecessary because data-modifying statementsare only allowed in W TH claus-
esthat are attached to the top-level statement. However, norma W TH visibility rules apply, so it is pos-
sible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown in
the example above. It is the output of the RETURNI NG clause, not the target table of the data-modifying
statement, that formsthe temporary tablethat can bereferred to by therest of the query. If adata-modifying
statement in W THlacks a RETURNI NGclause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is:

WTH t AS (
DELETE FROM f 00
)

DELETE FROM bar ;

This example would remove all rows from tablesf oo and bar . The number of affected rows reported to
the client would only include rows removed from bar .

151

Queries

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'’
UNI ON ALL
SELECT p.sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
VWHERE part | N (SELECT part FROM i ncl uded_parts);

This query would remove al direct and indirect subparts of a product.

Data-modifying statementsin W TH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is carried only
asfar asthe primary query demands its output.

The sub-statementsin W THare executed concurrently with each other and with the main query. Therefore,
when using data-modifying statementsin W TH, the order in which the specified updates actually happen
isunpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“se€” one another's effects on the target tables. This alleviates the effects of the unpredictability of the
actua order of row updates, and means that RETURNI NG data is the only way to communicate changes
between different W TH sub-statements and the main query. An example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in asingle statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. Thisalso applies
to deleting arow that was aready updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing W TH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

At present, any table used asthetarget of adata-modifying statement in W THmust not have a conditional
rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

152

Chapter 8. Data Types

PostgreSQL has arich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TY PE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the aternative names listed in the
“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition, some

internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description
bi gi nt int8 signed eight-byte integer
bi gseri al serial8 autoi ncrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] var bi t variable-length bit string
[(n)]
bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“ byte array”)
character [(n)] char [(n)] |fixed-length character string
character varying [(n)] var char variable-length character string
[(n)]
cidr IPv4 or IPv6 network address
circle circleon aplane
dat e calendar date (year, month, day)
doubl e precision float8 double precision floating-point number
(8 bytes)
i net IPv4 or IPv6 host address
i nt eger int,int4 signed four-byte integer
interval [fields] [(p)] time span
j son textual JSON data
j sonb binary JSON data, decomposed
line infinite line on aplane
| seg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr 8 MAC (Media Access Control) address
(EUI-64 format)
noney currency amount
nuneric [(p, S)] decimal [(p, |exact numeric of selectable precision
s) |
pat h geometric path on a plane
pg_lsn PostgreSQL Log Sequence Number

153

Data Types

Name Aliases Description

pg_snapshot user-level transaction 1D snapshot

poi nt geometric point on aplane

pol ygon closed geometric path on aplane

real float4 single precision floating-point number
(4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoi ncrementing two-byte integer

seri al serial4 autoincrementing four-byte integer

t ext variable-length character string

time [(p)] [without time time of day (no time zone)

zone |

time [(p)] with tine zone|tinetz time of day, including time zone

timestamp [(p)] [wthout date and time (no time zone)

tinme zone]

timestamp [(p)] with tine|tinmestanptz date and time, including time zone

zone

t squery text search query

t svect or text search document

t xi d_snapshot user-level transaction 1D snapshot (dep-
recated; seepg_snapshot)

uui d universally unique identifier

xm XML data

Compatibility

Thefollowing types (or spellings thereof) are specified by SQL: bi gi nt,bit,bit varying,
bool ean,char,charact er varyi ng,character,varchar,dat e,doubl e preci -
sion,integer,interval,nuneric,decinal,real,smallint,time (withorwith-
out time zone), t i mest anp (with or without time zone), xn .

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functionsare not invertible, i.e., the result of an output function might lose accuracy when
compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

154

Data Types

8.1.1.

8.1.2.

Table 8.2. Numeric Types

Name Storage Size | Description Range
smal | i nt 2 bytes small-range integer -32768 to +32767
i nteger 4 bytes typical choice for integer -2147483648 to
+2147483647
bi gi nt 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807
deci mal variable user-specified precision, ex- |up to 131072 digits before
act the decimal point; up to
16383 digits after the deci-
mal point
nuneric variable user-specified precision, ex- |up to 131072 digits before
act the decimal point; up to
16383 digits after the deci-
mal point
r eal 4 bytes variable-precision, inexact |6 decimal digits precision
doubl e precision 8 bytes variable-precision, inexact |15 decimal digits precision
snal | seri al 2 bytes small autoincrementing inte- | 1 to 32767
ger
seri al 4 bytes autoincrementing integer 1to 2147483647
bi gseri al 8 bytes large autoincrementing inte- | 1 to 9223372036854775807
ger

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

Integer Types

Thetypessnal | i nt,i nt eger,andbi gi nt storewhole numbers, that is, numberswithout fractional
components, of variousranges. Attemptsto store values outside of the allowed rangewill result in an error.

Thetypei nt eger isthe common choice, as it offers the best balance between range, storage size, and
performance. Thesnal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt type
is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifies the integer typesi nt eger (orint), smal |int, and bi gi nt. The type names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ can store numberswith avery large number of digits. It isespecially recommended for
storing monetary amounts and other quantities where exactnessis required. Calculations with nurnrer i ¢
valuesyield exact resultswhere possible, e.g., addition, subtraction, multiplication. However, calculations
onnurer i ¢ values are very ow compared to the integer types, or to the floating-point types described
in the next section.

We use the following terms below: The precision of anuner i ¢ isthetotal count of significant digitsin
thewhole number, that is, the number of digitsto both sides of the decimal point. The scale of anuneri ¢

155

Data Types

isthe count of decimal digitsinthefractional part, to theright of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To declare
acolumn of type nurrer i ¢ use the syntax:

NUMERI C(pr eci si on, scal e)

The precision must be positive, while the scale may be positive or negative (see below). Alternatively:

NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scal e creates an “unconstrained numeric” column in which numeric values of any
length can be stored, up to the implementation limits. A column of this kind will not coerce input values
to any particular scale, whereas numnrer i ¢ columns with a declared scale will coerce input values to that
scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision. We find this abit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum precision that can be explicitly specified in anuner i ¢ type declaration is 1000.
An unconstrained nuner i ¢ column is subject to the limits described in Table 8.2.

If the scale of avalue to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digitsto theleft of the decimal
point exceeds the declared precision minus the declared scale, an error is raised. For example, a column
declared as

NUMERI C(3, 1)
will round values to 1 decimal place and can store values between -99.9 and 99.9, inclusive.

Beginning in PostgreSQL 15, it is allowed to declare a nuner i ¢ column with a negative scale. Then
values will be rounded to theleft of the decimal point. The precision still represents the maximum number
of non-rounded digits. Thus, a column declared as

NUMERI C(2, - 3)

will round values to the nearest thousand and can store val ues between -99000 and 99000, inclusive. It is
also allowed to declare ascale larger than the declared precision. Such a column can only hold fractional
values, and it requires the number of zero digits just to the right of the decimal point to be at least the
declared scale minus the declared precision. For example, a column declared as

NUVERI C(3, 5)

will round values to 5 decimal places and can store values between -0.00999 and 0.00999, inclusive.

156

Data Types

Note

PostgreSQL permits the scale in anuner i ¢ type declaration to be any value in the range -1000
to 1000. However, the SQL standard requiresthe scaleto beintherangeOto pr eci si on. Using
scales outside that range may not be portable to other database systems.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared pre-
cision and scale of acolumn are maximums, not fixed allocations. (Inthissensethenuner i ¢ typeismore
akintovar char (n) thantochar (n).) The actua storage requirement istwo bytes for each group of
four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nuner i ¢ type has several special values:

Infinity
-Infinity
NaN

These are adapted from the |EEE 754 standard, and represent “infinity”, “negative infinity”, and “not-a
number”, respectively. When writing these values as constants in an SQL command, you must put quotes
around them, for example UPDATE table SET x = '-Infinity'.Oninput, these strings are
recognized in a case-insensitive manner. The infinity values can alternatively be spelledi nf and - i nf .

The infinity values behave as per mathematical expectations. For example, | nf i ni ty plus any finite
valueequals! nfi ni ty,asdoesl nfinityplusl nfinity;butl nfinityminuslnfinity yields
NaN (not a number), because it has no well-defined interpretation. Note that an infinity can only be stored
in an unconstrained nuner i ¢ column, because it notionally exceeds any finite precision limit.

The NaN (not anumber) valueis used to represent undefined cal cul ational results. In general, any operation
with a NaN input yields another NaN. The only exception is when the operation's other inputs are such
that the same output would be obtained if the NaN were to be replaced by any finite or infinite numeric
value; then, that output value is used for NaN too. (An example of this principleis that NaN raised to the
zero power yields one.)

Note

In most implementations of the “not-a-number” concept, NaNis not considered equal to any other
numeric value (including NaN). In order to allow nuner i ¢ valuesto be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

Thetypesdeci nal and nuneri ¢ are equivaent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type rounds ties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT X,
round(x: : numeric) AS numround,
round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
X | numround | dbl _round

157

Data Types

8.1.3.

______ e,
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0
0.5 | 1] 0
1.5 | 2| 2
2.5 | 3 2
3.5 | 4 | 4

(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on areinexact, variable-precision numeric types. On all
currently supported platforms, these types are implementations of IEEE Standard 754 for Binary Float-
ing-Point Arithmetic (single and double precision, respectively), to the extent that the underlying proces-
sor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these er-
rors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the nuner i c type
instead.

« If youwant to do complicated cal culationswith these typesfor anything important, especialy if yourely
on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

» Comparing two floating-point values for equality might not always work as expected.

Onall currently supported platforms, ther eal typehasarange of around 1E-37 to 1E+37 with aprecision
of at least 6 decimal digits. The doubl e pr eci si on type has a range of around 1E-307 to 1E+308
with aprecision of at least 15 digits. Vaues that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two
representable values, in order to avoid a widespread bug where input routines do not properly respect the
round-to-nearest-even rule.) Thisvalue will use at most 17 significant decimal digitsfor f | oat 8 values,
and at most 9 digitsfor f | oat 4 values.

Note

This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of PostgreSQL, and to all ow the output precision
to be reduced, the extra float_digits parameter can be used to select rounded decimal output instead. Set-
ting avalue of O restoresthe previous default of rounding thevalueto 6 (for f | oat 4) or 15 (for f | oat 8)
significant decimal digits. Setting a negative value reduces the number of digits further; for example -2
would round output to 4 or 13 digits respectively.

158

Data Types

8.1.4.

Any value of extra float_digits greater than O selects the shortest-precise format.

Note

Applicationsthat wanted precise values have historically had to set extra float_digitsto 3to obtain
them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the |EEE 754 specia values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. When writing these values as constantsin an SQL command, you must put quotes around them, for
example UPDATE tabl e SET x = '-Infinity'.Oninput, thesestringsare recognizedin acase-
insensitive manner. The infinity values can alternatively be spelled i nf and-i nf .

Note

| EEE 754 specifiesthat NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Post-
greSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notationsf | oat andf | oat (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) tofl oat (24) asselectingther eal type, whilef | oat (25) tof | oat (53) selectdou-
bl e preci si on.Vauesof p outside the allowed range draw an error. f | oat with no precision spec-
ified istaken to mean doubl e preci si on.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column. Another
way isto use the SQL -standard identity column feature, described at CREATE TABLE.

The datatypes snal | seri al , seri al and bi gseri al are not true types, but merely a notational
conveniencefor creating uniqueidentifier columns (similar tothe AUTO | NCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)

is equivalent to specifying:

159

Data Types

CREATE SEQUENCE t abl ename_col name_seq AS i nteger;
CREATE TABLE t abl enane (
col name i nteger NOT NULL DEFAULT nextval ('tabl ename_col name_seq')
)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl ename. col nane;

Thus, we have created an integer column and arranged for its default val uesto be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that anull value cannot be inserted. (In most cases
you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note

Because snmal | seri al , seri al and bi gseri al are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up” even if arow containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See next val () in Section 9.17 for details.

Toinsert the next value of the sequenceintotheser i al column, specify that theser i al column should
be assigned its default value. This can be done either by excluding the column from the list of columnsin
the | NSERT statement, or through the use of the DEFAULT key word.

Thetypenamesseri al andseri al 4 are equivalent: both createi nt eger columns. The type names
bi gseri al andseri al 8 work the sameway, except that they createabi gi nt column. bi gseri al
should be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The
typenamessnal | seri al andseri al 2 alsowork the sameway, except that they createasmal | i nt
column.

Thesequencecreated for aseri al columnisautomatically dropped when the owning columnisdropped.
Y ou can drop the sequence without dropping the column, but thiswill force removal of the column default
expression.

8.2. Monetary Types

The noney type stores a currency amount with afixed fractional precision; see Table 8.3. The fractional
precision is determined by the database'slc_monetary setting. The range shown in the table assumesthere
are two fractiona digits. Input is accepted in a variety of formats, including integer and floating-point
literals, as well astypical currency formatting, such as' $1, 000. 00" . Output is generaly in the latter
form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size | Description Range
noney 8 bytes currency amount -92233720368547758.08 to
+92233720368547758.07

Since the output of this datatypeislocale-sensitive, it might not work to load noney datainto a database
that has a different setting of | c_nobnet ary. To avoid problems, before restoring a dump into a new
database make surel c_npnet ar y hasthe same or equivalent value as in the database that was dumped.

