High Level Design for Logical
Replication in Postgres

Andres Freund, 2ndQuadrant Ltd. <andr es@ndQuadr ant . con>

Table of Contents

I 11 00 8 [o o TSSO PP USPS 1
1.1. PreVioUS QISCUSSIONScueivirierieriereeeessestessessessessesseeseesessessessessessessessesssessensessessesseseessessesnens 1
1.2. Changes frOM VL ...ttt bbbttt e e et et e bt nneenes 2
2. Existing approaches to replication iN POSIOIESccoiiiiririeieiesie st 2
2.1, Trigger based REPIICALIONcoeiiiiiiiieese ettt sne e 2
2.2. Recovery based REPIICALIONcocuiiiiieriiriesie sttt 3
G €T USSP TR PPN 4
4. NEW ATCIITECIUIE ..ottt ettt b bbbttt e b e b e b e st e s beebeeaeene e s eneas 5
I @Y= oV = USSP ORPRRR 5
4.2, SCREIMBLICSeueeueeiieteie sttt b bbb bt bt st et e e e e e nbesb e benbesneeneeneas 5
4.3. WAL ENIICREMENT ...ttt e e bbbttt eesa et e b 7
4.4. WAL parsing & dECOUINGcuerveruirieriirieieiesies ettt st s b e sne e 7
A5, TX TEBSSAMDIY .ottt b ettt e et b e e 9
4.6. SNAPSNOL DUHAING ... 10
R © 0 111U = 1V o |1 RO 11
4.8. Setup Of repliCation NOUEScoiiiiiiiiereeee bbb 12
4.9. Disadvantages Of the apProaCh ..o s 13
4.10. UnfiniShed/UNdECiAEd ISSUESccueiuiiiriirierieniesieeieeee ettt 13

1. Introduction

This document aims to first explain why we think postgres needs another replication solution and
what that solution needs to offer in our opinion. Then it sketches out our proposed implementation.

In contrast to an earlier version of the design document which talked about the implementation of four
parts of replication solutions:

1. Source data generation

2. Transportation of that data
3. Applying the changes

4. Conflict resolution

this version only plansto talk about the first part in detail asit is an independent and complex part
usable for awide range of use cases which we want to get included into postgresin afirst step.

1.1. Previous discussions

There are two rather large threads discussing several parts of the initial prototype and proposed
architecture:

High Level Design for Logical
Replication in Postgres

» Logica Replication/BDR prototype and architecture [http://archives.postgresgl.org/message-
1d/201206131327.24092.andres@2ndquadrant.com]

» Catalog/M etadata consistency during changeset extraction from WAL [http://
archives.postgresqgl.org/message-id/201206211341.25322.andres@2ndquadrant.com]

Those discussions lead to some fundamental design changes which are presented in this document.

1.2. Changes from v1

» At least apartial decoding step required/possible on the source system

No intermediate ("schema only") instances required

DDL handling, without event triggers

A very simple text conversion is provided for debugging/demo purposes

Smaller scope

2. Existing approaches to replication in
Postgres

If any currently used approach to replication can be made to support every use-case/feature we need, it
likely is not agood idea to implement something different. Currently three basic approaches are in use
infaround postgres today:

1. Trigger based

2. Recovery based/Physical *

3. Statement based

Statement based replication has obvious and known problems with consistency and correctness
making it hard to use in the general case so we will not further discussit here.

Lets have alook at the advantages/disadvantages of the other approaches:

2.1. Trigger based Replication

This variant has a multitude of significant advantages:
» implementable in userspace

* easy to customize

Often referred to by terms like Hot Standby, Streaming Replication, Point In Time Recovery

http://archives.postgresql.org/message-id/201206131327.24092.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206131327.24092.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206131327.24092.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206211341.25322.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206211341.25322.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206211341.25322.andres@2ndquadrant.com

