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Abstract

Relational databases have always had a means for creating a pseudo-

table, called a view, defined by a query. Views are like tables in most

ways, except that they are read-only and can’t be updated. The problem

of how to update views has attracted a lot of attention in the 1980s but

is unsolved.

The best approach from that time was by Bancilhon and Spyratos. I

use one of their overlooked theorems and find a number of simple solutions

for common relational operators.
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1 The View Update Problem

Relational databases have always had operations and languages for combining
and presenting data. E.F. Codd defined a logical language similar to the first
order predicate calculus, and showed how to convert any expression in that
calculus to a set of operations on tables. ANSI then defined a standard query
language, SQL, that implemented and extended Codd’s relational algebra. Part
of the ANSI standards has been a view, an SQL query that becomes part of the
database. Views offer a different way of seeing the data.

From the time the idea of views arose, programmers have been trying to
update databases through views. The driving idea was data independence, that
a programmer shouldn’t have to know the internal structure of the data. Views
offer a way of hiding the details and “smoothing” the data. If programmers
only updated database through view, then the internal structure of the database
could change, but the programs wouldn’t need to be changed. A simple example
is a view that joins two data tables; the view hides the fact that there are
two tables, presenting a single table to a programmer. But data independence
through views requires that views be fully updateable.

Almost immediately the hope for updating views ran into problem with their
complexity. Many approaches were tried but none were successful. The idea of
view updates slowly disappeared.

I propose reviving the view update problem for a practical reason – creating
forms. The SQL standard has been wildly successful for reporting. A number of
widely used tools are based on SQL, including presenting visual interfaces that
create SQL statements. Many non-programmers have been trained to create
SQL.

The SQL standard has not been as successful at automating and simplifying
the creation of forms, where data is entered, changed or deleted, rather than
reported. Creating forms has required talented programmers working intensely,
with a deep knowledge of the structure of the database and of its integrity con-
straints. Some tools tried to automate form creation, but they weren’t generally
successful because they lacked a programmer’s deep knowledge. Updateable
views would make form building easier, and possibly lead to automation of the
process.
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2 Prior Work

Dayal and Bernstein [1] identified view updating as a problem.
A early result was by Bancilhon and Spyratos [5]. They started with a

simple intuition – that a view update shouldn’t change information not in the
view. Views show only part of the information in a database, and the effect
of view updates in the base database should be limited to the information ex-
posed in the view. Anything else is an unintended side effect. They named
this unchangeable information the view’s complement, and their rule was that
the complement stayed constant;their approach became known as the constant
complement approach.

Their development was entirely set-theoric. They start with a set of states
S, whose internal structure was not specified. In other words, the traditional
structure of a database state – as a tuple of relations over a set of domains –
wasn’t assumed. For them, an update is simply a function u from S to S, and
a view simply a function f from S to another set V.

They then started building well-known set-theoretic structures. A view, as
a function between sets, induces an equivalence relation in S, denoted S/f, with
all the states s in a class A ∈ S/f map to the same view state.

Views can be ordered . Let f,g be views, that is, f,g:S → V. Let s, s’ ∈ S.
f≥g iff f(s)=f(s’) implies g(s)=g(s’). In each view’s induced equivalence relation,
f≥g means f is a refinement of g, that each class in g’s equivalence relation is
the union of one or more classes in f’s equivalence relation.

This ordering creates a lattice; the largest view is called 1 and happens when
each state in S in in their own equivalence class, meaning that it maps one-to-
one to V. The smallest view is called 0 and happens when all states in S map
to the same constant state in V. When f≤g and g≤f, they are called equivalent.
All of this is standard set theory.

As an example, consider a very small database DB with only one table, that
has only one column, which can only take the value ”a” and ”b”. DB has four
states: {(a), (b)}, {(a)}, {(b)}, {}. For simplicity, I’ll call the states ab, a, b
and ∅.

Consider a view f that selects rows with the value a. The view database will
have the same structure as DB, but will have only two states: {(a)}, {}. The
following table shows how f maps states of S to states of V:

Base State View State

ab a
a a
b ∅
∅ ∅

This view f induces an equivalence relation on DB with two classes [ab, a]
and [b, ∅]. 0 ≤ f because there is more than one equivalence class in DB/f, and
≤ 1 because there are fewer than four equivalence classes in DB/f.

