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1. Configurations 
1.1. Hardware 

System HPE ProLiant DL380 Gen10 

CPU Intel Xeon Gold 6240M x 2 sockets (18 cores per socket; HT disabled by BIOS); one NUMA 

node per socket 

DRAM DDR4 2933MHz 192GiB/socket x2 sockets (32 GiB per channel x 6 channels per socket) 

Optane PMem Apache Pass, App Direct Mode, DDR4 2666MHz 1.5TiB/socket x 2 sockets (256 GiB per 

channel x 6 channels per socket; interleaving enabled) 

PCIe SSD Intel DC P4800X Series SSDPED1K750GA; connected to NUMA node #0 

 

1.2. Software 

Distro Red Hat Enterprise Linux release 8.2 (Ootpa) 

Linux kernel 4.18.0-193.el8.x86_64 

gcc 8.3.1-5.el8 

glibc 2.28-101.el8 

PMDK 1.6.1-1.el8 

VTune Intel VTune Profiler 2021.2.0 

PostgreSQL 8e4b332 (master @ Tue Mar 23 00:47:06 2021 +0100) 

 

1.3. PostgreSQL installation 
$ ./configure --enable-debug --prefix=$HOME/postgres/[snip] --with-extra-version=-[snip] [..] 
$ make 
$ make install-world 

 

Each PostgreSQL is installed into separated directory under non-root $USER’s $HOME/postgres/, with an extra 

version string generated from commit ID to identify it after installation. The --enable-debug option is for analysis 

by VTune. The install-world target is for pg_prewarm extension. 

There may be additional options in the above [..] on the certain conditions described in Section 1.4. 
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1.4. PostgreSQL per-condition setup 

To compare performance between patchsets and/or customized configurations, I set up several conditions and give 

them names shown in the following table. Note that there are four variants for “SegmentBuffer” to see how and how 

much performance varies with initialization and recycle configurations of WAL segment files. Also note that the 

variants are displayed as in their short forms in the figures in Section 3. 

IMPORTANT NOTES: After the tests and analyses reported in this document were done, I found that “Map WAL 

segment files on PMEM as WAL buffers” v1 patchset has an issue that a “wal” checkpoint due to the amount of WAL 

consumed since the last checkpoint will not be requested. This issue will be fixed in v2. Note that a “time” checkpoint 

will be requested normally. 
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Original No patchset or customized configuration true true true 

SimplePmdk • “Applying PMDK to WAL operations for persistent memory” 20210322 

• Add --with-libpmem option to ./configure 

• Amend postgresql.conf as follows: 
 wal_sync_method=pmem_drain 

true true true 

SegmentBuffer • “Map WAL segment files on PMEM as WAL buffers” v1 

• Add --with-libpmem option to ./configure 

• Amend postgresql.conf as follows: 
 wal_pmem_map=true 

true true true 

|-- (no-init-zero) ” false true ” 

|-- (no-recycle) ” true false ” 

`-- (no-both) ” false false ” 

OneLargeBuffer • “Non-volatile WAL buffer” 20210322 

• Add --with-libpmem option to ./configure 

• Amend postgresql.conf as follows: 
 nvwal_path=’/mnt/pmem0/pg_wal/nvwal 

 nvwal_size=80GB 

true true true 

UnloggedAsync • No patchset 

• Add --unlogged-tables option to pgbench -i 

true true false 
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1.5. Common postgresql.conf for all conditions 
max_connections = 300 
shared_buffers = 32GB 
dynamic_shared_memory_type = posix 
max_wal_size = 80GB 
min_wal_size = 80GB 
log_timezone = 'Asia/Tokyo' 
datestyle = 'iso, mdy' 
timezone = 'Asia/Tokyo' 
lc_messages = 'C' 
lc_monetary = 'C' 
lc_numeric = 'C' 
lc_time = 'C' 
default_text_search_config = 'pg_catalog.english' 
superuser_reserved_connections = 10 
wal_level = replica 
fsync = on 
synchronous_commit = on 
wal_sync_method = fdatasync 
wal_recycle = on 
full_page_writes = on 
wal_compression = off 
checkpoint_timeout = 12min 
checkpoint_completion_target = 0.7 
random_page_cost = 1.0 
effective_cache_size = 96GB 
logging_collector = on 
log_rotation_size = 0 
log_checkpoints = on 
log_error_verbosity = verbose 
log_line_prefix = '%t %p %c-%l %x %q(%u, %d, %r, %a) ' 
log_lock_waits = on 
autovacuum = on 
log_autovacuum_min_duration = 0 
autovacuum_max_workers = 4 
autovacuum_freeze_max_age = 2000000000 
autovacuum_vacuum_cost_delay = 20ms 
autovacuum_vacuum_cost_limit = 400 
log_directory = '/dev/shm/pmem/tmp.XXXXXXXXXX' 