High Level Design for Logical
Replication in Postgres

* just about everything can be made configurable
* Cross version support

* cross architecture support

* can feed into systems other than postgres

* no overhead from writes to non-replicated tables
 writable standbys

* mature solutions

multimaster implementations possible & existing
But also anumber of disadvantages, some of them very hard to solve:
* essentially duplicates the amount of writes (or even more!)
 synchronous replication hard or impossible to implement
* noticeable CPU overhead
* trigger functions
* text conversion of data
» complex parts implemented in several solutions
* notin core

Especialy the higher amount of writes might seem easy to solve at afirst glance but a solution not
using anormal transactional table for its log/queue hasto solve alot of problems. The major ones are:

* crash safety, restartability & spilling to disk

* consistency with the commit status of transactions

» only aminimal amount of synchronous work should be done inside individual transactions

In our opinion those problems are restricting progress/wider distribution of these class of solutions.
It is our aim though that existing solutions in this space - most prominently slony and londiste - can

benefit from the work we are doing & planning to do by incorporating at least parts of the changeset
generation infrastructure.

2.2. Recovery based Replication

This type of solution, being built into postgres and of increasing popularity, has and will have its use
cases and we do not aim to replace but to complement it. We plan to reuse some of the infrastructure
and to make it possible to mix both modes of replication

3

High Level Design for Logical
Replication in Postgres

Advantages:

e builtin

built on existing infrastructure from crash recovery

efficient
* minimal CPU, memory overhead on primary

* |ow amount of additional writes

synchronous operation mode

low maintenance once setup

handles DDL

Disadvantages:

 standbys are read only

* NO Cross version support

* NO cross architecture support

* no replication into foreign systems
* hard to customize

 not configurable on the level of database, tables, ...

3. Goals

As seen in the previous short survey of the two major interesting classes of replication solution there
isasignificant gap between those. Our aim isto make it smaller.

Weam for:

in core

low CPU overhead

low storage overhead

asynchronous, optionally synchronous operation modes

robust

modular

High Level Design for Logical
Replication in Postgres

* basisfor other technologies (sharding, replication into other DBMS's, ...)
* basisfor amulti-master solution

» make the implementation as unintrusive as possible, but not more

4. New Architecture

4.1. Overview

Our proposal isto reuse the basic principle of WAL based replication, namely reusing data that
already needs to be written for another purpose, and extend it to allow most, but not all, the flexibility
of trigger based solutions. We want to do that by decoding the WAL back into a non-physical form.

To get the flexibility we and others want we propose that the last step of changeset generation,
transforming it into aformat that can be used by the replication consumer, is done in an extensible
manner. In the schemathe part that does that is described as Output Plugin. To keep the amount of
duplication between different plugins as low as possible the plugin should only do aavery limited
amount of work.

The following paragraphs contain reasoning for the individual design decisions made and their
highlevel design.

4.2. Schematics

The basic proposed architecture for changeset extraction is presented in the following diagram. The
first part should look familiar to anyone knowing postgres architecture. The second is where most of
the new magic happens.

High Level Design for Logical

Replication in Postgres

Fiaure 1. Architecture Schema

Traditional Stuff

Backend Backend Backend Autovac
WAL writer |+

YVYYYVY

—
n 4E
|

Startup/Recovery

SR/Hot Standby

Point in Time

New Stuff

\J
-
Catalog

Walsender ¢

WAL
decoding

v

X
reassembly

Output
Plugin

v
|- |-

Running separately

Logical Rep.

Multimaster

Slony

Auditing

Mysql/...

Custom Solutions

Debugging

Data Recovery

High Level Design for Logical
Replication in Postgres

4.3. WAL enrichement

To be able to decode individual WAL records at the very minimal they need to contain enough
information to reconstruct what has happened to which row. The action is already encoded in the
WAL records header in most of the cases.

As an example of missing data, the WAL record emitted when arow gets deleted, only containsits
physical location. At the very least we need away to identify the deleted row: in arelational database
the minimal amount of data that does that should be the primary key 2,

We propose that for now it is enough to extend the relevant WAL record with additional data when
the newly introduced WAL _level = logical is set.