Bancilhon and Spyratos define a complement as another view c such that f
× c is equivalent to 1, which means that the induced equivalence relation for
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f × c has exactly one state in each class. Intuitively, f × c contains all the
information in the original database DB.

In our example, let c select rows with the value b. c is defined by this table:

Base State View State

a,b b
a ∅
b b
∅ ∅

Combining f and c gives this table:

Base State View State Complement State

a,b a b
a a ∅
b ∅ b
∅ ∅ ∅

The equivalence relation induced by f × c has four classes, and each state
in DB is in a unique equivalence class. In other words, f × c is equivalent to 1,
to all the information in the database. In this case, the base state equals the
union of the view and complement states.

Bancilhon and Spyratos then show that, for every complement of a view f,
there is an update translation that is constant on the complement, not changing
it. Their result was very exciting, because it suggested that all that was needed
was to define the right complement and update translations would pop right out.
Unfortunately it wasn’t as simple as that. First, there are lots of complements;
1 is a complement to every view, because it already contains all the information
in the database.

A reasonable hope is that there is some kind of minimal complement. Ban-
cilhon and Spyratos defined a minimal complement as a view g such that g is a
complement of f (f × c ≡ 1) and for all other complements h of f, g ≤ h. They
then show that minimal complements exist only in trivial cases, when f=0 or
f=1. They provide a construction; given a candidate for a minimal complement,
they construct a another complement that is incomparable, showing that the
candidate isn’t minimal. Applying their construction to our example, let h be
defined by this table:

Base State View State

ab b
a ab
b ab
∅ ∅

We can see that h is a complement by examining this table:
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Base State View State Complement State

a,b a b
a a ab
b ∅ ab
∅ ∅ ∅

The induced equivalence classes of f × h are [ab], [a], [b], [∅] which is equiv-
alent to 1, so h is a complement of f. However, g and h are incomparable (g�h
and h�g). The induced equivalence classes for g are [ab, b] and [a, ∅]; neither set
of equivalence classes is a refinement of the other, so the views are incomparable.

Despite this theoretical limitation, other researchers were eager to apply
their approach. The other researchers reasoned that they needed to find intuitive
complements. But Bancilhon and Spyratos’ approach was difficult to work with,
blisteringly abstract, without the the usual relational database apparatus of
domains, table structures, column names... Even worse, it depended on updates
that were completely different from SQL’s INSERT, DELETE and UPDATE
operations. Bancilhon and Spyratos require ”complete sets of updates,” which
were a set of updates (f:S→S) that were closed under composition and had
local inverse (give a state s ∈ S and f:S→S there had to exist a g:S→S such
that g(f(s))=s.) It wasn’t clear to researchers what a complete set of updates
entailed. And nothing looked like the Codd’s relational operators.

The first sign of trouble was a note by Keller [15] claiming that Bancilhon and
Spyratos were wrong. It turned out to be a confusion of terms and assumptions.
Hegner[11] described Keller’s approach as the ”open view” approach, that a user
would see both the view and base databases, and Bancilhon and Spytratos’s
approach as the ”closed view” approach, that a user would see only the view,
and would not be able to see the base database. Keller’s approach was basically
a programmer’s approach, of writing a view update while knowing the structure
of the base database; he eventually [16][17] proposed a utility to help users write
their own updates. Date [28] completed this approach by showing view update
logic for several relational operators, including join.

The closed approach sees a view update facility as part of a DBMS, that
has access the base tables, but hides the base tables from users. The closed
approach needs a systematic solution that applies to every possible view. It
demands math of the kind that Bancilhon and Spyratos used.

Problems multiplied. Cosmadakis and Papadimitriou [6] looked at a single
table with a projection view. They additionally required a view complement
to have a join dependency with the view. For example, let a table T have four
columns A, B, C and D, and let T = πAB(T) × πCD(T), with one tuple removed.
T doesn’t satisfy a join dependency but πCD(T) is a complement.