160

Data Types

Vauesof thenuneri c,i nt,andbi gi nt datatypescan becasttonmoney. Conversion fromther eal
anddoubl e preci si on datatypes can be done by casting to nuner i c first, for example:

SELECT '12.34'::float8::numeric::noney;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A noney value can be cast to nuner i ¢ without loss of precision. Conversion to other types could po-
tentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of anoney value by an integer valueis performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the noney value to nuneri ¢
before dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.)
When anoney valueisdivided by another noney value, theresultisdoubl e preci si on (i.e, apure
number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n),bpchar(n) fixed-length, blank-padded

bpchar variable unlimited length, blank-trimmed
t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL .

SQL definestwo primary character types: char act er varyi ng(n) andchar act er (n) ,wherenis
apositive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to storealonger string into acolumn of thesetypeswill resultin an error, unlessthe excesscharactersareall
spaces, inwhich casethe string will be truncated to the maximum length. (This somewhat bizarre exception
isrequired by the SQL standard.) However, if oneexplicitly castsavaluetochar act er varyi ng(n)
or char act er (n), then an over-length value will be truncated to n characters without raising an error.
(Thistoo is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type char act er will be space-padded; values of type char act er varyi ng will ssmply
store the shorter string.

In addition, PostgreSQL providesthet ext type, which stores strings of any length. Although thet ext
typeisnot in the SQL standard, severa other SQL database management systems have it as well. t ext
is PostgreSQL's native string data type, in that most built-in functions operating on strings are declared
totakeor returnt ext not char act er varyi ng. For many purposes, char act er varyi ng acts
as though it were adomain over t ext .

Thetypenamevar char isandiasfor char act er varyi ng,whilebpchar (with length specifier)
andchar arealiasesfor char act er. Thevar char andchar aiasesaredefined inthe SQL standard,;

bpchar isaPostgreSQL extension.

161

Data Types

If specified, thelength n must be greater than zero and cannot exceed 10,485,760. If char act er vary-
i ng (or var char) is used without length specifier, the type accepts strings of any length. If bpchar
lacks alength specifier, it aso accepts strings of any length, but trailing spaces are semantically insignif-
icant. If char act er (or char) lacks a specifier, it isequivalenttochar act er (1) .

Valuesof typechar act er arephysically padded with spacesto the specified width n, and are stored and
displayed that way. However, trailing spaces aretreated as semantically insignificant and disregarded when
comparing two values of type char act er . In collations where whitespace is significant, this behavior
can produce unexpected results; for example SELECT 'a ':: CHAR(2) collate "C' < E a
\'n':: CHAR(2) returnstrue, even though Clocale would consider a space to be greater than anewline.
Trailing spaces are removed when converting achar act er valueto one of the other string types. Note
that trailing spaces are semantically significant in char act er varyi ng andt ext vaues, and when
using pattern matching, that is LI KE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character with
code zero (sometimes called NUL) cannot be stored. For more information refer to Section 24.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of char act er . Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the datatype declaration isless than that. It wouldn't be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quitedifferent. If you desireto store long stringswith no specific upper limit, uset ext orchar act er
var yi ng without alength specifier, rather than making up an arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While char act er (n) has performance advantages in some
other database systems, there is no such advantage in PostgreSQL ; in fact char act er (n) is
usually the slowest of the three because of its additional storage costs. In most situationst ext or
charact er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROM test1; --
a | char_length

______ I,

ok | 2

CREATE TABLE test2 (b varchar(5));

162

Data Types

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good)

I NSERT | NTO test2 VALUES ('too |long');

ERROR: value too long for type character varying(5)

I NSERT I NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Il ength(b) FROM test2;

b | char_length
_______ I,
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

Therearetwo other fixed-length character typesin PostgreSQL , shownin Table 8.5. Theseare not intended
for genera-purpose use, only for use in the internal system catalogs. The nane type is used to store
identifiers. Itslength is currently defined as 64 bytes (63 usable characters plus terminator) but should be
referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
is therefore adjustable for special uses); the default maximum length might change in a future release.
Thetype" char" (note the quotes) is different from char (1) in that it only uses one byte of storage,
and therefore can store only a single ASCII character. It is used in the system catalogs as a simplistic
enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

8.4. Binary Data Types

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

byt ea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically alow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and also
disallow any other octet values and sequences of octet values that are invalid according to the database's
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes’, whereas character strings are appropriate for
storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape”’ format. Both of these are always accepted on input. The output format depends on the configu-

163

Data Types

8.4.1.

8.4.2.

ration parameter bytea output; the default is hex. (Note that the hex format was introduced in PostgreSQL
9.0; earlier versions and some tools don't understand it.)

The SQL standard defines adifferent binary string type, called BLOB or Bl NARY LARGE OBJECT. The
input format is different from byt ea, but the provided functions and operators are mostly the same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some contexts,
theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the hexadecimal
digits can be either upper or lower case, and whitespace is permitted between digit pairs (but not within
adigit pair nor in the starting \ x sequence). The hex format is compatible with a wide range of external
applicationsand protocols, and it tendsto be faster to convert than the escape format, soitsuseis preferred.

Example:

SET bytea output = 'hex';

SELECT '\ xDEADBEEF' : : byt ea;
byt ea

\ xdeadbeef

byt ea Escape Format

The “escape” format is the traditional PostgreSQL format for the byt ea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practiceit isusually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and precedeit
by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented by double back-
slashes. Table 8.7 shows the characters that must be escaped, and gives the alternative escape sequences
where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet Description Escaped I nput Example Hex Representa-
Value Representation tion

0 zero octet "\ 000’ "\ 000" :: bytea \ x00

39 single quote "ttt or'\047" |''''::bytea \ x27

92 backslash "\\" or'\134"' |"\\'::bytea \ x5¢

0to 31 and 127 to |“non-printable’ "\ xxx" (octa "\001'::bytea \ x01

255 octets value)

The requirement to escape non-printable octets varies depending on local e settings. In some instances you
can get away with leaving them unescaped.

164

Data Types

Thereason that single quotes must be doubled, asshownin Table 8.7, isthat thisistruefor any string literal
in an SQL command. The generic string-literal parser consumes the outermost single quotes and reduces
any pair of single quotes to one data character. What the byt ea input function sees is just one single
guote, which it treats as a plain data character. However, the byt ea input function treats backslashes as
special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-print-
able” octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea out put = 'escape';

SELECT 'abc \ 153\ 154\ 155 \ 052\ 251\ 124" :: byt ea;
byt ea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet Description Escaped Output |Example Output Result
Value Representation
92 backslash \\ '\134':: bytea \\

0to31and 127to |“non-printable” |\ xxx (octal val- |'\ 001" :: bytea \ 001
255 octets ue)

32t0 126 “printable” octets |client character set|' \ 176' : : byt ea ~
representation

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of es-
caping and unescaping byt ea strings. For example, you might also have to escape line feeds and carriage
returnsif your interface automatically trandates these.

8.5. Date/Time Types

PostgreSQL supportsthe full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value Resolution
timestanp |8bytes bothdateand [4713BC 294276 AD 1 microsecond
[(p)] time (no time

[with- Zone)

out tine

zone |

165

Data Types

Name Storage Size | Description Low Value High Value Resolution
ti mestanp |8 bytes bothdateand [4713BC 294276 AD 1 microsecond
[(p)] time, with time
with tinme zone
zone
date 4 bytes date (notime of {4713 BC 5874897 AD 1 day

day)
tinme 8 bytes time of day (no |00:00:00 24:00:00 1 microsecond
[(p)] date)
[with-
out tine
zone |
time 12 bytes time of day (no |00:00:00+1559 |24:00:00-1559 |1 microsecond
[(p)] date), with time
with time zone
zone
i nterval 16 bytes time interval -178000000 178000000 1 microsecond
[fields] years years
[(p)]

Note

The SQL standard requires that writing justt i mest anp beequivaenttoti mestanp wit h-
out time zone, and PostgreSQL honorsthat behavior. t i mest anpt z is accepted asan ab-
breviationforti mestanp with tinme zone;thisisaPostgreSQL extension.

time,tinestanp,andinterval accept an optiona precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The

allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which isto restrict the set of stored fields by writing one

of these phrases:

YEAR
MONTH
DAY
HOUR

M NUTE
SECOND

YEAR TO MONTH

DAY TO HOUR

DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Note that if both fi el ds and p are specified, the f i el ds must include SECOND, since the precision
applies only to the seconds.

166

Data Types

8.5.1.

Thetypetime with tine zone isdefined by the SQL standard, but the definition exhibits proper-
ties which lead to questionable usefulness. In most cases, a combination of dat e, ti ne, ti nmest anp
without tine zone,andtinestanp with tinme zone should provide a complete range of
date/time functionality required by any application.

Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YND to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optiona precision specification giving the number of fractional digitsin the seconds field.
Precision can be specified for ti me, ti mest anp, and i nt er val types, and can range from 0 to 6.
If no precision is specified in a constant specification, it defaults to the precision of the literal value (but
not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description

1999-01-08 1SO 8601; January 8 in any mode (recommended format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode; Feb-
ruary 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 1SO 8601; January 8, 1999 in any mode

990108 1SO 8601; January 8, 1999 in any mode

167

Data Types

8.5.1.2.

Example Description
1999.008 year and day of year
J2451187 Julian date

January 8, 99 BC year 9 BC
Times

The time-of-day typesaretime [(p)] without tine zoneandtime [(p)] with
time zone.tine aoneisequivalenttoti me without time zone.

Vaidinput for these types consists of atime of day followed by an optional time zone. (See Table 8.11 and
Table8.12.) If atimezoneisspecifiedintheinputfort i me wi t hout ti nme zone,itisslentlyignored.
You can aso specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as Arrer i ca/ New_Yor K. In this case specifying the date is required in
order to determine whether standard or daylight-savings time applies. The appropriate time zone offset is
recordedinthetine with tine zone valueandisoutput as stored; it is not adjusted to the active
time zone.

Table8.11. Time Input

Example Description

04: 05: 06. 789 SO 8601

04: 05: 06 SO 8601

04: 05 SO 8601

040506 SO 8601

04: 05 AM same as 04:05; AM does not affect val-
ue

04: 05 PM same as 16:05; input hour must be <= 12

04: 05: 06. 789-8 ISO 8601, with time zone as UTC offset

04: 05: 06- 08: 00 ISO 8601, with time zone as UTC offset

04: 05-08: 00 ISO 8601, with time zone as UTC offset

040506- 08 SO 8601, with time zone as UTC offset

040506+0730 I SO 8601, with fractional-hour time
zone as UTC offset

040506+07: 30: 00 UTC offset specified to seconds (not al-
lowed in SO 8601)

04: 05: 06 PST time zone specified by abbreviation

2003-04-12 04: 05: 06 Americal/ New_York time zone specified by full name

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)

Arer i ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification

-8:00: 00 UTC offset for PST

168

Data Types

Example Description

-8:00 UTC offset for PST (1SO 8601 extended format)
- 800 UTC offset for PST (1SO 8601 basic format)

-8 UTC offset for PST (1SO 8601 basic format)
zul u Military abbreviation for UTC

z Short form of zul u (alsoin 1SO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, ADYBC can appear before the time
zone, but thisis not the preferred ordering.) Thus:

1999-01- 08 04: 05: 06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i nest anp wi t hout tinme zoneandtinestanp with tine
zone literalsby the presence of a“+” or “-" symbol and time zone offset after the time. Hence, according
to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54'

isati nestanp wi thout tine zone,while

TI MESTAMP ' 2004- 10- 19 10: 23: 54+02'

isatimestanp with tine zone. PostgreSQL never examines the content of alitera string before
determining itstype, and therefore will treat both of theaboveast i mest anp wi t hout tine zone.
To ensurethat aliteral istreated ast i mestanp with ti ne zone, giveit the correct explicit type:

TI MESTAMP W TH TI ME ZONE ' 2004- 10- 19 10: 23: 54+02'

In a literal that has been determined to beti nestanp wi thout tine zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time fields
in the input value, and is not adjusted for time zone.

Fortimestanp with tinme zone,theinternaly stored valueis awaysin UTC (Universal Coor-
dinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit

169

Data Types

time zone specified is converted to UTC using the appropriate offset for that time zone. If no time zone
is stated in the input string, then it is assumed to be in the time zone indicated by the system's TimeZone
parameter, and is converted to UTC using the offset for thet i nezone zone.

Whenati nestanp wi th ti me zone vaueisoutput, itisalwaysconverted from UTC to the current
t i mezone zone, and displayed as local time in that zone. To see the time in another time zone, either
changet i nezone or usethe AT Tl ME ZONE construct (see Section 9.9.4).

Conversions betweent i nestanp wi thout tinme zoneandtinmestanp with tinme zone
normally assume that theti nestanp without time zone vaue should be taken or given as
t i mezone loca time. A different time zone can be specified for the conversion using AT Tl ME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13. The
vauesinfinity and-infinity are specialy represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
asthey areread.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8.13. Special Date/Time I nputs

Input String Valid Types Description

epoch date,ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date,ti nmestanp later than all other time stamps

-infinity dat e, ti nestanp earlier than all other time stamps

now date,time,ti nestanp current transaction's start time

t oday date,ti nest anp midnight (00: 00) today

t onor r ow date,ti nmestanp midnight (00: 00) tomorrow

yest er day dat e, ti nestanp midnight (00: 00) yesterday

all balls time 00:00:00.00 UTC

The following SQL -compatible functions can also be used to obtain the current time value for the corre-
sponding data type: CURRENT _DATE, CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME, LO-
CALTI MESTAMP. (See Section 9.9.5.) Note that these are SQL functions and are not recognized in data
input strings.

