
neon
git for structured data

Introduction

The use of git to collaborate around structured data is a good thing as it draws

a clear path for reproducible science.

git is not meant to store a lot of data. Extensions of git like git-annex or git-lfs

don’t allow to track changes in a semantic way. The lake of proper structure

and typing in a git based database leads to reinvent formats and schemas to

describe the stored data without delivering good enough structured semantic

on changes. The difference between two versions of the data is done on raw

line. They use file formats that don’t understand the underlying schema that

correspond to the schema of the stored data. Storing data in git it’s loosely

structured, because git is not aware of the schema and distribution of the

stored data. This leads to a semantic on differences that are a superset of the

actual differences. For instance, when you change a cell in a csv or tsv table

the change appears to git as a difference between two rows. Neon store the

information of that particular cell, in a particular row, in particular dataset. By

changing that cell, you updated a particular row that is part of a table. In that

particular table, there is a particular header, that heading semantic is attached

to its type, constraints, distribution description and some metadata like labels

in multiple languages. You can attach indexing strategies to columns in your

table like geospatial indexing or full-text search. This description allows neon

to checkout a database without versioning information, that is an optimized

instance of the last version of the stored data.

Projects that could benefit from a versioned data store of structured data are:

db.nomics, datahub and wikidata.

The use of a Ressource Description Framework (RDF) and Linked-Data (LD) as

described in Collaborative Open Data Versioning : A Pragmatic Approach

Using Linked Data will allow organizations to work on standard ontologies like

INSPIRE RDF Vocabularies to help in the process of sharing and re-using

structured data.

Having a versioned data store that works like git will allow to cooperate

around data the same way people collaborate around source code

The goal of neon is to replace the use of git, streamline and make practical

cooperation around the creation, publication, storage and re-use of structured

data that are possibly bigger than memory.

Implementation

It's inspired from R&Wbase: Git for triples and R43ples: Revisions for Triples

neon is implemented on top of wiredtiger storage engine.

A prototypal implementation is available at https://github.com/amirouche/

neon

Neon is a triple store that implements the notion of graph ie. it is a quad store.

That is it expose the following kind of tuples:

The store

That being said, the backend stores 7-tuples in a table called store that as the

following schema:

(graph subject predicate object)

https://db.nomics.world/
http://datahub.io/
https://books.google.fr/books?id=E40BCgAAQBAJ&lpg=PA171&lr&pg=PA171#v=onepage&q&f=false
https://books.google.fr/books?id=E40BCgAAQBAJ&lpg=PA171&lr&pg=PA171#v=onepage&q&f=false
https://github.com/inspire-eu-rdf/inspire-rdf-vocabularies
http://www.hyperdev.fr/projects/neon/ldow2013-paper-01.pdf
http://www.hyperdev.fr/projects/neon/10.1.1.662.1619.pdf
http://source.wiredtiger.com/3.0.0/index.html
https://github.com/amirouche/neon
https://github.com/amirouche/neon

Where the first tuple contains wiredtiger table key columns and the second

tuple contains the table value columns. The columns can be described as

follow:

• uid is a random unique 64 bits unsigned integer identifying the tuple

• graph, subject, predicate, object are 64 bits unsigned integers which

maps to strings in their respective graphs, subjects, predicates,

objects, tables

• transaction is a 64 bits unsigned integer identifying the transaction

defined in another table called transactions described later.

• life is a flag denoting whether the associated (graph, subject, predicate)

tuple exists in a version of the knowledge base. Right now, life is a string

column (text column in SQL parlance) but it might changed in the future

to something else because right now life column can have only two

values : an empty string to describe alive state and something else for

dead state. It could be boolean column. The life flag is used to describe

that a particular quad (graph, subject, predicate, object) doesn’t exist in

particular version.

Based on the 7-tuples stored in store table, it is created another table called

index:store:index created automatically by wiredtiger to store the following

tuples:

In this case the table has not value columns, this is done like so to speed up

querying.

wiredtiger allows to quickly iterate over rows of the table that match a

particular prefix. That is, it will be quickly possible to know the different

versions of a given tuple that looks like:

(uid) → (graph, subject, predicate, object, life, transaction)

(graph, subject, predicate, object, life, transaction, uid) → (

(graph, subject, predicate, object)

That will allow to complete the tuple with (life, transaction, uid) tuple.

Then the “grouping” algorithm makes it's entrance and try to know what is

the latest version of the quad.