Bancilhon and Spyratos don’t require that, given a view and complement,
there is some computation that gives the base table, as a join dependence would
require. Instead, an implication of their approach is that a complement has to
distinguish view states; if several base states map to the same view state, then
the complement has to map each of those base states to different complement
states.
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Using their flawed definition of a view complement, Cosmadakis and Pa-
padimitriou derive some very odd results. They show that, in order to translate
an insertion, the projected rows have to functionally determine the unprojected
rows.

As a counterexample, consider an employee table keyed on the Social Secu-
rity number (SSN). A view projects all the columns except the SSN, to protect
the privacy of the SSN. To Cosmadakis and Papadimitriou, the employee data
doesn’t functionally determine the SSN, so no new employees can be inserted in
the view. To me, the obvious solution is for a view insert to insert a row with
the SSN set to a null value; I use this solution below. Hegner [24] immediately
showed that null values solved the projection problem, but his result wasn’t
widely noted.

The paper that killed the constant complement approach was by Lagerak
[18]. His key theorem is Lemma 3.2 which says that given a view f, an up-
date translator Tu, and two different base states s1 and s2 with f(s1)=f(s2)
and Tu(s1)=Tu(s2), then Tu isn’t a valid translator. His lemma is correct but
his interpretation is wrong, because the fact that Tu(s1) won’t equal Tu(s2)
characterizes constant complement translators. Intuitively, s1 and s2 are differ-
ent because their complements are different; translators preserve those different
complement so the updated base states Tu(s1) and Tu(s2) will also be different.
Lagerak’s condition that Tu(s1)=Tu(s2) will simply never occur with constant
complement translations. His lemma is true but vacuous.

Researchers at that time cared mainly about projections and joins, because
they were using dependencies to structure tables. An approach that didn’t work
with projections seemed hopeless. Many researchers gave up and little progress
was made [21] [22] [23] [12].

There were two notable exceptions. Hegner, noticing that all of the rela-
tional operators except set difference and division were monotonic, developed
an order-based approach [25] with a lattice of views, in which a view and com-
plement combine in a join. The approach can handle only a series of insertions
or deletions but not both, so it can’t handle a simple update operation.

Johnson and Rosebrugh noticed the flavor of category theory in [5] and
recast the theory in their Entity-Attribute sketches, which are made out of
categories.[27][28] [29] Unfortunately, they weren’t able to make any progress
on the problem and turned to update translations in lenses [30].

Prior researchers focused on the theorem in [5] that, given a complement, a
unique complement-preserving update translation exists. Another theorem in
[5] shows that, given a update translation, there was a unique complement that
it preserved. I propose using both theorems as the up and down strokes of a
saw.

3 From Update Translations to Complements

Let’s start with a few definitions from [5].
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Definition 3.1 (Update). Let S be a set of states. An update is a mapping
u:S→S.

Definition 3.2 (View). Let S, V be sets of states. An view f is an onto mapping
f:S→V.

Definition 3.3 (Translation). Let S, V be sets of states, and f:S→V be a view.
Let v:V→V be a view update and T(u)S:→S be a base update. Then T(u) is a
translation iff

1. fT(u)=uf

2. ∀s ∈ S, uf(s)=f(s) → Tu(s) = s

The first condition is usually shown as a commutative diagram, in which
every path is equal.

A B

V (A) V (B)

T (u)

f f

u

Definition 3.4 (Complete Set of updates). A set of updates U is complete
when

1. The composition of two updates in U is also in U. (∀f, g ∈ U, gf ∈ U)

2. All updates have local inverses (∀f∈U, ∀s∈ S, ∃ g∈U such that gf(s)=s.)

If identities are included in the set of updates, then a complete set of updates
makes a set of states into a category .

Definition 3.5 (Translator). Let S,V be sets of states. Let f:S→V be a view.
Let Us be a set of updates on S and U be a complete set of updates on V. A
mapping T: U→ Us is a translator iff

1. ∀u ∈ U , T(u) is a translation

2. ∀u, v ∈ U , T(uv)=T(u)T(v)

This makes a translator a functor in category theory.