Caution

Whiletheinput stringsnow, t oday, t onor r ow, and yest er day arefineto useininteractive
SQL commands, they can have surprising behavior when the command is saved to be executed
later, for example in prepared statements, views, and function definitions. The string can be con-
verted to a specific time value that continues to be used long after it becomes stale. Use one of
the SQL functions instead in such contexts. For example, CURRENT_DATE + 1 is safer than
"tonorrow :: date.

8.5.2. Date/Time Output

170

Data Types

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default isthe 1SO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL" output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the dat e and t i e types is generally
only the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only valuesin SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO SO 8601, SQL standard |[1997-12-17 07: 37: 16- 08

SQL traditiona style 12/ 17/ 1997 07:37:16.00 PST

Post gres original style Wed Dec 17 07:37:16 1997 PST

Ger man regional style 17.12.1997 07:37:16.00 PST
Note

I SO 8601 specifiesthe use of uppercase letter T to separate the date and time. PostgreSQL accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339' as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQ., Dw day/rmont h/year 17/ 12/ 1997 15:37:16.00 CET
SQ., MY nmont h/day/year 12/ 17/ 1997 07:37:16.00 PST
Post gres, DWY day/nont h/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number
of hours, else as hh:rmif it is an integral number of minutes, else as hh:mmss. (The third case is not
possiblewith any modern time zone standard, but it can appear when working with timestampsthat predate
the adoption of standardized time zones.) In the other date styles, the time zone is shown as an al phabetic
abbreviation if one isin common use in the current zone. Otherwise it appears as a signed numeric offset
in 1SO 8601 basic format (hh or hhnm).

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gr esql . conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting functiont o_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

1 https://datatracker.ietf.org/doc/html/rfc3339

171

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Data Types

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
IANA (Olson) time zone database for information about historical time zonerules. For timesin the future,
the assumption isthat the latest known rulesfor agiven time zonewill continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

 Although the dat e type cannot have an associated time zone, thet i ne type can. Time zones in the
real world have little meaning unless associated with a date as well as atime, since the offset can vary
through the year with daylight-saving time boundaries.

» The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using thetypeti ne wi t h ti me zone (thoughitissupported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example Aner i ca/ New_Yor k. The recognized time zone names are listed
inthepg_ti nmezone_names view (see Section 54.32). PostgreSQL usesthewidely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

» A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rulesaswell. The recognized abbreviationsarelistedinthepg _ti mezone_abbr evs view (see Sec-
tion 54.31). You cannot set the configuration parameters TimeZone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TI ME ZONE
operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications, as described in Section B.5. This option isnot normally preferable to using anamed time
zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply alocal daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014- 06- 04 12: 00 Ameri ca/ New_Yor k represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So
2014- 06- 04 12: 00 EDT specifiesthat sametimeinstant. But 2014- 06- 04 12: 00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect on
that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most

172

Data Types

8.5.4.

recently meant) on the specified date; but, as with the EST example above, thisis not necessarily the same
aslocal civil time on that date.

In al cases, timezone names and abbreviations are recognized case-insensitively. (Thisis a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from configu-
ration filesstoredunder . . . / share/ti mezone/ and.../share/ti mezoneset s/ of theinstal-
lation directory (see Section B.4).

The TimeZone configuration parameter can be set inthefilepost gr esql . conf, or in any of the other
standard ways described in Chapter 20. There are also some special waysto set it:

* The SQL command SET Tl ME ZONE setsthetime zonefor the session. Thisisan alternative spelling
of SET TI MEZONE TOwith amore SQL -spec-compatible syntax.

» The PGTZ environment variableis used by libpg clientsto send aSET Tl ME ZONE command to the
server upon connection.

Interval Input

i nt erval values can bewritten using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

wherequant i ty isanumber (possibly signed); uni t ismi crosecond, ni |l i second, second,
m nut e, hour, day, week, nont h, year, decade, century, m | | enni um or abbreviations or
pluralsof theseunits; di r ect i on canbeago or empty. Theat sign (@ isoptional noise. The amounts of
the different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax isalso used for interval output, if IntervalStyle isset to post gr es_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-
ample," 1 12:59: 10" isreadthesameas' 1l day 12 hours 59 nin 10 sec'.Also a
combination of years and months can be specified with a dash; for example' 200- 10" isread the same
as' 200 years 10 nont hs'. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when | nt er val Styl e issettosql _st andar d.)

Interval values can also be written as SO 8601 time intervals, using either the “format with designators’
of the standard's section 4.4.3.2 or the “ alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]
The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order, but

units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether it is
before or after T.

Table 8.16. | SO 8601 Interval Unit Abbreviations

Abbreviation M eaning

Y Years

173

Data Types

Abbreviation M eaning

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)
Seconds

nlzlz]ols]z

In the alternative format:

P [years-nonths-days] [T hours:ninutes:seconds]

the string must begin with P, and a T separates the date and time parts of theinterval. The values are given
as numbers similar to 1SO 8601 dates.

When writing an interval constant with af i el ds specification, or when assigning a string to an interval
column that was defined with af i el ds specification, the interpretation of unmarked quantities depends
onthefi el ds. For example | NTERVAL '1' YEARisread as1 year, whereas | NTERVAL ' 1
means 1 second. Also, field values “to the right” of the least significant field allowed by the f i el ds
specification are silently discarded. For example, writing | NTERVAL ' 1 day 2:03: 04" HOUR TO
M NUTE resultsin dropping the seconds field, but not the day field.

According tothe SQL standard all fields of aninterval value must have the same sign, so aleading negative
sign applies to al fields; for example the negative sign in the interval literal ' -1 2: 03: 04' applies
to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and
traditionally treats each field in the textual representation asindependently signed, so that the hour/minute/
second part is considered positive in thisexample. If | nt er val Styl e issettosql _st andar d then
aleading sign is considered to apply to al fields (but only if no additional signs appear). Otherwise the
traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an explicit
signto each field if any field is negative.

Internally, i nt er val values are stored as three integral fields: months, days, and microseconds. These
fields are kept separate because the number of daysin amonth varies, while aday can have 23 or 25 hours
if adaylight savingstimetransitionisinvolved. Aninterval input string that uses other unitsisnormalized
into this format, and then reconstructed in a standardized way for output, for example:

SELECT ' 2 years 15 nonths 100 weeks 99 hours 123456789
mlliseconds'::interval;
i nt erval

3 years 3 nons 700 days 133:17:36.789

Here weeks, which are understood as“ 7 days’, have been kept separate, while the smaller and larger time
units were combined and normalized.

Input field values can havefractional parts, for example' 1. 5 weeks' or' 01: 02: 03. 45' . However,
becausei nt er val internally storesonly integral fields, fractional values must be converted into smaller
units. Fractional parts of units greater than months are rounded to be an integer number of months, e.g.
'"1.5 years' becomes'l year 6 nons'. Fractional parts of weeks and days are computed to
be an integer number of days and microseconds, assuming 30 days per month and 24 hours per day, e.g.,

174

Data Types

8.5.5.

"1.75 nonths' becomesl non 22 days 12: 00: 00. Only seconds will ever be shown as
fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table 8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 nonths 3 days 4 hours 5 |Traditiona Postgresformat: 1 year 2 months 3

m nutes 6 seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5MES SO 8601 “format with designators’: same mean-
ing as above

PO001- 02- 03T04: 05: 06 SO 8601 “alternative format” : same meaning as
above

Interval Output

As previously explained, PostgreSQL storesi nt er val values as months, days, and microseconds. For
output, the months field is converted to years and months by dividing by 12. The daysfield is shown as-
is. The microseconds field is converted to hours, minutes, seconds, and fractional seconds. Thus months,
minutes, and seconds will never be shown as exceeding the ranges 0-11, 0-59, and 0-59 respectively,
while the displayed years, days, and hours fields can be quitelarge. (Thej usti fy_days andj usti -

fy_hour s functions can be used if it is desirable to transpose large days or hours values into the next
higher field.)

The output format of the interval type can be set to one of the four stylessql _st andar d, post gr es,
post gres_verbose,ori so_8601, using thecommand SET i nt er val styl e. Thedefault isthe
post gr es format. Table 8.18 shows examples of each output style.

Thesql _st andar d style produces output that conformsto the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output 1ooks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to 8.4
when the Dat eSt yl| e parameter was set to non-1 SO output.

The output of thei so_8601 style matches the “format with designators’ described in section 4.4.3.2 of
the 1SO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-TimelInterval Mixed Interval
sql _standard 1-2 3 4:05:06 -1-2 +3-4:05:06

175

Data Types

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval

post gres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04.05:06

post gres_verbose |@ 1year 2mons @ 3 days4 hours5 mins | @ 1 year 2 mons -3 days

6 secs 4 hours 5 mins 6 secs

ago

i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3D
T-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL type bool ean; see Table 8.19. The bool ean type can have
severa states: “true”, “false”, and athird state, “ unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.
The datatype input function for type bool ean accepts these string representations for the “true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace is
ignored, and case does not matter.

The datatype output function for type bool ean aways emitseithert or f , as shown in Example 8.2.

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a bool ean, b text);

| NSERT | NTO test1l VALUES (TRUE, 'sic est');
| NSERT | NTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;

176

Data Types

a | b
t | sic est

Thekey words TRUE and FAL SE arethe preferred (SQL -compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but thisis
not so for NULL because that can have any type. So in some contexts you might have to cast NULL to
bool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a string-
literal Boolean value in contexts where the parser can deduce that the literal must be of type bool ean.

8.7. Enumerated Types

8.7.1.

8.7.2.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enumtypes supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

CREATE TYPE mobod AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nmood nood
);
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current_nood = ' happy';
name | current_nood

______ e,
Moe | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type
was created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES (' Curly', 'ok');

SELECT * FROM person WHERE current _nood > 'sad';
nane | current_nood

177

Data Types

8.7.3.

8.7.4.

Curly | ok
(2 rows)

SELECT * FROM person WHERE current _nood > 'sad' ORDER BY current_npod;
nane | current_nood

SELECT nane

FROM per son

WHERE current _mpood = (SELECT M N(current_nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nteger,

happi ness happi ness
)
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, hol i days. num weeks FROM person, holidays

WHERE per son. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person. nane, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

Implementation Details

Enum labels are case sensitive, so ' happy' isnot the same as' HAPPY' . White space in the labels is
significant too.

178

Data Types

Although enum typesare primarily intended for static sets of values, thereis support for adding new values
to an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot be removed
from an enum type, nor can the sort ordering of such values be changed, short of dropping and re-creating
the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label islimited by the
NANMEDATALEN setting compiled into PostgreSQL ; in standard builds this means at most 63 bytes.

The trangdlations from internal enum values to textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

8.8.1.

8.8.2.

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL.

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane x,y)

line 32 bytes Infinite line {A,B,C}

| seg 32 bytes Finite line segment ((x1,yD),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to polygon) ((x1yD),...)

pat h 16+16n bytes Open path [(x1yl),..]

pol ygon 40+16n bytes Polygon (similar to closed path) ((x1yD),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

A rich set of functions and operatorsis available to perform various geometric operations such as scaling,
tranglation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Points are the fundamental two-dimensional building block for geometric types. Values of type poi nt
are specified using either of the following syntaxes:

(x,vy)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C =0, where A and B are not both zero. Values of
typel i ne areinput and output in the following form:

179

Data Types

8.8.3.

8.8.4.

8.8.5.

{ A B C}

Alternatively, any of the following forms can be used for input:

x1, yl) , (x2,
x1, yl) , (x2,
x1, yl) , (x2,
x1, yl , X2 ,

—~~r—
—~ A~~~
<K<K <K<
NNDNDN
— — —
— —

where (x1, y1) and (x2, y2) aretwo different points on theline.

Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[(x1, y1l) , (x2,y2)]
((x1, y1) , (x2,vy2))
(x1, y1) , (x2, y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) arethe end points of the line segment.

Line segments are output using the first syntax.

Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, yl), (x2,vy2))
(x1, yl) , (x2,vy2)
x1, yl X2, y2

where (x1, y1) and (x2, y2) areany two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin the
list are considered not connected, or closed, where the first and last points are considered connected.

Values of type pat h are specified using any of the following syntaxes:

[(x2, y1), ..., (xn, yn)]
((x¥1,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)
(x1, y1 Xn , yn)

180

Data Types

8.8.6.

8.8.7.

x1, yl s Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([]) indicate
an open path, while parentheses (()) indicate aclosed path. When the outermost parentheses are omitted,
asin the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths; the essential difference is that a polygon is considered to include the area within it, while
apathisnot.

Vaues of type pol ygon are specified using any of the following syntaxes:

((x¥1,vy1), ... , (xn, yn))
(x1, vy1), ... , (xn, yn)
(x1, yl v e Xn , yn)
x1, vyl v e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

Circles

Circles are represented by a center point and radius. Values of type ci r cl e are specified using any of
the following syntaxes:

—~ A

—~ A~~~

X X X X
_~ = = =

y
y
y
y

where (X, y) isthe center point and r isthe radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers datatypesto store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

181

Data Types

8.9.1.

8.9.2.

