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Some parameters:

h: Height of the B-tree

f: Avg fan-out of the B-tree nodes.

e z: Number of key searches (probes) on the B-tree

e b: Size of buffer cache in terms of number of blocks

e n: Number of probes that fill the cache. Cache reaches steady state after n probes.

Problem Definition: Compute the expected number of index block IO’s required to execute x probes on a
B-tree index.

Probability that an index node at it* level (of the B-tree) is not found in cache during zt* index probe is
described in the table below.
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e Assuming that the index probe starts with empty cache, for the first index probe all the B-tree nodes from
root to leaf will be read from disk. This represented in the table above as 1 block read for each B-tree level.

e The second probe will find root node in cache, but the probability of finding second level index node in
cache is 1/f, since there are f second level nodes. Similarly, as only 1 leaf node is in cache, probability of
finding it out of f#~1 blocks is 1/f" 1.

e In the third probe, probability of not finding the desired node at second level is (1 —1/f )2.

Total block IO for z index probes =
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By applying sum of geometric expressions, we get the following result.
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Applying the sum of geometric series.
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Assuming that f >>1, = 1/f =0
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Num IO's=1+x(h—1)+%,if r<=n

When z > n, let first { levels of the B-tree are cached. | = |logsb]
The remaining cache R = b — f! can be utilized caching other B-tree nodes (from [ + 1 to h levels).

ft 4t
R

Num IO =b+ (z—n)(h—-1) ,2When z>n

fh—l _fl
=b+(x—n)h— l)T,assuming f>>1

References

1. Index scans using a finite LRU buffer: a validated I/O model, Lothar F. Mackert, Guy M. Lohman