Definition 3.6 (Equivalence). Let U be a complete set of view updates. Let
T be a translator. For s, s’∈S, s≡s’ iff ∃u ∈ U such that s=T(u)(s’)

In other words, s≡s’ if a translated update maps base state s’ to s. [5]
shows that ≡ is an equivalence relation. This means it generates a partition
of S, denoted S/≡. [5] then shows that c:S→ S/ ≡ is the complement of the
translation T.

This is very elegant, but the states of the complement are sets of base states
rather than base states themselves. It’s not clear at all how this complement
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makes sense in a relational database, which may be why other researchers didn’t
pay attention to this result.

I will show that, for many relational operators, the equivalence classes of
the complement are in one-to-one correspondence with an easily-computed set
of view states, showing how the complement makes sense relationally.

4 Schemas

Before showing these things, I first need to introduce my formal definition of
database. For simplicity and without loss of generality, I won’t use column
names but only column numbers. To avoid an overwhelming number of numeric
subscripts and superscripts, I will use C-like notation,

Definition 4.1 (Domain). A domain is a set, with one element defined as the
“null” value.

Each domain is denoted with an italicized label, such as String. In Oracle,
the null value is a missing value, meaning that value isn’t known; calculations
with null values result in null values. In other DBMS, each domain may have a
unique null value, such as 0 for number and a zero-length string for strings.
Most database systems provide a small number of domains:

1. Numbers

2. Character strings

3. Dates and date/times

4. Logical (true/false) values

5. Undifferentiated data (blobs)

Definition 4.2 (Table Schema). A table definition is an array of Domains.

Definition 4.3 (Database Schema). A database schema is an array of table
schemas. Note that each element of the array is itself an array. The lengths of
the table definition array can be different.

An example is a database with two tables; the first table has two columns,
both strings; the second table has three columns, a string and two numbers. Its
schema is:
Schema[1][1]=String;
Schema[1][2]=String;
Schema[2][1]=String;
Schema[2][2]=Number ;
Schema[2][4]=Number ;

Definition 4.4 (Table State). A table state is a subset of Domain[1] × Do-
main[2] × . . .× Domain[n], where n is the table width.
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A table state is a relation, a set of n-tuples, where n is the length of the table.
Each element of each tuple belongs to the domain specified in the schema. For
example, a valid state for the first table is a set of 2-tuples, where the both
elements of the tuples are string, such as:
{(‘A’, ‘AAA’), (‘B’, ‘BBB’)}.

Definition 4.5 (Database State). A database state is an array of table states,
where each table state is valid for the schema. I will use a C-like notation of
T[1] and T[2].

For example, a possible state for this schema is
T[1]= {(‘A’, ‘AAA’), (‘B’, ‘BBB’)}
T[2]= {(‘A’, 1, 11), (‘A’, 2, 22), (‘A’, 3, 33), (‘B’, 4, 44)}.

Definition 4.6 (Database Update). Given two states A and B of a schema,
the database update between them is two arrays of sets of tuples, Add and Del,
consistent with the schema of the states. Add[i] contains the tuples to add to
table i and Del[i] contains tuples to delete from table i. This means Add[i] ∩
T[i] = ∅ and Del[i] ⊆ T[i].

A SQL UPDATE operation deletes one row in a table and adds a new,
altered row into the same table, so appears as rows in both the Add and Del
sets.

Using the example, an update u from state a to state ab adds the row b. So
u.Add[1]=b and u.Del[1]=∅.

Lemma 4.1 (Updates can be calculated). Given states A and B, the database
update u:A → B can be calculated. For each table i: Add[i] = A.T [i] \ B.T [i].
(The rows in B that aren’t in A) Del[i] = B.T [i] \A.T [i]. (The rows in A that
aren’t in B)

This implies that updates are unique, because the calculation has only one
result. Between any two states, there is is exactly one update.

Updates can be composed. If u:A→B and v:B→C, then vu:A→C must be
the unique update from A to C. This leads immediately to:

Lemma 4.2 (Database updates are a complete set of updates).