Name Storage Size Description

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sortingi net or ci dr datatypes, IPv4 addresseswill always sort before | Pv6 addresses, including
| Pv4 addresses encapsulated or mapped to | Pv6 addresses, such as::10.2.3.4 or ::ffff:10.4.3.2.

| net

Thei net type holds an IPv4 or IPv6 host address, and optionally its subnet, al in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If the
netmask is 32 and the addressis |1 Pv4, then the value does not indicate a subnet, only asingle host. In 1Pv6,
the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to accept
only networks, you should usethe ci dr typerather thani net .

The input format for thistype isaddr ess/ y where addr ess isan IPv4 or IPv6 addressand y is the
number of bitsin the netmask. If the/ y portion is omitted, the netmask is taken to be 32 for |Pv4 or 128
for IPv6, so the value representsjust asingle host. On display, the/ y portion is suppressed if the netmask
specifies asingle host.

cil dr

Theci dr typeholdsan IPv4 or |Pv6 network specification. Input and output formatsfollow ClassessIn-
ternet Domain Routing conventions. Theformat for specifying networksisaddr ess/ y whereaddr ess
is the network's lowest address represented as an |1Pv4 or IPv6 address, and y is the number of bitsin the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It isan error
to specify anetwork address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table8.22. ci dr Typelnput Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001.:4f8:3:ba:2e0:81f- 2001:4f8:3:ba:2€0:81f- 2001.:4f8:3:ba:2e0:81f-
f.fe22:d1f1/128 f:-fe22:d1f1/128 f.fe22:d1f1/128

182

Data Types

8.9.3.

8.9.4.

8.9.5.

ci dr Input ci dr Output abbrev(cidr)
ffff:1.2.3.0/120 +ffff:1.2.3.0/120 ffff:1.2.3/120
ffff:1.2.3.0/128 ffff:1.2.3.0/128 ffff:1.2.3.0/128

| net vs. ci dr

The essential difference between i net and ci dr datatypesisthat i net accepts values with nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid for
i net but not for ci dr.

Tip
If you do not like the output format for i net or ci dr values, try the functions host , t ext,
and abbr ev.
macaddr

The nacaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes aswell). Input is accepted in the following formats:

' 08: 00: 2b: 01: 02: 03"
' 08- 00- 2b- 01- 02- 03'
' 08002b: 010203’

' 08002b- 010203’

' 0800. 2b01. 0203"

' 0800- 2b01- 0203"

' 08002b010203'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f . Output is always in the first of the forms shown.

| EEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as used with bit-reversed, M SB-first notation, so that
08-00-2b-01-02-03 = 10:00:D4:80:40:CO0. This convention is widely ignored nowadays, and it is relevant
only for obsolete network protocols (such as Token Ring). PostgreSQL makes no provisionsfor bit rever-
sal; al accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

macaddr 8

The macaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and storesthemin 8 bytelength format. MAC addressesgivenin 6
byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE, respectively.
Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after the conversion
from EUI-48. The function neacaddr 8_set 7bi t isprovided to make this change. Generally speaking,
any input whichis comprised of pairs of hex digits (on byte boundaries), optionally separated consistently
by oneof ':',"'-" or'.",isaccepted. The number of hex digits must be either 16 (8 bytes) or 12 (6
bytes). Leading and trailing whitespace is ignored. The following are examples of input formats that are
accepted:

183

Data Types

8.10

' 08: 00: 2b: 01: 02: 03: 04: 05'
' 08- 00- 2b- 01- 02- 03- 04- 05'
' 08002b: 0102030405

' 08002b- 0102030405

' 0800. 2b01. 0203. 0405'

' 0800- 2b01- 0203- 0405

' 08002b01: 02030405

' 08002b0102030405

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f . Output is always in the first of the forms shown.

Thelast six input formats shown above are not part of any standard.

To convert atraditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr 8_set 7bi t as shown:

SELECT nacaddr 8_set 7bi t (' 08: 00: 2b: 01: 02: 03") ;

macaddr 8_set 7bi t

Oa: 00: 2b: ff:fe: 01:02: 03
(1 row

Bit String Types

Bit strings are strings of 1'sand 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bi t (n) andbit varyi ng(n),wheren isapositiveinteger.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bi t varyi ng datais of variable length up to the maximum length n; longer strings will be
rejected. Writing bi t without alengthisequivalenttobi t (1) , whilebi t varyi ng without alength
specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t (n) , it will betruncated or zero-padded on theright
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit wvaryi ng(n),itwill betruncated ontheright if it ismore than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING5));
| NSERT | NTO test VALUES (B 101', B 00');
| NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type bit(3)

184

Data Types

I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM test;

a | b
_____ Fe e - - -
101 | 00
100 | 101

A hit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match aquery. The
t svect or typerepresents adocument in aform optimized for text search; thet squer y type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13 sum-
marizes the related functions and operators.

8.11.1.t svect or

A tsvect or vaueis asorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exeme ' ' contains spaces$$::tsvector;
t svect or

‘contains' 'lexene' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the | exeme 'Joe''s' contains a quote$$::tsvector;
t svect or

‘contains' 'lexene' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

185

Data Types

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a: 10 fat: 11
rat: 12'::tsvector;
t svect or

'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT 'a: 1A fat: 2B, 4C cat: 5D ::tsvector;
t svect or

WEeights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It isimportant to understand that thet svect or type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

‘"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized, but
t svect or doesn't care. Raw document text should usually be passed through t o_t svect or to nor-
malize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

A t squer y value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR),and! (NOT), aswell asthe phrase search operator <- > (FOLLOWED BY).
Thereisalso avariant <N> of the FOLLOWED BY operator, where Nis an integer constant that specifies
the distance between the two lexemes being searched for. <- > is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the
least tightly.

186

Data Types

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

Optionally, lexemesin at squery can be labeled with one or more weight letters, which restricts them
to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

Also, lexemesin at squery can be labeled with * to specify prefix matching:

SELECT ' super:*'::tsquery,
tsquery

This query will match any word inat svect or that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemesint svect or ; and, aswith
t svect or, any required normalization of words must be done before converting to thet squer y type.
Thet o_t squer y function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Notethatt o_t squer y will process prefixes in the same way as other words, which means this compar-
ison returns true:

SELECT to_tsvector('postgraduate’) @to_tsquery('postgres:*');
?col um?

187

Data Types

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

'postgradu’ :1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122%, 1SO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-hit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

8.12

A UUID iswritten asasequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically agroup of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 hits. An example of a UUID in this standard formiis:

a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or al hyphens, adding ahyphen after any group of four digits.
Examples are:

AOEEBC99- 9C0B- 4EF8- BB6D- 6BBO9BD380A11
{a0eebc99- 9c0b- 4ef 8- bb6d- 6bb9bd380all}
a0eebc999c0Ob4ef 8bb6d6bb9bd380all

alee- bc99- 9c0Ob- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380al11l}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL .

XML Type

Thexm datatype can be used to store XML data. Its advantage over storing XML datainat ext field
isthat it checkstheinput values for well-formedness, and there are support functionsto perform type-safe
operations on it; see Section 9.15. Use of this data type requires the installation to have been built with
configure --with-1ibxmn.

8.13

Thexm type can store well-formed “ documents’, as defined by the XML standard, as well as “content”
fragments, which are defined by reference to the more permissive “document node’3 of the XQuery and
XPath datamodel. Roughly, thismeansthat content fragments can have more than onetop-level element or

2 https://datatracker.ietf.org/doc/html/rfc4122
s https://www.w3.0rg/TR/2010/REC-xpath-datamodel -20101214/#DocumentNode

188

https://datatracker.ietf.org/doc/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://datatracker.ietf.org/doc/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

character node. The expression xm val ue |'S DOCUMENT can be used to evaluate whether a particular
xm valueisafull document or only a content fragment.

Limits and compatibility notes for thexm data type can be found in Section D.3.

8.13.1. Creating XML Values

To produce avalue of typexm from character data, use the function xni par se:

XMLPARSE ({ DOCUMENT | CONTENT } val ue)

Examples:

XMLPARSE (DOCUMENT ' <?xml version="1.0"?><book><tit| e>Manual </
titl e><chapter>...</chapter></book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

While thisis the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <f oo>bar </ foo>'
' <f oo>bar </ f o0>' : : xni
can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when the
input value specifiesa DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

Theinverse operation, producing a character string value from xmi , usesthe functionxm seri al i ze:

XMLSERI ALI ZE ({ DOCUMENT | CONTENT } value AS type [[NO]
| NDENT])

t ype can be char act er, character varying, ortext (or an dlias for one of those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types, but
PostgreSQL also allows you to simply cast the value.

The | NDENT option causes the result to be pretty-printed, while NO | NDENT (which is the default) just
emitsthe original input string. Casting to a character type likewise produces the origina string.

When a character string value is cast to or from type xml without going through XMLPARSE or XM
LSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the“ XML op-
tion” session configuration parameter, which can be set using the standard command:

SET XML OPTI ON { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xm option TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

189

Data Types

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results to the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 24.3. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while traveling between client and server, because the embedded encoding declaration is
not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input tothexm type areignored, and content is assumed to bein the current server encoding. Conse-
quently, for correct processing, character strings of XML data must be sent from the client in the current
client encoding. It is the responsibility of the client to either convert documents to the current client en-
coding before sending them to the server, or to adjust the client encoding appropriately. On output, values
of type xm will not have an encoding declaration, and clients should assume all data is in the current
client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in the
XML datawill be observed, and if it is absent, the datawill be assumed to bein UTF-8 (asrequired by the
XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an encoding
declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it will be
omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding isalso UTF-8.

Caution

Some XML -related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. Thisisknown to beanissuefor xmi t abl e() and xpat h() in particular.

8.13.3. Accessing XML Values

Thexm datatypeisunusua in that it does not provide any comparison operators. Thisis because there
is no well-defined and universally useful comparison algorithm for XML data. One conseguence of this
isthat you cannot retrieve rows by comparing an xm column against a search value. XML values should
therefore typically be accompanied by a separate key field such asan ID. An aternative solution for com-
paring XML valuesisto convert them to character strings first, but note that character string comparison
has little to do with a useful XML comparison method.

Since there are no comparison operatorsfor thexm datatype, it isnot possible to create an index directly
on acolumn of thistype. If speedy searchesin XML dataare desired, possible workaroundsinclude casting
the expression to a character string type and indexing that, or indexing an XPath expression. Of course,
the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can al so be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. JSON Types

190

Data Types

JSON datatypes are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159*. Such
data can also be stored ast ext , but the JSON data types have the advantage of enforcing that each stored
valueisvalid according to the JSON rules. There are also assorted JSON-specific functions and operators
available for data stored in these data types; see Section 9.16.

PostgreSQL offers two types for storing JSON data: j son and j sonb. To implement efficient query
mechanisms for these data types, PostgreSQL also provides the j sonpat h data type described in Sec-
tion 8.14.7.

The j son and j sonb data types accept almost identical sets of values as input. The major practical
differenceisoneof efficiency. Thej son datatype storesan exact copy of theinput text, which processing
functions must reparse on each execution; whilej sonb datais stored in a decomposed binary format that
makes it slightly slower to input due to added conversion overhead, but significantly faster to process,
since no reparsing is needed. j sonb also supports indexing, which can be a significant advantage.

Because the j son type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, al the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, j sonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys are
specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON dataasj sonb, unlessthere are quite specialized
needs, such aslegacy assumptions about ordering of object keys.

RFC 7159 specifies that JSON strings should be encoded in UTF8. It is therefore not possible for the
JSON typesto conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the input
function for the j son type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digitsfollow \ u). However, theinput function
forj sonb isstricter: it disallows Unicode escapesfor charactersthat cannot be represented in the database
encoding. The j sonb type also rejects \ uO000 (because that cannot be represented in PostgreSQL's
t ext type), and it insists that any use of Unicode surrogate pairs to designate characters outside the
Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are converted to the equivalent single
character for storage; this includes folding surrogate pairs into a single character.

Note

Many of the JISON processing functions described in Section 9.16 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errorsjust described even if their
input is of type j son not j sonb. The fact that the j son input function does not make these
checks may be considered a historical artifact, although it does allow for simple storage (without
processing) of JSON Unicode escapesin adatabase encoding that does not support the represented
characters.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are effec-
tively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some minor
additional constraints on what constitutes valid j sonb data that do not apply to the j son type, nor to

4 https://datatracker.ietf.org/doc/html/rfc7159

191

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Data Types

JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, j sonb will reject numbers that are outside the range of the PostgreSQL nuner i ¢ data type,
whilej son will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, asit is common to represent
JSON's nurrber primitive type as |EEE 754 double precision floating point (which RFC 7159 explicitly
anticipates and allows for). When using JSON as an interchange format with such systems, the danger of
losing numeric precision compared to data originally stored by PostgreSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive

types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL Types

JSON primitivetype |PostgreSQL type Notes

string t ext \ u0000 is disallowed, as are Unicode escapes
representing characters not available in the data-
base encoding

nunber nuneric NaNandi nfi ni ty valuesare disallowed

bool ean bool ean Only lowercaset r ue and f al se spellingsare
accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.