Previoudly it has been argued on the hackers mailing list that a generic WAL record annotation
mechanism might be a good thing. That mechanism would allow to attach arbitrary data to individual
wal records making it easier to extend postgres to support something like what we propose.. While we
don’'t oppose that ideawe think it is largely orthogonal issue to this proposal as a whole because the
format of aWAL recordsis version dependent by nature and the necessary changes for our easy way
are small, so not much effort islost.

A full annotation capability is acomplex endeavour on its own as the parts of the code generating the
relevant WAL records has somewhat complex requirements and cannot easily be configured from the
outside.

Currently thisis contained in the Log enough data into the wal to reconstruct logical changes
from it [http://archives.postgresgl.org/message-id/1347669575-14371-6-git-send-email -
andres@2ndguadrant.com] patch.

4.4. WAL parsing & decoding

The main complexity when reading the WAL as stored on disk is that the format is somewhat
complex and the existing parser is too deeply integrated in the recovery system to be directly reusable.
Once areusable parser exists decoding the binary datainto individual WAL recordsis asmall
problem.

Currently two competing proposals for this module exist, each having its own merits. In the grand
scheme of this proposal it isirrelevant which one gets picked as long as the functionality gets
integrated.

Themailing list post Add support for ageneric wal reading facility dubbed XLogReader [http:http://
archives.postgresqgl.org/message-id/1347669575-14371-3-git-send-email-andres@2ndquadrant.com]
contains both competing patches and discussion around which oneis preferable.

Once the WAL has been decoded into individual records two major issues exist:
1. records from different transactions and even individual user level actions are intermingled

2. the data attached to records cannot be interpreted on its own, it is only meaningful with alot of
required information (including table, columns, types and more)

2y es, there are use cases where the whole row is needed, or where no primary key can be found

http://archives.postgresql.org/message-id/1347669575-14371-6-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-6-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-6-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-6-git-send-email-andres@2ndquadrant.com
http:http://archives.postgresql.org/message-id/1347669575-14371-3-git-send-email-andres@2ndquadrant.com
http:http://archives.postgresql.org/message-id/1347669575-14371-3-git-send-email-andres@2ndquadrant.com
http:http://archives.postgresql.org/message-id/1347669575-14371-3-git-send-email-andres@2ndquadrant.com

High Level Design for Logical
Replication in Postgres

The solution to the first issue is described in the next section: Section 4.5, “TX reassembly”

The second problem is probably the reason why no mature solution to reuse the WAL for logical
changeset generation exists today. See the Section 4.6, “ Snapshot building” paragraph for some
details.

As decoding, Transaction reassembly and Snapshot building are interdependent they currently
are implemented in the same patch: Introduce wal decoding via catalog timetravel [http://
archives.postgresqgl.org/message-id/1347669575-14371-8-git-send-email-andres@2ndquadrant.com]

That patch also includes a small demonstration that the approach works in the presence of DDL.:

Decoding example.

/* just so we keep a sensible xmn horizon */
ROLLBACK PREPARED ' f';

BEG N;

CREATE TABLE keepalive();

PREPARE TRANSACTION ' f"';

DROP TABLE | F EXI STS replication_exanpl e;

SELECT pg_current _xlog_insert | ocation();

CHECKPQO NT;

CREATE TABLE replication_exanpl e(id SERI AL PRI MARY KEY, sonedata int, text
var char (120));

begi n;

| NSERT | NTO replication_exanpl e(sonedata, text) VALUES (1, 1);

| NSERT | NTO replication_exanpl e(sonedata, text) VALUES (1, 2);

commit;

ALTER TABLE replication_exanple ADD COLUW bar int;
| NSERT | NTO replication_exanpl e(sonedata, text, bar) VALUES (2, 1, 4);

BEG N;

| NSERT | NTO replication_exanpl e(sonedata, text, bar) VALUES (2, 2, 4);

| NSERT | NTO replication_exanpl e(sonedata, text, bar) VALUES (2, 3, 4);

| NSERT | NTO replication_exanpl e(sonedata, text, bar) VALUES (2, 4, NULL);
COW T;