Proof. 1. For updates u:A→B and v:B→C, ∃vu : A →C in the set of database
updates.

2. For u:A→B, ∃v : B → A in the set of database updates. vu(s)=s. For all
tables i, v.Add[i]=u.Del[i] and v.Del[i]=u.Add[i].

Compositions are computed as:

1. vu.Add[i] = (v.Add[i] ∪ u.Add[i]) \ v.Del[i]

2. vu.Del[i] = (v.Del[i] ∪ u.Del[i]) \ v.Add[i]
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Inverses are computed as:

1. v.Add[i] = u.Del[i]

2. v.Del[i] = u.Add[i]

Every state has an identity. id:s→s id.Add[i]=∅;id.Del[i]=∅
Our example above can be diagrammed as:

a, b

a b

0

−b
−a

id

−ab

+b

−a

id

−a+b +a

−b

id

+a−b+a
+b

id

+ab

5 Selection

The simplest example of this construction is the Selection relational operator,
which selects the rows of a table that satisfy a logical condition α. The rows
that satisfy α are in the view.

It’s immediately obvious that its complement is another selection operator,
that selects rows that don’t satisfy α. So the a complement view c is a selec-
tion whose logical condition is ¬α. The selection view v and its complement c
together contains all the rows in the base table. (For state s, v(s) ∪ c(s) = s)

It’s somewhat less obvious that all view updates contain only rows that
satisfy α. Look at additions and deletions separately. A row not satisfying α
can’t be added, because then the updated view state would contain rows that
don’t satisfy α, so wouldn’t be in the Selection view. All deleted rows satisfy α
because they were in the view before deletion.

The same is true of the complement: in an update between complement
states, every added or deleted row satisfies ¬α.

This immediately shows how to translate a selection view. A view update has
added and deleted rows which satisfy α, which can also be added and deleted
in the base scheme, so the view update and base update are identical. This
translation preserves the complement, because it doesn’t affect any rows that
aren’t α-compliant, which are the rows in the complement. So the update
translation is identity: the view update is also the base update.

This implies that a DBMS has to check that added view rows satisfy α. If a
new view row didn’t satisfy α, it wouldn’t be a view update because it wouldn’t
map to any other view states.

Next I prove that this is the complement promised by [5]. Translated view
updates only add and delete α-compliant rows; the non-compliant rows aren’t
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touched. For base state s, every other state s’ in the equivalence class (s≡s’) has
a translated view update T(v) such that T(v)(s’)=s. But T(v) only has rows
that satisfy α, and will never add or delete non-compliant rows. So every state
in the equivalence class S/≡ will have the same non-compliant rows, because
no translated updates will affect them. The non-compliant rows are exactly the
complement c(s). So there is a one-to-one correspondence between equivalence
classes and states of the complement. In other words, the method in [5] com-
putes exactly what we want, once we find the common element of the states of
the equivalence class.

These observations immediately generalize to the case of multiple tables.
Each table i has a predicate αi, and has a complement of ¬αi rows. The
complement state is the array of complement tables.

A very nice property of Selection is that the view and complement have no
overlap; they split the information in a database in half. This leads to a different
definition of an ideal complement:

Definition 5.1 (Perfect Decomposition). In a perfect decomposition, the in-
tersection of the view and its complement is empty.

A good heuristic for guessing the complement of an update translation is
to determine the base database state after a view update that deletes all view
rows. For example, consider a view state v, and a view update u deletes all the
rows in v. T(u) will delete all the α-compliant rows in the base table, because
those are the rows in the view, leaving all the ¬α-compliant rows – which is the
complement.

6 Union

The inverse of the Selection relational operator – union – is also very simple.
It’s immediately obvious that a union has an empty complement. Every row

that is in the two unioned tables are in the view, so there are no rows that are
excluded.

This implies that union is a perfect decomposition, because the intersection
of any set and the empty set is the empty set.

Unfortunately, this doesn’t help us select a transaction for a union operation.
Deletions are obvious – a deletion in the union has to translate into deletions in
both base tables; otherwise the undeleted row would still appear in the Union
view.