 

1.6. Common environment variables for all conditions 
export PGHOST=/tmp 
export PGPORT=5432 
export PGDATABASE="$USER" 
export PGUSER="$USER" 
export PGDATA=/mnt/nvme0n1/pgdata 
export PGCTLTIMEOUT=86400 
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2. Methods 
2.1. Performance test 

Run the following steps for each condition in Section 1.4 and for every combination of s = 50 or 2000 and (c, j) = 

(8, 8), (18, 18), (36, 18), or (54, 18). Then plot “latency average = __ ms” as average latency and “tps = __ 

(without initial connection time)” as throughput for each condition to draw latency-versus-throughput curve to 

compare the performance between conditions. 

In addition, for (c, j) = (36, 18) as nearly-saturated point, plot “progress: __ s, __ tps ...” for each condition to 

compare how and how much the throughput rises and falls over time. 

 

1. Set environment variables as in Section 1.6. 

2. Create a PMEM namespace on NUMA node #0. (sudo ndctl create-namespace -f -t pmem -m fsdax -M 

dev -e namespace0.0) 

3. Make an ext4 filesystem on the PMEM namespace then mount it with DAX option. (sudo mkfs.ext4 -q -F 

/dev/pmem0 ; sudo mount -o dax /dev/pmem0 /mnt/pmem0) 

4. Make another ext4 filesystem on PCIe SSD then mount it. (sudo mkfs.ext4 -q -F /dev/nvme0n1 ; sudo 

mount /dev/nvme0n1 /mnt/nvme0n1) 

5. Make /mnt/pmem0/pg_wal directory for WAL and /mnt/nvme0n1/pgdata directory for PGDATA. 

6. Run initdb. (initdb --locale=C --encoding=UTF8 -X /mnt/pmem0/pg_wal ...) 

i. On “OneLargeBuffer” condition, also give -P and -Q options to create a large buffer file. (... -P 

/mnt/pmem0/pg_wal/nvwal -Q 81920) 

7. Edit postgresql.conf as in Section 1.5 and amend it as in Section 1.4. 

8. Start postgres on NUMA node #0. (numactl -N 0 -m 0 -- pg_ctl -l pg.log start) 

9. Create a database. (createdb --locale=C --encoding=UTF8) 

10. Initialize tables for pgbench. (pgbench -i -s __ ...) 

i. On “UnloggedAsync” condition, also give --unlogged-tables option. 

11. Stop postgres. (pg_ctl -l pg.log -m smart stop) 

12. Remount the two filesystems mounted at step 3 and 4. 

13. Start postgres on NUMA node #0 again. (numactl -N 0 -m 0 -- pg_ctl -l pg.log start) 

14. Run pg_prewarm extension for all the four pgbench_* tables. 

15. Run pgbench on NUMA node #1 for 30 minutes. (numactl -N 1 -m 1 -- pgbench -r -P 10 -M prepared -

T 1800 -c __ -j __) 
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2.2. Performance analysis 

Same as the performance test shown in Section 2.1, but step 13 and 15 are amended as follows to analyze postgres 

with VTune during benchmark. 