/* slightly nore conpl ex schena change, still no table rewite */
ALTER TABLE replication_exanpl e DROP COLUW bar ;
| NSERT | NTO replication_exanpl e(sonedata, text) VALUES (3, 1);

BEG N;
| NSERT | NTO replication_exanpl e(sonedata, text) VALUES (3, 2);
| NSERT | NTO replication_exanpl e(sonedata, text) VALUES (3, 3);
commi t;

ALTER TABLE replication_exanpl e RENAVE COLUW text TO sonmenum
| NSERT | NTO replication_exanpl e(sonedata, sonenum) VALUES (4, 1);
/* conpl ex schema change, changi ng types of existing colum, rewiting the table */

ALTER TABLE replication_exanpl e ALTER COLUWN sonenum TYPE i nt4 USI NG
(somenum :int4);

http://archives.postgresql.org/message-id/1347669575-14371-8-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-8-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-8-git-send-email-andres@2ndquadrant.com

High Level Design for Logical
Replication in Postgres

| NSERT | NTO replication_exanpl e(sonedata, sonenum) VALUES (5, 1);
SELECT pg_current x|l og_i nsert | ocation();

/* now decode what has been witten to the WAL during that tinme */
SELECT decode_xl og(' 0/1893D78', '0/18BE398');

WARNI NG BEG N
WARNI NG COW T
WARNI NG BEG N
WARNI NG tuple i
WARNI NG tuple i
WARNI NG COW T
WARNI NG BEG N
WARNI NG COW T
WARNI NG BEG N
WARNI NG tuple is: id[int4]:3 sonmedata[int4]:2 text[varchar]:
WARNI NG COW T

WARNI NG BEG N

(2]

[EEN
[EEN
[EEN

id[int4]:1 sonedata[int4]:1 text[varchar]:
id[int4]:2 sonedata[int4]:1 text[varchar]:2

n

(=Y

bar[int4]:4

WARNI NG tuple is: id[int4]:4 somedata[int4]:2 text[varchar]:2 bar[int4]:4
WARNI NG tuple is: id[int4]:5 somedata[int4]:2 text[varchar]:3 bar[int4]:4
WARNI NG tuple is: id[int4]:6 somedata[int4]:2 text[varchar]:4 bar[int4]:

(null)

WARNI NG COW T

WARNI NG BEG N

WARNI NG COW T

WARNI NG BEG N

WARNI NG tuple is: id[int4]:7 somedata[int4]:3 text[varchar]:1
WARNI NG COW T
WARNI NG BEG N
WARNI NG tuple i
WARNI NG tuple i
WARNI NG COW T
WARNI NG BEG N
WARNI NG COW T
WARNI NG BEG N
WARNI NG tuple is: id[int4]:10 sonedatalint4]:4 somenunivarchar]:1
WARNI NG COW T

WARNI NG BEG N

WARNI NG COW T

WARNI NG BEG N

WARNI NG tuple is: id[int4]:11 sonedata[int4]:5 somenunfint4]:1
WARNI NG COW T

4.5. TX reassembly

n

(o]
w
N

id[int4]:8 sonedata[int4]:3 text[varchar]:
id[int4]:9 sonedata[int4]:3 text[varchar]:3

n

In order to make usage of the decoded stream easy we want to present the user level code with a
correctly ordered image of individual transactions at once because otherwise every user will haveto
reassembl e transactions themsel ves.

Transaction reassembly needs to solve severa problems:
1. changesinside atransaction can be interspersed with other transactions

2. atop level transaction only knows which subtransactions belong to it when it reads the commit
record

High Level Design for Logical
Replication in Postgres

3. individual user level actions can be smeared over multiple records (TOAST)

Our proposed module solves 1) and 2) by building individual streams of records split by xid. While
not fully implemented yet we plan to spill those individual xid streams to disk after a certain amount
of memory isused. This can be implemented without any change in the externa interface.