The problem is adding a row to the Union, because many reasonable trans-
lations exists. A row added to the Unions view can be added to the left table, or
to the right table, or to both tables, or randomly to the left or right tables. Still
other translations are possible. [5] provides no guidance because all translations
have the same empty complement.
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7 Projection

Let’s look next at the issues that the contemporaneous researchers saw, which
were with projection. Let T be a table with three columns – K, A and B – with
K functionally determining A and B. Let V be the projection of T onto columns
K and A, denoted πKA. The obvious complement is a projection onto K and
B, denoted πKB , with πKA ⊗ πKB = T. As [7] noted, if a row is deleted from
πKA, the intuitive translation is to delete the row with the same key from T; the
reasoning is that if the row’s key is deleted, then all dependant attributes should
be deleted too. But deleting a row from base table T would also delete the row
from the complement πKB , so the intuitive translation creates side effects and
isn’t valid under the constant complement approach. Adding a row to πKA has
the same problem. Modifying non-key data doesn’t, as [22] points out.

My solution is the SQL INSERT statement as a model; if a column isn’t
specified in the INSERT, then it get a null value. So when adding a row to
πKA, I specify that the translated update sets column B of the base row to null.
To insure that the complement πKB isn’t modified, I change the definition of
the complement to not only project rows K and B, but also to select rows with
B 6=null. Since a complement is a view, making this additional specification is
perfectly legitimate.

I use a similar trick in translating a deletion from the πKA view. I don’t
delete the base row, but set the A column is set to null. To make this row
disappear from the view, I change to view to also exclude rows with null values
in A.

The last step is to consider what happens when if the row is deleted from
both πKA and πKB ; the base row should be deleted because it holds no useful
information.

Given these revised view definitions and update translations, we can easily
compute the induced complement. Pick a base state s. Its equivalence class
members are all the states that can be reached by translated updates. The
translated updates always change columns K and A, giving them every possible
value. The only part of the state s that doesn’t change are its (K, B) values,
because the translated updates don’t change them. So the set of equivalence
classes is in one-to-one correspondence with πKB.

8 Joins

Joins are much more complicated to update than projections. One reason is
that joins are used for computations in databases, not just for representing
information. Consider this pathological example,

A database has two tables. The Item table has five columns: ItemID,
ItemDesc, Height, Length, Depth. The Box table has five columns: BoxID,
Height, Length, Depth, Cost. The following SQL statement finds all the boxes
into which an item can fit and orders them by box cost:

SELECT BoxID
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FROM Box JOIN Item ON

Item . Height<=Box . Height
and Item . Length<=Box . Length
and Item . Depth<=Box . Depth
WHERE Item . ItemID=’XYZ’
ORDERBY Item . ItemID , Box . Cost

This SQL statement clearly represents a relationship between BOX and
ITEM, that we could call a ”Best Fit” relationship. What would it mean to
add a row to this join? It’s hard to say. Should you you add a box or an item,
and what should its dimensions be?

It clearly it makes no sense to translate view updates for Joins that only
compute a result. Only the ”structural” joins should be considered. Most
database design methods break tables into smaller tables, then use joins to
bring separated information back together; these are the structural joins. I’ll
look at two kinds of structural joins, while making no claim that they are the
only structural joins.

8.1 Hierarchical Joins

A hierarchical join Parent ⊗ Child is a one-to-many relationship, where every
Child row must join with at least one Parent rows. The Parent typically has
a unique key, which the Child has as well; they are equijoined on that key. In
addition, the parent’s key is unique. The child’s key can either be non-unique
or can be part of larger unique key that includes the parent’s unique key. An
integrity constraint is that every child row must have a parent row, typically
implemented with a SQL Foreign Key constraint.

A good example of a hierarchical join is an invoice, where each row in Parent
represents an invoice and each row in Child represents a line on the invoice. The
key is the invoice number. Every line row has to have a invoice row.

The complement of a hierarchical join is easy to see. The only information
that doesn’t appear in a equijoin are the parent rows for which there are no
children. Given the join view and its complement, it’s possible to recreate
the base parent table by projecting the parent columns and unioning it with
complement, and the recreate the base child table by projecting on the child
columns. This is a perfect decomposition.