 

13. Start postgres on NUMA node #0 again, with VTune started but analysis paused. Here, postgres command 

line is used instead of pg_ctl so as not to stop VTune due to termination of the main process of pg_ctl. (vtune 
-collect hotspots -start-paused -finalization-mode=none -data-limit=0 -follow-child -call-

stack-mode=user-plus-one -target-duration-type medium -knob sampling-mode=sw -knob enable-

stack-collection=true -knob stack-size=0 -- numactl -N 0 -m 0 -- postgres) 

15. Resume VTune’s analysis, then run pgbench on NUMA node #1 to send 2.7M transactions per client, that is, 

97.2M transactions in 36-client total. After the benchmark finishes, stop VTune. (vtune -command resume ; 

numactl -N 1 -m 1 -- pgbench -r -P 10 -M prepared -t 2700000 -c 36 -j 18 ; vtune -command stop) 

 

VTune reports how much CPU time postgres and its child processes took in total for each function. The following 

call graph is a part of what VTune told. Note that a few caller-callee relations look different from actual code, possibly 

due to optimization by compiler. Then I draw stacked bar charts with respect to total and logging, picking up the 

functions shown in the call graph that took much CPU time. 

  I made analyses for five conditions “Original,” “SegmentBuffer,” “SegmentBuffer (no-init-zero),” 

“OneLargeBuffer,” and “UnloggedAsync” after seeing the results of performance tests in Section 3.1 and Section 3.2. 

Other three conditions were omitted because each of them didn’t seem so worthy to be compared to the five conditions. 

See also discussions in Section 4.1 and Section 4.2. 

 

 

  

Total
`-- (snip)

`-- PostgresMain (appears once)
|-- ReadyForQuery
|-- ReadCommand
|-- exec_bind_message
`-- exec_execute_message

|-- PortalRun
|   `-- (snip)
|       |
|       `-- XLogInsert (non-COMMIT; appears multiple times)
|           |-- XLogRecordAssemble
|           `-- XLogInsertRecord
|
`-- finish_xact_command

`-- (snip)
`-- RecordTransactionCommit (appears once)

|-- XactLogCommitRecord
|   |
|   `-- XLogInsert (COMMIT)
|       `-- (same as above)
|
`-- XLogFlush

Logging

Logging

Logging

XLogInsert
|-- XLogRecordAssemble
`-- XLogInsertRecord

|-- WALInsertLockAcquire
|-- ReserveXLogInsertLocation
|-- CopyXLogRecordToWAL
|-- LWLockReleaseClearVar
`-- LWLockRelease

XLogFlush
|-- WaitXLogInsertionsToFinish
|-- LWLockAcquireOrWait
|-- XLogWrite
`-- LWLockRelease
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3. Results 
3.1. Performance test (s = 50) 

 
Figure 3.1-1 Latency versus throughput (s = 50) (lower-right is better) 

 

 
Figure 3.1-2 Throughput over time (s = 50) (higher is better) 
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3.2. Performance test (s = 2000) 

 
Figure 3.2-1 Latency versus throughput (s = 2000) (lower-right is better) 

 

 
Figure 3.2-2 Throughput over time (s = 2000) (higher is better) 
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3.3. Performance analysis (s = 50) 

 

Figure 3.3-1 Total profile (s = 50) (lower is better) 

 

 
Figure 3.3-2 Logging profile (s = 50) (lower is better) 
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Figure 3.3-3 XLogFlush profile (s = 50) (lower is better) 

 

 
Figure 3.3-4 XLogInsert (non-COMMIT) profile (s = 50) (lower is better) 
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3.4. Performance analysis (s = 2000) 

 

Figure 3.4-1 Total profile (s = 2000) (lower is better) 

 

 
Figure 3.4-2 Logging profile (s = 2000) (lower is better) 
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Figure 3.4-3 XLogFlush profile (s = 2000) (lower is better) 

 

 
Figure 3.4-4 XLogInsert (non-COMMIT) profile (s = 2000) (lower is better) 
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4. Discussion 
4.1. Four variants of “SegmentBuffer” 

As shown in Figure 3.1-1 and Figure 3.2-1, “SegmentBuffer (no-init-zero)” got the best throughput and average 

latency of the four variants. So each of wal_init_zero=false and wal_recycle=true looks helpful for performance. 

Of course, it can also break reliability of WAL not to zero-initialize the segment files if copy-on-write (CoW) 

filesystems are not used, and the ext4 used this time is not CoW one. So we should be careful to use 

wal_init_zero=true. 