Asall theindividual streams are already sorted by LSN by definition - we build them from thewal in
a FIFO manner, and the position in the WAL isthe definition of the LSN 3. theindividual changes
can be merged efficiently by ak-way merge (without sorting!) by keeping the individual streamsin a
binary heap.

To manipulate the binary heap a generic implementation is proposed. Severa independent
implementations of binary heaps already exist in the postgres code, but none of them is generic.

The patch is available at Add minimal binary heap implementation [http://archives.postgresql.org/
message-id/1347669575-14371-2-git-send-email-andres@2ndquadrant.com].

Note

The reassembly component was previously coined A pplyCache because it was proposed to run
on replication consumers just before applying changes. Thisis not the case anymore.

Itistill caled that way in the source of the patch recently submitted.

4.6. Snapshot building

To decode the contents of wal records describing data changes we need to decode and transform their
contents. A single tupleis stored in a data structure called HeapTuple. As stored on disk that structure
doesn’t contain any information about the format of its contents.

The basic problem is twofold:

1. Thewal records only contain the relfilenode not the relation oid of atable

2. Therelfilenode changes when an action performing afull table rewrite is performed

3. Tointerpret aHeapTuple correctly the exact schema definition from back when the wal record was
inserted into the wal stream needs to be available

We chose to implement timetraveling access to the system catalog using postgres MV CC nature &
implementation because of the following advantages:

* |ow amount of additional datain wal

genericity

similarity of implementation to Hot Standby, quite abit of the infrastructure is reusable

al kinds of DDL can be handled in reliable manner

3the LSN isjust the byte position int the WAL stream

10

http://archives.postgresql.org/message-id/1347669575-14371-2-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-2-git-send-email-andres@2ndquadrant.com
http://archives.postgresql.org/message-id/1347669575-14371-2-git-send-email-andres@2ndquadrant.com

High Level Design for Logical
Replication in Postgres

» extensibility to user defined catalog like tables

Timetravel access to the catalog means that we are able to look at the catalog just asit looked when
changes were generated. That allows us to get the correct information about the contents of the
aforementioned HeapTuple’ s so we can decode them reliably.

Other solutions we thought that fell through: * catalog only proxy instances that apply schema
changes exactly to the point were decoding using “old fashioned” wal replay * do the decoding on a
2nd machine, replicating all DDL exactly, rely on the catalog there * do not allow DDL at all * always
add enough data into the WAL to allow decoding * build afully versioned catalog

The email thread available under Catalog/M etadata consistency during changeset extraction from
WAL [http://archives.postgresgl.org/message-id/201206211341.25322.andres@2ndquadrant.com]
contains some details, advantages and disadvantages about the different possible implementations.

How we build snapshots is somewhat intricate and complicated and seems to be out of scope for this
document. We will provide a second document discussing the implementation in detail. Let’s just
assume it is possible from here on.

Note

Some details are already available in comments inside src/backend/replication/logical/
snapbuild.{c,h}.

4.7. Output Plugin

As aready mentioned previously our aim is to make the implementation of output plugins as simple
and non-redundant as possible as we expect severa different ones with different use cases to emerge
quickly. See Figure 1, “ Architecture Schema’ for alist of possible output plugins that we think might
emerge.

Although we for now only plan to tackle logical replication and based on that a multi-master
implementation in the near future we definitely aim to provide all use-cases with something easily
useable!

To decode and translate local transaction an output plugin needs to be able to transform transactions as
awhole so it can apply them as a meaningful transaction at the other side.

What we do to provide that is, that very time we find a transaction commit and thus have completed
reassembling the transaction we start to provide the individual changesto the output plugin. It
currently only hasto fill out 3 callbacks:

Callback Passed Parameters Called per TX Use
begin xid once Begin of areassembled
transaction
change xid, subxid, change, every change Gets passed every
mvcce snapshot change so it can
transform it to the target
format

11

http://archives.postgresql.org/message-id/201206211341.25322.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206211341.25322.andres@2ndquadrant.com
http://archives.postgresql.org/message-id/201206211341.25322.andres@2ndquadrant.com

High Level Design for Logical
Replication in Postgres

Callback Passed Parameters Called per TX Use
commit xid once End of areassembled
transaction

During each of those callback an appropriate timetraveling SnapshotNow snapshot is setup so the
callbacks can perform all read-only catalog accesses they need, including using the sys/rel/catcache.
For obvious reasons only read accessis allowed.