Thefollowing are al validj son (or j sonb) expressions:

-- Sinmple scalar/prinmtive val ue

-- Primtive values can be nunbers, quoted strings, true, false,
nul |

SELECT '5'::json;

or

-- Array of zero or nore elenents (el enents need not be of same type)

SELECT '[1, 2, "foo", null]'::json;

-- (bject containing pairs of keys and val ues

-- Note that object keys nust always be quoted strings

SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily

SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
j son outputs the same text that was input, while j sonb does not preserve semantically-insignificant

details such as whitespace. For example, note the differences here:

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}'::json;
j son

{"bar": "baz", "balance": 7.77, "active":false}

192

Data Types

(1 row

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

(1 row

One semantically-insignificant detail worth noting isthat inj sonb, numberswill be printed according to
the behavior of theunderlying nuner i ¢ type. In practice this means that numbers entered with E notation
will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}"'::jsonb;
json | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, j sonb will preservetrailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

For thelist of built-in functions and operators available for constructing and processing JSON values, see
Section 9.16.

8.14.2. Designing JSON Documents

Representing data as JSON can be considerably more flexible than the traditional relational data model,
which iscompelling in environments where requirements arefluid. It is quite possible for both approaches
to co-exist and complement each other within the same application. However, even for applications where
maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed struc-
ture. The structure is typically unenforced (though enforcing some business rules declaratively is possi-
ble), but having a predictable structure makes it easier to write queries that usefully summarize a set of
“documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in atable. Although storing large documents is practicable, keep in mind that any update acquires a row-
level lock on the whole row. Consider limiting JSON documentsto a manageable sizein order to decrease
lock contention among updating transactions. Ideally, JSON documents should each represent an atomic
datum that business rules dictate cannot reasonably be further subdivided into smaller datums that could
be modified independently.

8.14.3.] sonb Containment and Existence

Testing containment is an important capability of j sonb. There is no parallel set of facilities for the
j son type. Containment tests whether onej sonb document has contained within it another one. These
examples return true except as noted:

-- Sinmple scalar/prinmtive values contain only the identical val ue:
SELECT ' "foo""'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:

193

Data Types

SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::jsonb;

-- Order of array elenments is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product”: "PostgreSQ.", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a simlar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]jsonb;

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT ' {"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principleisthat the contained object must match the containing object asto structure and data
contents, possibly after discarding some non-matching array elements or object key/value pairs from the
containing object. But remember that the order of array elementsis not significant when doing a contain-
ment match, and duplicate array elements are effectively considered only once.

As a specia exception to the general principle that the structures must match, an array may contain a
primitive value:

-- This array contains the primtive string val ue:

SELECT '["foo0", "bar"]'::jsonb @ '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported
here:

SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb also has an existence operator, which is a variation on the theme of containment: it tests whether
astring (given asat ext value) appears as an object key or array element at the top level of thej sonb
value. These examples return true except as noted:

-- String exists as array el ement:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar’;

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:

194

Data Types

SELECT '{"foo": "bar"}'::jsonb ? "bar'; -- yields false

-- As with contai nment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? "bar'; -- yields fal se
-- Astring is considered to exist if it matches a primtive JSON
string:

SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many keys
or elements involved, because unlike arrays they are internally optimized for searching, and do not need
to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. Asan example, supposethat wehaveadoc column containing objectsat thetop level, with
most objects containing t ags fields that contain arrays of sub-objects. This query finds entries
in which sub-objects containing both " t er i’ : "pari s" and"terni': " f ood" appear, while
ignoring any such keys outsidethet ags array:

SELECT doc->'site _nane' FROM websites
VWHERE doc @ '{"tags":[{"term :"paris"}, {"ternm:"food"}]}";

One could accomplish the same thing with, say,

SELECT doc->'site_nane' FROM websites
VWHERE doc->'tags' @ '[{"terni:"paris"}, {"ternm:"food"}]";

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions are
documented in Section 9.16.

8.14.4.] sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within alarge number
of] sonb documents (datums). Two GIN “operator classes’ are provided, offering different performance
and flexibility trade-offs.

The default GIN operator classfor j sonb supports querieswith the key-existsoperators ?, ?| and ?&, the
containment operator @, and the j sonpat h match operators @ and @@ (For details of the semantics
that these operatorsimplement, see Table 9.46.) An example of creating anindex with thisoperator classis:

CREATE | NDEX i dxgi n ON api USING G N (j doc);

The non-default GIN operator classj sonb_pat h_ops does not support the key-exists operators, but it
does support @, @ and @@ An example of creating an index with this operator classis:

195

Data Types

CREATE | NDEX i dxginp ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atablethat stores JSON documentsretrieved from athird-party web service, with
a documented schema definition. A typical document is:

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nanme": "Angel a Barton",
"is_active": true,
"conpany": "Magnafone",
"address": "178 Howard Pl ace, @ulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08: 00",
"latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": |
“eni ',
"al i quip",
" qui
]
}

We store these documents in a table named api , in aj sonb column named j doc. If aGIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Magnaf one"
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc @ '{"conpany":
"Magnaf one"}';

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunents in which the key "tags" contains key or array
el erent "qui"

SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc -> 'tags' ?
‘qui’;

Still, with appropriate use of expression indexes, the above query can use an index. If querying for partic-
ular itemswithinthe " t ags" key is common, defining an index like this may be worthwhile:

CREATE | NDEX i dxgi ntags ON api USING A N ((jdoc -> "tags'));

Now, the WHERE clause j doc -> '"tags' ? 'qui' will berecognized as an application of the
indexable operator ? to the indexed expression j doc -> 'tags' . (Moreinformation on expression

indexes can be found in Section 11.7.)
Another approach to querying isto exploit containment, for example:
-- Find docunents in which the key "tags" contains array element "qui”

SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc @ '{"tags":
["qui "]}

196

Data Types

A simple GIN index on thej doc column can support this query. But note that such an index will store
copies of every key and valueinthej doc column, whereas the expression index of the previous example
stores only datafound under thet ags key. While the simple-index approach isfar more flexible (since it
supports queries about any key), targeted expression indexes are likely to be smaller and faster to search
than asimple index.

GIN indexes also support the @ and @@operators, which performj sonpat h matching. Examples are

SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc @ '$.tags[*] ?
(@=="qui")";

SELECT jdoc->'guid', jdoc-> name' FROM api WHERE jdoc @@'$.tags[*] ==
qui "'

For these operators, aGIN index extracts clauses of theformaccessor s_chai n = const ant out of

thej sonpat h pattern, and doestheindex search based on the keys and val ues mentioned in these clauses.

The accessors chain may include . key,[*],and [i ndex] accessors. Thej sonb_ops operator class

also supports. * and . ** accessors, but thej sonb_pat h_ops operator class does not.

Although the j sonb_pat h_ops operator class supports only queries with the @, @ and @@oper-
ators, it has notable performance advantages over the default operator class j sonb_ops. A j son-
b_pat h_ops index is usually much smaller than aj sonb_ops index over the same data, and the
specificity of searchesis better, particularly when queries contain keys that appear frequently in the data.
Therefore search operations typically perform better than with the default operator class.

Thetechnical difference betweenaj sonb_ops andaj sonb_pat h_ops GIN index isthat the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 5 Basicaly, each j sonb_pat h_ops index item is a hash of the value
and the key(s) leading to it; for exampletoindex { " f 00" : {"bar": "baz"}}, asingleindex item
would be created incorporating all three of f 00, bar , and baz into the hash value. Thus a containment
query looking for this structure would result in an extremely specific index search; but there is no way
at all to find out whether f 00 appears as a key. On the other hand, aj sonb_ops index would create
three index items representing f 00, bar , and baz separately; then to do the containment query, it would
look for rows containing al three of these items. While GIN indexes can perform such an AND search
fairly efficiently, it will still be less specific and slower than the equivalent j sonb_pat h_ops search,
especially if there are avery large number of rows containing any single one of the three index items.

A disadvantage of thej sonb_pat h_ops approach isthat it produces no index entries for JSON struc-
turesnot containing any values, suchas{ " a": {}}.If asearchfor documentscontaining such astructure
is requested, it will require a full-index scan, which is quite slow. j sonb_pat h_ops is therefore ill-
suited for applications that often perform such searches.

j sonb aso supports bt r ee and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. Thebt r ee orderingfor j sonb datumsis seldom of great interest,
but for completenessit is:

Qbj ect > Array > Bool ean > Nunmber > String > Null

hject with n pairs > object with n - 1 pairs

5 For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values

within objects.

197

Data Types

Array with n elenents > array with n - 1 elenents

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored before
longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

el emrent-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL
datatype. Strings are compared using the default database collation.

8.14.5.] sonb Subscripting

Thej sonb datatype supports array-style subscripting expressions to extract and modify elements. Nest-
ed values can be indicated by chaining subscripting expressions, following the same rules as the pat h
argument inthej sonb_set function. If aj sonb valueisan array, numeric subscripts start at zero, and
negative integers count backwards from the last element of the array. Slice expressions are not supported.
The result of asubscripting expression is always of the jsonb data type.

UPDATE statements may use subscripting in the SET clause to modify j sonb values. Subscript paths
must be traversable for all affected valuesinsofar asthey exist. For instance, thepathval ['a'] [' b']

['c'] canbetraversed dl theway toc if everyval ,val ['a'],andval ['a'][' b'] isanobject.
Ifanyval['a'] orval['a']['b'] isnotdefined, it will be created as an empty object and filled as
necessary. However, if any val itself or one of theintermediary valuesisdefined asanon-object suchasa
string, number, or j sonb nul | , traversal cannot proceed so an error israised and the transaction aborted.

An example of subscripting syntax:

-- Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a'];

-- Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)["a']J['b']['c'];

-- Extract array el enent by index
SELECT ('[1, "2", null]'::jsonb)[1];

-- Updat e object value by key. Note the quotes around '1': the
assi gned

-- value nust be of the jsonb type as well

UPDATE tabl e_nane SET jsonb field['key'] ="'1";

-- This will raise an error if any record' s jsonb_field['a]J['b"] is
somet hi ng

198

Data Types

-- other than an object. For exanple, the value {"a": 1} has a nuneric

val ue
-- of the key "a'.
UPDATE tabl e_nane SET jsonb field["a]['b"']['c'] ="'1";
-- Filter records using a WHERE cl ause with subscripting. Since the
result of
-- subscripting is jsonb, the value we conpare it against nmust al so be
j sonb.
-- The doubl e quotes make "value" also a valid jsonb string.
SELECT * FROM tabl e_nane WHERE jsonb_field['key'] = '"value"';

j sonb assignment via subscripting handles a few edge cases differently from j sonb_set . When a
sourcej sonb valueis NULL, assignment via subscripting will proceed asif it was an empty JSON value
of the type (object or array) implied by the subscript key:

-- Where jsonb field was NULL, it is now {"a": 1}
UPDATE tabl e nane SET jsonb field['a'] ="'1";

-- Where jsonb field was NULL, it is now [1]
UPDATE tabl e _nane SET jsonb field[0] ="'1";

If an index is specified for an array containing too few elements, NULL elements will be appended until
the index is reachable and the value can be set.

-- Were jsonb_field was [], it is now [null, null, 2];
-- where jsonb field was [0], it is now [0, null, 2]
UPDATE tabl e _nane SET jsonb field[2] ="'2";

A j sonb vauewill accept assignments to nonexistent subscript paths aslong as the last existing element
to be traversed is an object or array, asimplied by the corresponding subscript (the element indicated by
the last subscript in the path is not traversed and may be anything). Nested array and object structures
will be created, and in the former case nul | -padded, as specified by the subscript path until the assigned
value can be placed.

-- Where jsonb field was {}, it is now {"a": [{"b": 1}]}

UPDATE tabl e_nane SET jsonb field['a][O]['b'] ="'1";
-- Where jsonb_field was [], it is now [null, {"a": 1}]
UPDATE tabl e_nane SET jsonb field[1]['a'] = "'1";

8.14.6. Transforms

Additional extensions are availablethat implement transformsfor thej sonb typefor different procedural
languages.

The extensionsfor PL/Perl arecalledj sonb_pl per| andj sonb_pl per | u. If youusethem,j sonb
values are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extension for PL/Python iscaled j sonb_pl pyt hon3u. If you useit,] sonb values are mapped
to Python dictionaries, lists, and scalars, as appropriate.

199

Data Types

Of theseextensions, j sonb_pl per | isconsidered “trusted”, that is, it can beinstalled by non-superusers
who have CREATE privilege on the current database. The rest require superuser privilege to install.

8.14.7. [sonpath Type

The| sonpat h type implements support for the SQL/JSON path language in PostgreSQL to efficiently
guery JSON data. It provides a binary representation of the parsed SQL/JSON path expression that spec-
ifiesthe itemsto be retrieved by the path engine from the JSON data for further processing with the SQL/
JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the sametime, to pro-
vide anatural way of working with JSON data, SQL/JSON path syntax uses some JavaScript conventions:

» Dot (.) isused for member access.
e Square brackets ([]) are used for array access.
* SQL/JSON arrays are O-relative, unlike regular SQL arraysthat start from 1.

Numeric literals in SQL/JSON path expressions follow JavaScript rules, which are different from both
SQL and JSON in some minor details. For example, SQL/JSON path allows. 1 and 1. , which areinvalid
in JSON. Non-decimal integer literalsand underscore separators are supported, for example, 1_000_000,
Ox1EEE FFFF, 00273, 0b100101. In SQL/JSON path (and in JavaScript, but not in SQL proper),
there must not be an underscore separator directly after the radix prefix.