 

4.2. “SegmentBuffer” versus “OneLargeBuffer” 

Also as shown in Figure 3.1-1 and Figure 3.2-1, “OneLargeBuffer” got better throughput and average latency than 

any four variants of “SegmentBuffer,” especially in the case of s = 2000. So the patchset of “SegmentBuffer” variants 

needs to be improved more. 

By the way, “SimplePmdk” got only as much performance as “Original.” So the patchset of “SimplePmdk” is little 

effective on the configurations at this time. 

 

4.3. Falls of throughput and recycle of WAL segment files 

Figure 3.1-2 and Figure 3.2-2 tell that throughput fell down at some time points during benchmark, and the degree 

of the falls in the case of s = 2000 were greater than that of s = 50. Server logs tell that checkpoints started at those 

time points. So the falls look due to full-page write to WAL. Note that the time lag of the falls is because of the 

different reasons of checkpoint, that is, “wal” or “time.” See also “IMPORTANT NOTES” in Section 1.4. 

As shown in Figure 3.2-2, there were two or three throughput falls in the entire period of 30-minute benchmark, 

and the degree of the fall of the first one between 540-720 second was greater than that of the second one between 

1080-1440 second, except on “SegmentBuffer (no-recycle)” and “SegmentBuffer (no-both)” conditions. From this, 

recycling WAL segment files looks helpful for throughput. Moreover, if WAL segment files could be recyclable in 

advance, that is, if an adequate amount (probably wal_min_size) of WAL segment files could be pre-allocated during 

startup, the first few falls of throughput could be improved, at the price of longer startup time. 

 

4.4. CPU time of XLogFlush 

As shown in Figure 3.3-1, Figure 3.3-2, Figure 3.4-1, and Figure 3.4-2, CPU time of XLogFlush on each condition 

of “SegmentBuffer,” “SegmentBuffer (no-init-zero),” or “OneLargeBuffer” got smaller than that of “Original,” while 

XLogInsert time became a bit larger. To sum up them, total CPU time decreased. This looks consistent with 

performance improvement. 

In regard to XLogFlush, Figure 3.3-3 and Figure 3.4-3 tell that CPU time of XLogWrite dropped significantly or 

even completely. This is a positive effect of persistent WAL buffers on PMEM. On “Original” condition, inserted 

(that is, memory-copied) WAL records need to be written out of volatile WAL buffers into segment files to be durable. 

In contrast, on “SegmentBuffer” variants or “OneLargeBuffer,” inserted records already on PMEM so they only need 

to be flushed out of CPU cache into PMEM. The latter is simpler than the former so it leads to improvement of CPU 

time. 
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In addition, each CPU time of LWLockAcquireOrWait or LWLockRelease is also reduced. This looks to come 

with the improvement of XLogWrite. Note that difference between “SegmentBuffer” variants and “OneLargeBuffer” 

is in which function cache-flush is done: XLogWrite on “SegmentBuffer” variants and XLogFlush on 

“OneLargeBuffer.” The patchset of “SegmentBuffer” variants for now cache-flushes WAL records conservatively in 

XLogWrite which is called from inside of a critical section, LWLockAcquireOrWait or LWLockRelease still appear 

in the analysis results. This may be removed in the future because cache-flushing WAL records can be safely done in 

parallel without locks, as it is done so in the patchset of “OneLargeBuffer.” 

 

4.5. CPU time of XLogInsert 

In regards to XLogInsert, Figure 3.3-4 and Figure 3.4-4 show that CPU time of CopyXLogRecordToWAL on 

“SegmentBuffer” variants got larger than that of “Original.” This is a negative effect of WAL buffers on slow memory. 

Because Optane PMem is slower than DRAM, it takes more time to memory-copy WAL records into the buffers on 

Optane PMem than those on DRAM. This also looks to cause WALInsertLockAcquire, LWLockReleaseClearVar, 

and LWLockRelease in XLogInsert, and WaitXLogInsertionsToFinish in XLogFlush to take more time. 

As difference of CPU time of CopyXLogRecordToWAL between “SegmentBuffer” and “SegmentBuffer (no-init-

zero),” whether initializing WAL segment files affects that CPU time. It may be reduced by pre-allocating WAL 

segment files. 

CopyXLogRecordToWAL need to be investigated more deeply, but haven’t been done so yet. It’s a future work. 
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