Cost Expression for Index Scan

Amit Gupta (amit_gupta@persistent.co.in, amit.pc.gupta@gmail.com)

Some parameters:

h: Height of the B-tree

f: Avg fan-out of the B-tree nodes.

e z: Number of key searches (probes) on the B-tree

e b: Size of buffer cache in terms of number of blocks

e n: Number of probes that fill the cache. Cache reaches steady state after n probes.

Problem Definition: Compute the expected number of index block IO’s required to execute x probes on a
B-tree index.

Probability that an index node at it* level (of the B-tree) is not found in cache during zt* index probe is
described in the table below.

B-tree level=1 | B-tree level=2 | ... h
st probe 1 1 e
2"? probe 0 1-1/f 1—1/f1
27¢ probe 0 (1-1/f) (1—1/fm1)°
h probe 0 1-1/pH)""" |... (- l/fh—l)z_l
z—1 T—
Total I0 = 1 -1/ .. 2 —1/f"Y
r=0 r=0

e Assuming that the index probe starts with empty cache, for the first index probe all the B-tree nodes from
root to leaf will be read from disk. This represented in the table above as 1 block read for each B-tree level.

e The second probe will find root node in cache, but the probability of finding second level index node in
cache is 1/f, since there are f second level nodes. Similarly, as only 1 leaf node is in cache, probability of
finding it out of f#~1 blocks is 1/f" 1.

e In the third probe, probability of not finding the desired node at second level is (1 —1/f)2.

Total block IO for z index probes =

z—1 z—1 z—1
1+ =1/ +3 =1/ +..+ Y @—-1/ "
r=0 r=0 r=0

By applying sum of geometric expressions, we get the following result.

(e V7 NS Tl et ¥/ i

IR/ 1/t
Using Binomial theorem,
To R To o *¢y *C zC'k
=1+f(71—f—22+...+7+...)+f2(f—21—f—22+ f2k+...)+
zcl zC2 zCk
AT - tiit o+)+
(fr f21' frk)
*Ch 1 1 *Cy 1 1
=1+zh—-1)- f(1+?+' = 2)+f2 “*F*"'*W”
“”Ck 1 1
f’“ 1 (1 + fkfl tooF f(k—2)(h—2)) +
Applying the sum of geometric series.
:c02 1—]./fh 1 z () 3 1— 1/f2(h—1) :cck 1— l/f(k—l)(h—l)

=142zh-1)- +...

T S ¥ A R Wy T S Sy

1

Assuming that f >>1, = 1/f =0

wCz azc3 mck
:1+.'L'(h—].)— f + f2 +...+F+...
1 =z (1-1/f)
—l4ah—1)+—-— ——
() for? f
1 s (-1
—l4ah—1)+ - — = —
R A
=1+x(h—1)—%, when 1/f—0
When cache reaches steady state (x = n)
9 b—1
1+nh=1)—n/f :b:>n:h_1

Num IO's=1+x(h—1)+%,if r<=n

When z > n, let first { levels of the B-tree are cached. | = |logsb]
The remaining cache R = b — f! can be utilized caching other B-tree nodes (from [+ 1 to h levels).

ft 4t
R

Num IO =b+ (z—n)(h—-1) ,2When z>n

fh—l _fl
=b+(x—n)h— l)T,assuming f>>1

References

1. Index scans using a finite LRU buffer: a validated I/O model, Lothar F. Mackert, Guy M. Lohman