An SQL/JSON path expression is typically written in an SQL query as an SQL character string literal,
so it must be enclosed in single quotes, and any single quotes desired within the value must be doubled
(see Section 4.1.2.1). Some forms of path expressions require string literals within them. These embedded
string literalsfollow JavaScript/ECM A Script conventions:. they must be surrounded by doubl e quotes, and
backslash escapes may be used within them to represent otherwise-hard-to-type characters. In particular,
the way to write a double quote within an embedded string literal is\ ", and to write a backslash itself,
you must write\ \ . Other special backslash sequences include those recognized in JavaScript strings: \ b,
\f,\n,\r,\t,\v for various ASCII control characters, \ xNN for a character code written with only
two hex digits, \ uUNNNN for a Unicode character identified by its 4-hex-digit code point, and\ u{ N. . . }
for a Unicode character code point written with 1 to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:

 Path literals of JSON primitive types: Unicode text, numeric, true, false, or null.

Path variableslisted in Table 8.24.

» Accessor operators listed in Table 8.25.

* j sonpat h operators and methods listed in Section 9.16.2.2.

* Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

For detailson using j sonpat h expressions with SQL/JSON query functions, see Section 9.16.2.

Table8.24.] sonpat h Variables

Variable Description
$ A variable representing the JSON value being queried (the context
item).

200

Data Types

Variable Description

$var name A named variable. Its value can be set by the parameter var s of
several JSON processing functions; see Table 9.49 for details.

@ A variable representing the result of path evaluation in filter expres-
sions.

Table8.25.] sonpat h Accessors

Accessor Operator Description

. key Member accessor that returns an object member with the specified
key. If the key name matches some named variable starting with $

. "$var nane" or does not meet the JavaScript rules for an identifier, it must be en-
closed in double quotes to make it a string literal.

L* Wildcard member accessor that returns the values of all memberslo-
cated at the top level of the current object.

LEE Recursive wildcard member accessor that processes all levels of the

JSON hierarchy of the current object and returns all the member val-
ues, regardless of their nesting level. Thisis a PostgreSQL extension
of the SQL/JSON standard.

*{level } Like. **, but selects only the specified levels of the JSON hierar-
chy. Nesting levels are specified as integers. Level zero corresponds

¥*{start_level to to the current object. To access the lowest nesting level, you can

end_| evel } usethel ast keyword. Thisisa PostgreSQL extension of the SQL/
JSON standard.

[subscript, ...] Array element accessor. subscri pt can begivenintwo forms:

indexorstart_index to end_i ndex. Thefirst formre-
turns asingle array element by itsindex. The second form returns an
array slice by the range of indexes, including the elements that cor-
respond to the provided st art _i ndex and end_i ndex.

The specified i ndex can be an integer, as well as an expression re-
turning a single numeric value, which is automatically cast to inte-
ger. Index zero corresponds to the first array element. Y ou can al-
so usethel ast keyword to denote the last array element, which is
useful for handling arrays of unknown length.

[*] Wildcard array element accessor that returns all array elements.

8.15. Arrays

PostgreSQL allows columns of atable to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types

Toillustrate the use of array types, we create this table:

CREATE TABLE sal _emp (
name t ext,
pay_ by quarter integer[],

201

Data Types

schedul e text[][]
)

Asshown, an array datatypeisnamed by appending square brackets ([]) to the datatype name of thearray
elements. The above command will create atable named sal _enp with acolumn of typet ext (name),
aone-dimensional array of typei nt eger (pay_by_quart er), which representsthe employee'ssalary
by quarter, and atwo-dimensional array of t ext (schedul e), which represents the employee's weekly
schedule.

The syntax for CREATE TABLE alows the exact size of arraysto be specified, for example:

CREATE TABLE tictactoe (
squar es i nteger[3][3]

)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a par-
ticular element type are all considered to be of the same type, regardless of size or number of dimensions.
So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation; it
does not affect run-time behavior.

An alternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quart er could have been defined as:

pay_by quarter integer ARRAY[4],

Or, if no array sizeisto be specified:

pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

"{ vall delimval2 delim... }'

wheredel i misthedelimiter character for thetype, asrecordedinitspg_t ype entry. Among the standard
data types provided in the PostgreSQL distribution, all use acommal(,), except for type box which uses
asemicolon (;). Each val iseither a constant of the array element type, or a subarray. An example of
an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'

This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

202

Data Types

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or low-
er-case variant of NULL will do.) If you want an actual string value “NULL", you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed in
Section4.1.2.7. Theconstant isinitially treated asastring and passed to the array input conversion routine.
An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

| NSERT | NTO sal _enp
VALUES (' Carol ',
' {20000, 25000, 25000, 25000}',
"{{"breakfast", "consulting"}, {"neeting", "lunch"}}");

The result of the previous two inserts looks like this:

SELECT * FROM sal _enp;
name | pay_by_quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{neeting,|unch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{meeting, | unch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

| NSERT | NTO sal _enp

VALUES ("Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"nmeeting"}}");

ERROR: nul tidi nensional arrays nust have array expressions with
mat chi ng di nensi ons

The ARRAY constructor syntax can also be used:

| NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

| NSERT | NTO sal _enp
VALUES (' Carol",
ARRAY[20000, 25000, 25000, 25000],

203

Data Types

ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane FROM sal _enp WHERE pay_by_quarter[1l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with ar r ay[1] and ends with
array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_ by quarter

(2 rows)

Wecan also accessarbitrary rectangular slicesof anarray, or subarrays. An array sliceisdenoted by writing
| ower - bound: upper - bound for one or more array dimensions. For example, this query retrievesthe
first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2] [1: 1] FROM sal _enp WHERE nanme = 'Bill";

schedul e

{{meeting}, {training}}
(1 row

If any dimension iswritten asadlice, i.e., contains a colon, then al dimensions are treated as slices. Any
dimension that has only asingle number (no colon) istreated as being from 1 to the number specified. For
example, [2] istreated as[1: 2], asin thisexample:

SELECT schedul e[1: 2] [2] FROM sal _enmp WHERE nane = 'Bill";

schedul e

204

Data Types

{{meeting, lunch}, {training, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use dice syntax for all dimensions, e.g., [1: 2]
[1:1],not[2][2:1].

It is possible to omit the | ower - bound and/or upper - bound of a dlice specifier; the missing bound
isreplaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enp WHERE narme = 'Bill";
schedul e

({1 unch}, {presentat i on}}

(1 row

SELECT schedul e[:][1:1] FROM sal _enp WHERE nanme = 'Bill";

schedul e
{{reeting}, {training}}
(1 row

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an er-
ror). For example, if schedul e currently hasthe dimensions| 1: 3] [1: 2] then referencing sched-
ul e[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts yields a
null rather than an error.

Anarray slice expression likewiseyields null if the array itself or any of the subscript expressionsare null.
However, in other cases such as selecting an array slicethat iscompl etely outside the current array bounds,
adlice expression yields an empty (zero-dimensional) array instead of null. (This does not match non-slice
behavior and is done for historical reasons.) If the requested dlice partially overlapsthe array bounds, then
it issilently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with thear r ay_di s function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nane = 'Carol"';

array_dins

[uarna
(1 row

array_di s producesat ext result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also beretrieved with ar r ay_upper and ar r ay_I| ower , which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enmp WHERE nane = 'Carol"';

array_upper

205

Data Types

(1 row

array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nanme = 'Carol';

array_length

(1 row

car di nal i ty returns the total number of elementsin an array across all dimensions. It is effectively
the number of rowsacall to unnest would yield:

SELECT cardi nality(schedul e) FROM sal _enp WHERE nane = 'Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal _enp SET pay_by quarter = '{25000, 25000, 27000, 27000}"
VWHERE nane = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by quarter
WHERE nane = 'Carol';

ARRAY[25000, 25000, 27000, 27000]

An array can aso be updated at a single element:

UPDATE sal _enp SET pay_by quarter[4] = 15000
WHERE nane = 'Bill";

or updated in adlice:

UPDATE sal _enp SET pay_by_quarter[1:2] = '{27000, 27000}"'
VWHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
[imit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
nyar r ay currently has4 elements, it will have six elements after an updatethat assignstonyar r ay[6] ;

206

Data Types

nyar r ay[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimen-
sional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assigntonyar r ay[- 2: 7] to create an array with subscript valuesfrom -2to 7.

New array values can aso be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3, 4];
?col um?

(12,34
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?col um?

{{5.6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also acceptstwo N-dimensional arrays, or an N-dimensional and an N+1-dimensional

array.

When asingle element is pushed onto either the beginning or end of a one-dimensional array, theresultis
an array with the same lower bound subscript as the array operand. For example:

SELECT array dins(1 || '"[0:1]={2,3}' ::int[]);
array_di ns

SELECT array_di ns(ARRAY[1,2] || 3);
array_di ns

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand's outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns(ARRAY[1, 2] || ARRAY[3,4,5]);
array_dins

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]11);
array_dins

207

Data Types

[1:5][1:2]
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensiona sub-array is essentially an element of
the N+ 1-dimensional array's outer dimension. For example:

SELECT array_di ns(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_di s

(LA
(1 row)

An array can also be constructed by using the functions arr ay_pr epend, array_append, or ar -
ray_cat. The first two only support one-dimensional arrays, but ar r ay_cat supports multidimen-
sional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2, 3]);
array_prepend

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3, 4]);
array_cat

{1,2,3,4
(1 row

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]1);
array_cat

{{5.6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above s preferred over direct use of these functions.
However, because the concatenation operator is overloaded to serve all three cases, there are situations
where use of one of the functionsis helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || "{3, 4}'; -- the untyped literal is taken as an
array

208

Data Types

{1, 2, 3,4}

SELECT ARRAY[1, 2] || '7"; -- sois this one
ERROR: malfornmed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecor at ed
NULL
?col um?

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been
nmeant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and a
constant of undetermined type on the other. The heuristic it usesto resolve the constant's type isto assume
it's of the sametype asthe operator's other input — in this case, integer array. So the concatenation operator
is presumed to represent ar r ay_cat , not ar r ay _append. When that's the wrong choice, it could be
fixed by casting the constant to the array's element type; but explicit use of ar r ay_append might be
apreferable solution.

8.15.5. Searching in Arrays

To search for avalue in an array, each value must be checked. This can be done manualy, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay_ by quarter[2] = 10000 OR
pay_ by quarter[3] = 10000 OR
pay by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is un-
known. An aternative method is described in Section 9.24. The above query could be replaced by:

SELECT * FROM sal _enmp WHERE 10000 = ANY (pay_by quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by_quarter);
Alternatively, thegener at e_subscri pt s function can be used. For example:
SELECT * FROM

(SELECT pay_by_quarter,
gener ate_subscri pts(pay_by _quarter, 1) AS s

209

Data Types

FROM sal _enp) AS foo
WHERE pay_by quarter[s] = 10000;

This function is described in Table 9.66.

Y ou can a'so search an array using the && operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay_ by quarter && ARRAY[10000];

Thisand other array operators are further described in Section 9.19. It can be accel erated by an appropriate
index, as described in Section 11.2.

You can also search for specific valuesin an array using thearray_posi ti on andarray_posi -
t i ons functions. The former returns the subscript of the first occurrence of avauein an array; the latter
returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT

array_position(ARRAY['sun','non','tue',"'wed' ,'thu','fri','sat'],
‘mon') ;

array_position

(1 row

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

Tip

Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with arow for each item that would be an array element. Thiswill
be easier to search, and is likely to scale better for alarge number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character isusually acomma(,) but can be something else: it is determined
by the t ypdel i msetting for the array's element type. Among the standard data types provided in the
PostgreSQL distribution, all use acomma, except for type box, which usesasemicolon (;). Inamultidi-
mensional array, each dimension (row, plane, cube, etc.) getsits own level of curly braces, and delimiters
must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.

210

Data Types

Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([]) around each array dimension's lower and upper bounds,
with acolon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}} ::int[] AS f1) AS
SS,;

el | e2

.,
1] 6

(1 row

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be en-
tered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array _nulls configura-
tion parameter can be turned of f to suppress recognition of NULL asaNULL.

As shown previously, when writing an array value you can use double quotes around any individual ar-
ray element. You must do so if the element value would otherwise confuse the array-value parser. For
exampl e, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to protect all
data characters that would otherwise be taken as array syntax.

Y ou can add whitespace before a left brace or after aright brace. Y ou can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-lit-
eral syntax when writing array values in SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of arow or record; it isessentialy just alist of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that smple
types can be used. For example, a column of atable can be declared to be of a composite type.

211

Data Types

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory_item AS (

nanme t ext,
supplier_id i nteger,
price nuneric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item
count i nt eger

);
I NSERT | NTO on_hand VALUES (ROW' fuzzy dice', 42, 1.99), 1000);

or functions:

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS
nuneric
AS ' SELECT $1.price * $2' LANGUACE SQ.;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create atable, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE i nventory_item (

nane t ext,
supplier_id i nt eger REFERENCES suppl i ers,
price nuneric CHECK (price > 0)

)

thenthe samei nvent ory_i t emcomposite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition do
not apply to values of the composite type outside the table. (To work around this, create adomain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

212

Data Types

8.16.2. Constructing Composite Values

To write a composite value as aliteral constant, enclose the field values within parentheses and separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains com-
mas or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

"(vall, val2 , ...)’

