
PostgreSQL - GOOGLE SUMMER OF CODE

PostgreSQL GSoC
Contributor Proposal

Summary
self link:
https://github.com/xRay2016

This project aims to integrate the
PostgreSQL Write-Ahead Log (WAL)
data structures into pgmoneta.

Owner: xray20161@gmail.com
Contributors: Donglin Xie
Created: 2022.04.15

Project Abstract

In this project, we would replace the usage of pg_receivewal with a native solution of pgmoneta.

Currently, the pgmoneta use the system(cmd) to call pg_receivewal, so it is hard to track the reason of

failure. This project create native solution and other infrastructure for WAL interaction.

Problem Background

In the pgmoneta, the main event loop registers periodic event of wal_streaming. The

wal_streaming_cb callback function is triggered periodically to start backing up the server’s WAL.

https://github.com/pgmoneta/pgmoneta/blob/5357694ffb223f0b22487b1dac544a5d4077c843/src/main.c#

L604

In the callback function, the pgmoneta_wal function is called to fetch i-th server’s WAL. In the function

pgmoneta_wa, the shell command is spliced to call executable program pg_receivewal. The

pg_receivewal stream the write-ahead log from a running PostgreSQL to the specific directory in real

time. The write-ahead log is streamed over a regular PostgreSQL connection and uses the replication

protocol. The pg_reveivewal will run until terminated by the SIGINT signal. The source code of

pg_receivewal is in

https://doxygen.postgresql.org/pg__receivewal_8c.html#a3c04138a5bfe5d72780bb7e82a18e627.

Design Ideas

https://github.com/xRay2016
https://github.com/pgmoneta/pgmoneta/blob/5357694ffb223f0b22487b1dac544a5d4077c843/src/main.c#L604
https://github.com/pgmoneta/pgmoneta/blob/5357694ffb223f0b22487b1dac544a5d4077c843/src/main.c#L604
https://doxygen.postgresql.org/pg__receivewal_8c.html#a3c04138a5bfe5d72780bb7e82a18e627

In my opinion, the native solution could be divided into three parts.

1. the options analysis and storage

2. create the replication connection with remote server, create replication slot and determine the

segment size

3. keep cycling to get the stream WAL data.

According to the design idea, the most important part is the streamCtl struct. It is used to storage the

streaming configurations and the specific WAL writing method.

The StreamLog method use streamCtl as the configuration while reading. Before reading, the

StreamLog initialize the connection and get the segment size from the remote server.

During reading, use the deterministic finite automaton to parse the replication protocol. Until the end of

the stream, the content in the reading buffer is flushed to the disk with the specific WAL format. The WAL

format is defined by the function pointer in streamCtl.

Figure 1 Workflow of WAL backup

Deliverables

1. A native solution to replacement the usage of pg_receivewal

2. A foundation for a pgmoneta library that can be used for WAL interaction

3. Detailed code documentation

Schedule of Deliverables (timeline)

May 20 - June 1

● Study the PostgreSQL format of WAL, and the replication protocol over a regular

PostgreSQL connection.

June 1 - July 27 (Phase I)

● Code for native solution of WAL and unit test.

● (1 week) design the streamCtl struct and the server connection initialization before

stream reading

● (2 weeks) develop the reading and parsing part for the initialized connection

● (2 weeks) develop the part WAL disk flush part

● (2 week) make unit test and fix bugs. reserve one week to prevent accidents

July 25 - September 12 (Phase II)

● Other foundation for a pgmoneta library and write the code document

About Me

My name is Donglin Xie, a student pursuing a master degree in Computer Science at Zhejiang

University, China. I am passionate about programing and open source. I hope I can get the opportunity to

contribute to the PostgreSQL community.

I have abundant experience in C/C++, linux and network programing. Here are some of my experience.

1. Tencent Rhino Bird Open Source Training Program-Tars(C++)

(1) Realizes support for the subset function in Tarscpp. It can distribute traffic to different Subsets based

on the configured Subset flow rules, achieving more effective development and testing (grayscale

testing).

(2) Realize the transparent transmission of TARS_ROUTE_KEY in the Tars structure.

(3) Realize proportional (consistent hashing), select according to request parameters (regular matching)

and subset of random rules

github: https://github.com/TarsCloud/TarsCpp

https://developers.google.com/open-source/gsoc/timeline
https://github.com/TarsCloud/TarsCpp

2. High-performance Web server based on C++(C++)

(1) A single Reactor multi-threaded model is realized by using multiple IO multiplexing technology Epoll

and thread pool

(2) Use regular matching and state machines to parse HTTP request messages to achieve static resource

processing requests

(3) Based on the timer implemented by the heap, close the timeout inactive connection

(4) Realizes the database connection pool of the RAII mechanism, reducing the overhead of establishing

and closing database connections

(5) A blocking queue is used to implement an asynchronous log system to record the running status of

the server

github: https://github.com/xRay2016/CppWebServer

3. ByteDance Back-end Training Camp: Red Packet Rain Project(Go)

(1) Use Redis to cache Mysql data, realize efficient data reading, and introduce Kafka to write to Mysql

asynchronously

(2) The Bloom filter is introduced in the local cache, to reduce the redis network request as much as

possible and improve the throughput

(3) The token bucket algorithm is used to realize the current limit of the interface

(4) Use Hystrix-go to deal with the surge in traffic

github: https://github.com/MySuperSoul/teccamp-envelop-rain

Availability Scheduler and Others

I can commit more than 40 hours every week to achieve the goals and deliverables. In weekdays, the

working hours are from 6pm to 11pm. The working hours in weekend are from 10am to 9pm. Every

weeks, I will make a progress report to the mentor.

The contribution to the open-source project is not limited in GSoC. I would like to continue working on the

open-source project. It is a challenging but interesting thing. After the GSoC, do more thing for the

PostreSQL community.

https://github.com/xRay2016/CppWebServer
https://github.com/MySuperSoul/teccamp-envelop-rain