Translating view updates is also straightforward. I’ll look at deletion first.
A row in the view represents one parent and one child row, so deleting it should
be handled by deleting the child row; the parent may be the parent of another
child too, and deleting could violate the integrity constraint. But if all of a
parent’s children are in the view deletion set, then the parent row should be
deleted too.

Adding view rows is straightforward. A new view row should be broken
down into a parent part and a child part. If the parent part already exists in
the base parent table, then add the child row to the base child table; if the
parent row doesn’t exist base parent table, then add rows to parent and child
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base tables.
The induced complement of this view update strategy is, as expected, the

childless parent rows of s. To see this, let s be a base state. Consider a view
update that deletes all rows in the view. This update strategy will delete all
the base children rows and all the parent rows that have children; the only base
rows remaining will be the childless parent row. So translated view updates
can’t delete any childless parent rows. At the same time, no matter what view
rows are added to the state, no childless parent rows will be added to the base.
So the common element shared by all members of [s] is the set of childless parent
rows. The set of equivalence classes is in one-to-one correspondence with the
states of the complement.

8.2 Foreign Key Joins

Another kind of structural join is a foreign key join, where a column in a table
is a key to another (foreign) table. For example, an invoice line may contain a
part number, which is a key to the Part table.

A foreign key join is also a one-to-many joins but its different intention leads
to a different update strategy, which leads to a different complement. Updating
the Join view should never modify the foreign table. For example, deleting
an invoice line should never affect the Part table, which represents a separate
entity.

More precisely, a view deletion should delete the local row, but never the
foreign row. A view addition should add a new local row, but never add new
foreign rows. Essentially, the foreign table is off-limits to the view and should
never be altered.

The complement is clearly the foreign table, because view updates never
alter it. To see this, let s be a base state. Consider a view update u that deletes
all rows in v(s). The translation of u deletes all the local rows but none of
the foreign rows. All of the translated view updates won’t changed the foreign
table in s, which means that all the states in [s] will have the same foreign table
rows. Hence the foreign table is in one-to-one correspondence with the induced
equivalence class, and so is the complement.

This complement is also a perfect decomposition.

8.3 Other Strategies for One-to-Many Joins

An obvious update strategy for one-to-many joins combines the prior two update
strategies. It doesn’t allow allow foreign table rows to be deleted, but does allow
them to be added. A view addition could translate to a foreign table addition.

This update strategy does not qualify as a translator. Recall that a translator
T has to preserve composition: ∀u, v ∈ U , T(uv)=T(u)T(v)

Consider an update u that adds a single view row r, and that translates
into an update that adds a row to both the local and foreign tables. Consider
u−1, its inverse, that deletes view row r. The update strategy translates it into
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a deletion in the local table, but no action in the foreign table. In this case
T(id)=T(u−1u)¡¿T(u−1)T(u).

Though this update strategy seems perfectly valid, it isn’t a Bancilhon-
Spyratos translator; the theory is silent about it, and I can’t compute its com-
plement.

8.4 Recognizing

I’ve shown two one-to-many joins that have different intentions, different update
strategies and different complements. These are the sorts of semantic informa-
tion that Bancilhon and Spyratos thought would help users select the right
complements.

DBMSs can already distinguish between hierarchical and foreign key joins.
In a hierarchical join, the parent and child have the same key, and the join uses
that key. In a foreign key join, the join terms match a non-key column in the
local table to a unique key in the foreign table. In addition, the non-key column
in the local table will often have been declared a foreign key for referential
integrity checking. This suggests that the elusive ”semantic knowledge” may
already be encoded in databases, and that DBMSs could use this encoding to
automatically provide view updates.

9 Summary

Bancilhon and Spyratos’s work from 1982 is a good foundation for solving the
view update problem. The approach is quite simple for some relational operators
such as Selection, Union and some Joins; a useful feature is that the solvable
joins can be determined by examining the Join keys. Even Projection has a ”not
too bad” solution using null values. For these reasons, I suggest that the view
update problem be resuscitated, and that the Bancilhon-Spyratos approach be
used the basis of new work.
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