Anexampleis:

"("fuzzy dice",42,1.99)"

which would be avalid value of thei nvent ory_i t emtype defined above. To make afield be NULL,
write no charactersat all initspositionin thelist. For example, this constant specifiesa NULL third field:

"("fuzzy dice",42,)’

If you want an empty string rather than NULL, write double quotes:

] (llll,42,)l
Herethefirst field isanon-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant isinitialy treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary to tell which type to convert the constant to.)

The ROWexpression syntax can also be used to construct composite values. In most cases thisis consid-
erably simpler to use than the string-literal syntax since you don't have to worry about multiple layers of
quoting. We aready used this method above:

RON ' fuzzy dice', 42, 1.99)
RON' ', 42, NULL)

The ROW keyword is actually optional aslong asyou have more than one field in the expression, so these
can be simplified to:

('fuzzy dice', 42, 1.99)

("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access afield of a composite column, one writes a dot and the field name, much like selecting a field
from atable name. In fact, it's so much like selecting from a table name that you often have to use paren-
theses to keep from confusing the parser. For example, you might try to select some subfields from our
on_hand example table with something like:

213

Data Types

SELECT item nane FROM on_hand WHERE item price > 9.99;

Thiswill not work since the name i t emis taken to be a table name, not a column name of on_hand,

per SQL syntax rules. You must write it like this:

SELECT (itemnm).nanme FROM on_hand WHERE (item.price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:

SELECT (on_hand.item.name FROM on_hand WHERE (on_hand.item.price >
9. 99;

Now the parenthesized object is correctly interpreted as a reference to the i t emcolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select afield from a composite value. For instance, to select
just one field from the result of afunction that returns a composite value, you'd need to write something
like:

SELECT (nmy_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name* means“dl fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examplesof the proper syntax for inserting and updating composite columns. First, inserting
or updating a whole column:

| NSERT | NTO nmytab (conpl ex_col) VALUES((1.1,2.2));

UPDATE nytab SET conplex_col = RON1.1,2.2) WHERE .. .;

The first example omits ROW the second usesit; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE nytab SET complex_col.r = (conplex_col).r + 1 WHERE .. .;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for | NSERT, too:

I NSERT | NTO nmytab (conplex _col.r, conplex_col.i) VALUES(1l.1, 2.2);

214

Data Types

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, areferenceto atable name (or dias) in aquery is effectively areference to the composite
value of the table's current row. For example, if we had atablei nvent ory_i t emas shown above, we
could write:

SELECT ¢ FROM inventory_ itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example works
only because there is no column named ¢ in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col utm_nane can be understood as ap-
plying field selection to the composite value of the table's current row. (For efficiency reasons, it's not
actually implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate

columns:

nane | supplier_id | price
____________ e
fuzzy dice | 42 | 1.99
(1 row

asif the query were

SELECT c. nanme, c.supplier_id, c.price FROMinventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . * is applied to whenever it's not a simple
table name. For example, if myf unc() isafunction returning a composite type with columns a, b, and
¢, then these two queries have the same result:

SELECT (myfunc(x)).* FROM sone_t abl e;

215

Data Types

SELECT (myfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming the first form into the second. So,
in this example, myf unc() would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m * FROM sone_t abl e, LATERAL nyfunc(x) AS m

Placing the function in a LATERAL FROMitem keeps it from being invoked more than once per
row. m * isdill expandedintom a, m b, m c, but now those variables are just references to
the output of the FROMitem. (The LATERAL keyword is optional here, but we show it to clarify
that the function is getting x from sone_t abl e.)

Theconposi t e_val ue. * syntax results in column expansion of this kind when it appears at the top
level of a SELECT output list, a RETURNI NG list in | NSERT/UPDATE/DELETE, a VALUES clause, or
arow constructor. In all other contexts (including when nested inside one of those constructs), attaching
. * to acomposite value does not change the value, since it means “all columns’ and so the same compos-
ite value is produced again. For example, if sonef unc() accepts a composite-valued argument, these
gueries are the same:

SELECT sonefunc(c.*) FROM inventory_ item c;
SELECT sonefunc(c) FROMinventory itemc;

In both cases, thecurrentrow of i nvent ory_i t emispassed to thefunction asasingle composite-valued
argument. Even though . * does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider ¢ inc. * to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without . *, it is not clear whether
¢ means a table name or a column name, and in fact the column-name interpretation will be preferred if
thereis acolumn named c.

Another example demonstrating these concepts is that al these queries mean the same thing:

SELECT * FROM inventory item c ORDER BY c;
SELECT * FROM inventory itemc ORDER BY c.*;
SELECT * FROM inventory_ item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.24.6. However, if i nvent ory_i t emcontained a column named c,
the first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c ORDER BY RONc. name, c.supplier_id,
c.price);

SELECT * FROM inventory item c ORDER BY (c.nanme, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

216

Data Types

Another special syntactical behavior associated with composite values is that we can use functional no-
tation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) andtabl e. fi el d areinterchangeable. For example, these queries are equivalent;

SELECT c.nane FROM inventory_item c WHERE c. price > 1000;
SELECT nane(c) FROM inventory_ item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivaent:

SELECT sonefunc(c) FROMinventory_ itemc;
SELECT sonefunc(c.*) FROM inventory_ item c;
SELECT c. somefunc FROM i nventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields’. An application using the last query above wouldn't
need to be directly aware that sonmef unc isn't areal column of the table.

Tip
Because of thisbehavior, it'sunwiseto give afunction that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-
name interpretation, unless the syntax of the call required it to be afunction call. One way to force

the function interpretation in older versions is to schema-qualify the function name, that is, write
schema. f unc(conposi t eval ue).

8.16.6. Composite Type Input and Output Syntax

The externa text representation of a composite value consists of items that are interpreted according to
the 1/0O conversion rules for the individual field types, plus decoration that indicates the composite struc-
ture. The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

] (42)]
the whitespace will beignored if the field type isinteger, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put adouble quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
apair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rulesfor single quotesin SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write avalue that is an empty string rather than NULL, write" " .

217

Data Types

The composite output routine will put double quotes around field values if they are empty strings or con-
tain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is not
essential, but aids legibility.) Double quotes and backsl ashes embedded in field values will be doubled.

Note

Remember that what you write in an SQL command will first beinterpreted asastring literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert at ext field containing a double quote and a backslashin
acomposite value, you'd need to write:

I NSERT ... VALUES (' ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the compos-
ite-value parser lookslike ("\ "\ \ ") . Inturn, the string fed to thet ext datatype'sinput routine
becomes "\ . (If we were working with a data type whose input routine also treated backslashes
speciadly, byt ea for example, we might need as many as eight backslashes in the command to
get one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used
to avoid the need to double backslashes.

Tip

The ROWconstructor syntax is usually easier to work with than the composite-literal syntax when
writing composite valuesin SQL commands. In ROW individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types

Rangetypes are datatypesrepresenting arange of values of some element type (called the range's subtype).
For instance, ranges of t i mest anp might be used to represent the ranges of time that a meeting room
isreserved. In this case the datatypeist sr ange (short for “timestamp range”), and t i nest anp isthe
subtype. The subtype must have atotal order so that it iswell-defined whether element values are within,
before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for sched-
uling purposes is the clearest example; but price ranges, measurement ranges from an instrument, and so
forth can also be useful.

Every range type has a corresponding multirange type. A multirangeis an ordered list of non-contiguous,

non-empty, non-null ranges. M ost range operators al so work on multiranges, and they have afew functions
of their own.

8.17.1. Built-in Range and Multirange Types

PostgreSQL comes with the following built-in range types:

e int4range — Rangeofi nt eger,i nt4mnul ti r ange — corresponding Multirange

218

Data Types

e i nt8range — Rangeof bi gi nt,i nt 8nul ti r ange — corresponding Multirange
* nunr ange — Range of nuneri ¢, nummul ti r ange — corresponding Multirange

* tsrange —Rangeofti mestanp without time zone,tsnultirange — corresponding
Multirange

e tstzrange —Rangeofti mestanp with time zone,tstznul tirange — corresponding
Multirange

» dat er ange — Range of dat e, dat emul t i r ange — corresponding Multirange

In addition, you can define your own range types; see CREATE TY PE for more information.

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
| NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nment
SELECT i nt 4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Conpute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?
SELECT i senpty(nunrange(1, 5));

See Table 9.55 and Table 9.57 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself isincluded in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In thetext form of arange, aninclusivelower bound isrepresented by “[" while an exclusive lower bound
isrepresented by “(. Likewise, an inclusive upper bound isrepresented by “] ", while an exclusive upper
bound is represented by “) ”. (See Section 8.17.5 for more details.)

Thefunctions| ower _i nc andupper _i nc test theinclusivity of thelower and upper bounds of arange
value, respectively.

8.17.4. Infinite (Unbounded) Ranges

Thelower bound of arange can be omitted, meaning that all valuesless than the upper bound areincluded
intherange, e.g., (, 3] . Likewise, if the upper bound of the range is omitted, then all values greater than

219

Data Types

the lower bound are included in the range. If both lower and upper bounds are omitted, all values of the
element type are considered to be in the range. Specifying a missing bound as inclusive is automatically
converted to exclusive, eg., [,] isconvertedto(,) . You canthink of these missing values as +/-infinity,
but they are special range type values and are considered to be beyond any range element type's +/-infinity
values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example, with
timestamp ranges, [t oday, i nfi ni ty) excludes the specia ti nmest anp valuei nfi nity, while
[today, infinity] includeit, asdoes[t oday,) and[t oday,].

Thefunctions| ower _i nf andupper _i nf test for infinite lower and upper bounds of arange, respec-
tively.

8.17.5. Range Input/Output

The input for arange value must follow one of the following patterns:

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[1 ower - bound, upper - bound)
[1 ower - bound, upper - bound]

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is enpt y, which represents an empty range (a range
that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper - bound may be either astring that isvalid input for the subtype, or empty
to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backs ashes, since these characters would oth-
erwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value,
precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken
to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.)
Alternatively, you can avoid quoting and use backslash-escaping to protect al data characters that would
otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write" ", since
writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See Sec-
tion 8.16.6 for additional commentary.

Examples:

220

Data Types

-- includes 3, does not include 7, and does include all points in

bet ween
SELECT '[3,7)'::intd4range;
-- does not include either 3 or 7, but includes all points in between
SELECT ' (3,7)'::intd4range;
-- includes only the single point 4
SELECT '[4,4]'::intd4range;
-- includes no points (and will be nornalized to 'enpty')
SELECT '[4,4)'::intd4range;

Theinput for amultirangeis curly brackets ({ and }) containing zero or more valid ranges, separated by
commas. Whitespace is permitted around the brackets and commas. Thisisintended to be reminiscent of
array syntax, although multiranges are much simpler: they have just one dimension and there is no need
to quote their contents. (The bounds of their ranges may be quoted as above however.)

Examples:

SELECT "{}'::intdnultirange;
SELECT '{[3,7)} ::intdmultirange;
SELECT "{[3,7), [8,9)} ::intdmultirange;

8.17.6. Constructing Ranges and Multiranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs arange in standard form (lower bound inclusive, upper bound exclusive), while
the three-argument form constructs a range with bounds of the form specified by the third argument. The
third argument must be one of the strings“() ", “(]1 ", “[) ", or “[] ". For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

-- inclusivity/exclusivity of bounds.

SELECT nunrange(1.0, 14.0, '(]');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunrange(1.0, 14.0);

-- Although '(]'" is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange(NULL, 2.2);

Each range type also has a multirange constructor with the same name as the multirange type. The con-
structor function takes zero or more arguments which are all ranges of the appropriate type. For example:

221

Data Types

SELECT nunmmul tirange();
SELECT nunmmul tirange(nunrange(1.0, 14.0));
SELECT nunmmul tirange(nunrange(1.0, 14.0), nunrange(20.0, 25.0));

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, arangeover thenuner i ¢ typeiscontinuous, asisarange
overti mest anp. (Eventhought i nest anp haslimited precision, and so could theoretically be treated
as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in aninteger rangetype[4, 8] and (3, 9) denote the same set of values,
but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for the
element type. The canonicalization function is charged with converting equivalent values of the range type
to have identical representations, in particular consistently inclusive or exclusive bounds. If a canonical-
ization function is not specified, then ranges with different formatting will always be treated as unequa,
even though they might represent the same set of valuesin reality.

The built-in range typesi nt 4r ange, i nt 8r ange, and dat er ange al use a canonical form that in-
cludes the lower bound and excludes the upper bound; that is, [) . User-defined range types can use other
conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do thisisto use ranges over subtypes
not provided among the built-in range types. For example, to define anew range type of subtypef | oat 8:

CREATE TYPE fl oatrange AS RANCE (
subtype = fl oat 8,
subtype_diff = fl oat8m

)

SELECT '[1.234, 5.678]'::floatrange;

Becausef | oat 8 has no meaningful “step”, we do not define a canonicalization function in this example.
When you define your own range you automatically get a corresponding multirange type.

Defining your own range type also alows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canoni cal function. The canonicalization function takes an input range value, and
must return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges[1, 7] and [1,

8) , must be identical. It doesn't matter which representation you choose to be the canonical one, so long

222

Data Types

as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, arange type over t i mest anp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of an
hour, or perhaps throw an error instead.