The query interface is for the time being made of a single polymorphic

procedure named ref that allows to retrieve a lazy stream of 4-tuples given a

branch or #false when there is no results. The tuples looks like:

The ref procedure takes a variable number of arguments the full version of

the signature looks like this in pseudo Java code:

Or in lisp style:

Where branch denotes the working branch referencing the latest version of

the quads in a branch of the database.

That particular form of ref, will return a boolean denoting the existence of the

quad passed as argument in the associated database version.

There is also a form of the ref procedure that takes only four arguments:

That is somewhat implemented as the following SQL query over a table of 6

integer columns:

(graph, subject, predicate, object)

branch.ref(String graph, String subject, String predicate, Serializable

(ref branch subject predicate object)

(ref branch graph subject predicate)

SELECT graph, subject, predicate, object, MAX(version), uid

FROM store

GROUP BY graph, subject, predicate, object

It will return #false if there is no result.

To compute MAX(version) it use a topological sort over the Direct-Acyclic-

Graph (DAG) history this gives a hashmap association (called simply history)

of a version integer with an integer value denoting the historical significance of

the tuple. MAX takes into account the life flag so that the whole query returns

only the (graph, subjecct, predicate, object) tuple that exist at a

particular point in history.

The history mapping transactions to history significance must be

cached.

Merge commit must introduce the necessary changes to avoid ambiguities aka.

reconcile the history between two branches. Because merge tuples are made

after conflicting tuples, the topological sort score them better ie. higher in

history significance.

It's possible to have multiple times the same predicate for a given (graph,

subject). That is it's possible to store things like the following in pseudo

turtle syntax:

Otherwise said, a vertex can have several edges labeled with the same

predicate. In a property-graph, it could possibly be interpreted as the ability to

have an arbitrary number of (key, value) properties with the same key

transactions and history significance

The equivalent of what git calls commits are called transactions in neon

because the default behavior is to map one-to-one with database transactions

wiki:Entity-Attribute-Value-Model wiki:seeAlso wiki:Triple_Store

wiki:Entity-Attribute-Value-Model wiki:seeAlso wiki:BlazeGraph

wiki:Entity-Attribute-Value-Model wiki:seeAlso wiki:Neon_Database

There is a table called history that stores the information about the

transactions and how they related to each other. history table has the

following schema:

Where:

• txuid is a random unsigned 64-bits integer that identifies a transaction

• parent1 and parent2 are unsigned 64bits integers referencing the parent

transactions. In the case of merge commit parent2 is not zero.

• sha-256 is a string representing the hash of the the transaction. It's built

out of the serialization of the added and deleted quads ie. the difference

and the parent transactions identifiers

history schema allows to build a DAG graph where vertices have at most two

incomings edges and a certain number of outgoings edges. The DAG can look

like the following:

(txuid) → (parent1, parent2, sha-256)

The history significance algorithm will compute an total order (?) using a

topoligical sort that switch of branch before consuming a vertex that has

several outgoing edges. In the above example, the topoligical sort gives the

following result:

The index of a vertex in that list is its history significance. This allows to tell

which transaction to take into account when computing the value of given

quad.

branches & graphs

Right now branches and graph are stored respecitvely in references and

graphs tables. Mind the fact that once a graph is created it can not be deleted

Roadmap

Command Line Interface

The target command line interface is the following:

a0 a b d1 x2 x1 d2 d3 c3 c1 e c2 f z1 z2 z3 g h i j k

neon init

neon checkout VERSION

neon tag list

neon tag add TAG

neon remote list

neon remote add REMOTE

neon remote remove REMOTE

neon graph list

neon graph add GRAPH

neon push

neon pull REMOTE GRAPH

neon import

neon export

The other interactions will happen onlyt hrough code.

nql query engine

A nql query language inspired from sparql but adapted to scheme syntax

The query engine will work like that:

• Assign cardinality to each quad pattern

• Start with the most selective pattern

• For each remaining join propagate variable bindings and recurse

Nice to have

There is various nice-to-have features like compliance with RDF and LD

standards but the most valuable feature that is not part of the proof-of-

concept is the full replacement of git by neon. That is use neon to store a file-

system hierarchy of source code with the extended goal to handle s-expr based

language through a tree-diffing algorithm.

Conclusion

The goal of neon is to replace the use of git, streamline and make practical

cooperation around the creation, publication, storage and re-use of structured

data that are possibly bigger than memory.

Attribution-NonCommercial-ShareAlike 4.0 International

https://creativecommons.org/licenses/by-nc-sa/4.0/

	neon
	Introduction
	Implementation
	The store
	transactions and history significance
	branches & graphs

	Roadmap
	Command Line Interface
	nql query engine
	Nice to have

	Conclusion