The snapshot guarantees that the result of lookups are be the same as they were/would have been
when the change was originally created.

Additionally they get passed a MV CC snapshot, to e.g. run sgl queries on catalogs or similar.

I mportant

At the moment none of these snapshots can be used to access normal user tables. Adding
additional tablesto the allowed set is easy implementation wise, but every transaction
changing such tables incurs a noticeably higher overhead.

For now transactions won’t be decoded/output in parallel. There are ideasto improve on this, but we
don’t think the complexity is appropriate for the first release of this feature.

Thisis an adoption barrier for databases where large amounts of data get |oaded/written in one
transaction.

4.8. Setup of replication nodes

When setting up a new standby/consumer of a primary some problem exist independent of the
implementation of the consumer. The gist of the problem is that when making a base backup and
starting to stream all changes since that point transactions that were running during all this cannot be
included:

» Transaction that have not committed before starting to dump a database are invisible to the
dumping process

» Transactions that began before the point from which on the WAL is being decoded are incomplete
and cannot be replayed

Our proposal for asolution to thisis to detect pointsin the WAL stream where we can provide:

1. A snapshot exported similarly to pg_export_snapshot() 4 that can be imported with SET
TRANSACTI ON' SNAPSHOT °

2. A stream of changes that will include the complete data of all transactions seen as running by the
snapshot generated in 1)

See the diagram.

4http://www.postgresql .org/docs/devel/static/functions-admin.hitmI#FUNCTIONS-SNAPSHOT-SY NCHRONIZATION
5http://www.postgresql .org/docs/devel/static/sql-set-transaction.html

12

http://www.postgresql.org/docs/devel/static/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION
http://www.postgresql.org/docs/devel/static/sql-set-transaction.html

High Level Design for Logical
Replication in Postgres

Figure 2. Control flow during setup of a new node

Walsender

Y

WAL
decoding

FEHEEEITIIDI"'

Cutput
Plugin

4— IDENTIFT_STSTEM
— >

+4— INIT_LOGICAL $PLUGIN

— FOUND_STARTING %X/%X ————F
— FOUND COMSISTENT &K/ %X

— p:g_cﬁJ mp snapshot
— replication slot %P

t

44— STREAM_DATA
— data s

run pg_dump separately —

—— SHUTDOWN

“‘— RESTART LOGICAL $PLUGIN %P —
— dete >

4.9. Disadvantages of the approach

» somewhat intricate code for snapshot timetravel

Consumer

* output plugins/walsenders need to work per database as they access the catalog

» when sending to multiple standbys some work is done multiple times

* decoding/applying multiple transactions in parallel is hard

4.10. Unfinished/Undecided issues

 declaration of user “catalog” tables (e.g. userspace enums)

« finishing different parts of the implementation

* spill to disk during transaction reassembly

» mixed catal og/data transactions

* snapshot refcounting

* snapshot exporting

13

High Level Design for Logical
Replication in Postgres

* snapshot serialization

14

	High Level Design for Logical Replication in Postgres
	Table of Contents
	1. Introduction
	1.1. Previous discussions
	1.2. Changes from v1

	2. Existing approaches to replication in Postgres
	2.1. Trigger based Replication
	2.2. Recovery based Replication

	3. Goals
	4. New Architecture
	4.1. Overview
	4.2. Schematics
	4.3. WAL enrichement
	4.4. WAL parsing & decoding
	4.5. TX reassembly
	4.6. Snapshot building
	4.7. Output Plugin
	4.8. Setup of replication nodes
	4.9. Disadvantages of the approach
	4.10. Unfinished/Undecided issues