In addition, any range typethat is meant to be used with GiST or SP-GiST indexes should define a subtype
difference, or subt ype_di f f, function. (The index will still work without subt ype_di ff, butitis
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented
asafl oat 8 value. In our example above, the function f | oat 8mi that underlies the regular f | oat 8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, thesubt ype_di f f function should agree with the sort ordering implied by the selected
operator classand collation; that is, its result should be positive whenever itsfirst argument is greater than
its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS fl oat8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT | MMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = tine,
subtype diff = tinme_subtype_diff
);

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TY PE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. GiST indexes can be also
created for table columns of multirange types. For instance, to create a GiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GIST or SP-GiST index on ranges can accelerate queries involving these range operators: =, &&, <@
@, <<,>>,-| -, &<, and &>. A GiST index on multiranges can accelerate queries involving the same
set of multirange operators. A GiST index on ranges and GiST index on multiranges can also accelerate
gueriesinvolving these cross-type range to multirange and multirange to range operators correspondingly:
&&, <@ @, <<,>>,-| -, &<, and &>. See Table 9.55 for more information.

In addition, B-tree and hash indexes can be created for table columns of range types. For theseindex types,
basicaly the only useful range operation is equality. There is a B-tree sort ordering defined for range
values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful
in the real world. Range types B-tree and hash support is primarily meant to allow sorting and hashing
internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

223

Data Types

While UNI QUE isanatural constraint for scalar values, it is usually unsuitable for range types. Instead, an
exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USI NG d ST (during WTH &&)

)

That constraint will prevent any overlapping values from existing in the table at the same time:

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

I NSERT | NTO reservati on VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)');

ERROR: conflicting key val ue viol ates excl usi on constraint
"reservation_during_excl"

DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00"))
conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

Youcanusethebtree_gi st extension to define exclusion constraints on plain scalar datatypes, which
can then be combined with range exclusions for maximum flexibility. For example, after bt r ee_gi st
isinstalled, the following constraint will reject overlapping ranges only if the meeting room numbers are

equal:

CREATE EXTENSI ON btree_gi st;
CREATE TABLE room reservation (
room t ext,
during tsrange,
EXCLUDE USING d ST (room WTH =, during WTH &&)

)

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
I NSERT 0 1

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');

ERROR: conflicting key val ue viol ates excl usi on constraint
"roomreservation_roomduring_excl"

DETAIL: Key (room during)=(123A, ["2010-01-01 14:30: 00", "2010-01-01
15:30: 00")) conflicts

with existing key (room during)=(123A, ["2010-01-01
14:00: 00", "2010-01-01 15:00: 00")).

I NSERT | NTO room reservati on VALUES
('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');

224

Data Types

8.18.

8.19.

I NSERT 0 1

Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionaly, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOVAI N posint AS integer CHECK (VALUE > 0);
CREATE TABLE nytable (id posint);

| NSERT | NTO nyt abl e VALUES(1); -- works

| NSERT | NTO nytabl e VALUES(-1); -- fails

When an operator or function of the underlying type is applied to adomain value, the domain is automati-
cally down-cast to the underlying type. Thus, for example, theresult of myt abl e. i d - 1 isconsidered
to be of type i nt eger not posi nt . We could write (nytable.id - 1)::posint to castthe
result back to posi nt , causing the domain's constraints to be rechecked. In this case, that would result
in an error if the expression had been applied to an i d value of 1. Assigning a value of the underlying
typeto afield or variable of the domain type is allowed without writing an explicit cast, but the domain's
constraints will be checked.

For additional information see CREATE DOMAIN.

Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Type oi d represents an object identifier. There are also several aias types for oi d, each named r eg-
somet hi ng. Table 8.26 shows an overview.

Theoi d typeis currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables.

The oi d type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID aiastypeshave no operations of their own except for specialized input and output routines. These
routines are able to accept and display symbolic names for system objects, rather than the raw numeric
value that type oi d would use. The alias types allow simplified lookup of OID values for objects. For
example, to examinethepg_at t ri but e rowsrelated to atable nyt abl e, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'nmytable'::regcl ass;

rather than:

SELECT * FROM pg_attribute

225

Data Types

WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nanme =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select theright OID if there are multiple tables named nmyt abl e indifferent schemas.
Ther egcl ass input converter handles the table lookup according to the schema path setting, and so it
doesthe “right thing” automatically. Similarly, casting atable'sOID tor egcl ass ishandy for symbolic
display of anumeric OID.

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier 564182
regcl ass pg_cl ass relation name pg_type
regcol |l ation pg_col lation collation name " PCSI X!
regconfig pg_ts_config text search configuration|engl i sh
regdi ctionary pg_ts_dict text search dictionary simpl e
regnanmespace pg_nanespace namespace hame pg_cat al og
regoper pg_oper at or operator name +

r egoper at or pg_oper at or operator with argument

types

*(integer,inte-
ger) or- (NONE, i n-

teger)
regproc pg_proc function name sum
r egpr ocedur e pg_pr oc function with argument [sun{i nt 4)
types
regrol e pg_aut hid role name sm t hee
regtype pg_type data type name i nt eger

All of the OID alias types for objects that are grouped by namespace accept schema-qualified names, and
will display schema-qualified names on output if the object would not be found in the current search path
without being qualified. For example, myscherma. nyt abl e isacceptableinput forr egcl ass (if there
issuchatable). That value might be output asimyscherma. nyt abl e, orjust myt abl e, depending onthe
current search path. Ther egpr oc andr egoper aiastypeswill only accept input namesthat are unique
(not overloaded), so they are of limited use; for most usesr egpr ocedur e or r egoper at or are more
appropriate. For r egoper at or , unary operators are identified by writing NONE for the unused operand.

The input functions for these types allow whitespace between tokens, and will fold upper-case letters to
lower case, except within double quotes; this is done to make the syntax rules similar to the way object
names are written in SQL. Conversely, the output functions will use double quotesif needed to make the
output beavalid SQL identifier. For example, the OID of afunction named Foo (with upper case F) taking
two integer arguments could be entered as' "Foo" (int, integer) '::regprocedure.
The output would look like " Foo" (i nt eger, i nt eger) . Both the function name and the argument
type names could be schema-qualified, too.

Many built-in PostgreSQL functions accept the OID of atable, or another kind of database object, and for
convenience are declared as taking r egcl ass (or the appropriate OID alias type). This means you do
not have to look up the object's OID by hand, but can just enter its name as a string literal. For example,
thenext val (regcl ass) function takes a sequence relation's OID, so you could call it like this:

nextval (' foo') operates on sequence foo

226

Data Types

next val (' FOO) same as above

nextval (' "Foo"") operates on sequence Foo

next val (' myschena. f 00') operates on nyschema. f oo

nextval (' "nyschema". foo0") same as above

nextval (' foo') searches search path for foo
Note

When you write the argument of such a function as an unadorned literal string, it becomes a con-
stant of typer egcl ass (or the appropriate type). Sincethisisrealy just an OID, it will track the
originally identified object despite later renaming, schemareassignment, etc. This*“early binding”
behavior is usually desirable for object references in column defaults and views. But sometimes
you might want “late binding” where the object reference isresolved at runtime. To get late-bind-
ing behavior, force the constant to be stored asat ext constant instead of r egcl ass:

nextval (' foo' ::text) foo is | ooked up at runtine

Thet o_regcl ass() function and its siblings can also be used to perform run-time lookups.
See Table 9.72.

Another practical example of use of r egcl ass isto look up the OID of atablelisted inthei nf or ma-

ti on_schenma views, which don't supply such OIDs directly. One might for example wish to call the
pg_rel ation_si ze() function, which requires the table OID. Taking the above rules into account,
the correct way to do that is

SELECT tabl e_schenmn, table_ nane,
pg_relation_size((quote_ident(table _schema) || '.' |]
guote_ident (tabl e nane))::regcl ass)
FROM i nf or mati on_schena. t abl es
WHERE . ..

Thequot e_i dent () function will take care of double-quoting the identifiers where needed. The seem-
ingly easier

SELECT pg_rel ation_size(tabl e_nane)
FROM i nf or mati on_schensa. t abl es
VWHERE . ..

is not recommended, because it will fail for tables that are outside your search path or have names that
require quoting.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (' my_seq' ::regcl ass), PostgreSQL understands that the default expression depends on
the sequence my_seq, so the system will not let the sequence be dropped without first removing the
default expression. The alternative of next val (' my_seq' : : t ext) does not create a dependency.
(r egr ol e isan exception to this property. Constants of thistype are not allowed in stored expressions.)

Another identifier type used by the system isxi d, or transaction (abbreviated xact) identifier. Thisisthe
data type of the system columns xni n and xmax. Transaction identifiers are 32-bit quantities. In some

227

Data Types

8.20.

8.21.

contexts, a 64-bit variant xi d8 isused. Unlike xi d values, xi d8 valuesincrease strictly monotonically
and cannot be reused in the lifetime of a database cluster. See Section 74.1 for more details.

A thirdidentifier type used by the systemisci d, or command identifier. Thisisthe datatype of the system
columnscmi n and crmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemist i d, or tuple identifier (row identifier). Thisisthe datatype
of the system column ct i d. A tuple ID isapair (block number, tuple index within block) that identifies
the physical location of the row within itstable.

(The system columns are further explained in Section 5.5.)

pPg | sn Type

The pg_|I sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type of

PostgreSQL.

Internally, an LSN isa64-bit integer, representing abyte positionin thewrite-ahead log stream. It isprinted
as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/ B374D848.
Thepg_| sn type supports the standard comparison operators, like = and >. Two L SNs can be subtracted
using the - operator; the result is the number of bytes separating those write-ahead log locations. Also
the number of bytes can be added into and subtracted from LSN using the +(pg_| sn, nuneri c¢) and
-(pg_l sn, nurreri c) operators, respectively. Note that the calculated LSN should be in the range of
pg_| sn type, i.e., between 0/ 0 and FFFFFFFF/ FFFFFFFF.

Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion's argument or result type. Each of the available pseudo-typesis useful in situations where afunction's
behavior does not correspond to simply taking or returning avalue of a specific SQL datatype. Table 8.27
lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyel enent Indicates that a function accepts any data type (see Sec-
tion 38.2.5).

anyarray Indicates that a function accepts any array data type (see Sec-
tion 38.2.5).

anynonarray Indicates that a function accepts any non-array data type (see
Section 38.2.5).

anyenum Indicates that a function accepts any enum data type (see
Section 38.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data type (see
Section 38.2.5 and Section 8.17).

anymul ti range Indicates that a function accepts any multirange data type
(see Section 38.2.5 and Section 8.17).

228

Data Types

Name

Description

anyconpati bl e

Indicates that a function accepts any data type, with automat-
ic promotion of multiple arguments to a common data type
(see Section 38.2.5).

anyconpati bl earray

Indicates that a function accepts any array data type, with au-
tomatic promotion of multiple arguments to a common data
type (see Section 38.2.5).

anyconpati bl enonarr ay

Indicates that a function accepts any non-array datatype,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 38.2.5).

anyconpati bl erange

Indicates that a function accepts any range data type, with au-
tomatic promotion of multiple arguments to a common data
type (see Section 38.2.5 and Section 8.17).

anyconpati bl ermul ti range

Indicates that a function accepts any multirange data type,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 38.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-terminated
C string.
i nternal Indicates that a function accepts or returns a server-internal

datatype.

| anguage_handl er

A procedural language call handler is declared to return
| anguage_handl er.

f dw_handl er

A foreign-data wrapper handler is declared to return f d-
w_handl er.

t abl e_am handl er

A table access method handler is declared to returnt a-
bl e_am handl er.

i ndex_am handl er

An index access method handler is declared to returni n-
dex_am handl er.

t sm handl er

A tablesample method handler is declared to return
tsm handl er.

record Identifies a function taking or returning an unspecified row
type.
trigger A trigger function isdeclared toreturnt ri gger .

event _trigger

An event trigger function is declared to return even-
t_trigger.

pg_ddl _comrand

I dentifies a representation of DDL commandsthat is avail-
able to event triggers.

voi d

Indicates that afunction returns no value.

unknown

I dentifies a not-yet-resolved type, e.g., of an undecorated
string literal.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo-types. It is up to the function author to ensure that the function will behave safely when a
pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and

229

Data Types

allow only voi d andr ecor d asaresult type (plust ri gger or event _tri gger when the function
is used as a trigger or event trigger). Some also support polymorphic functions using the polymorphic
pseudo-types, which are shown above and discussed in detail in Section 38.2.5.

Thei nt er nal pseudo-type is used to declare functions that are meant only to be called internally by
the database system, and not by direct invocation in an SQL query. If afunction has at least onei nt er -

nal -type argument then it cannot be called from SQL. To preserve the type safety of this restriction it
is important to follow this coding rule: do not create any function that is declared to return i nt er nal

unlessit hasat least onei nt er nal argument.

230

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. This chapter
describes most of them, although additional special-purpose functions appear in relevant sections of the
manual. Users can also define their own functions and operators, as described in Part V. The psgl com-
mands\ df and\ do can be used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function or
operator islikethis:

repeat (text, integer) - text

which says that the function r epeat takes one text and oneinteger argument and returns aresult of type
text. Theright arrow is aso used to indicate the result of an example, thus:

repeat (' Pg', 4) - PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many casesthisfunctionality iscompatible and consistent
between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

bool ean AND bool ean - bool ean
bool ean OR bool ean - bool ean
NOT bool ean - bool ean

SQL uses athree-valued logic system with true, false, and nul | , which represents “unknown”. Observe
the following truth tables:

a b aANDDb aOR