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1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department. The
POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99 lan-
guage support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some commer-
cial databases. Traditional relational database management systems (RDBMS) support a data model con-
sisting of a collection of named relations, containing attributes of a specific type. In current commercial
systems, possible types include floating point numbers, integers, character strings, money, and dates. It is
commonly recognized that this model is inadequate for future data-processing applications. The relational
model successfully replaced previous models in part because of its “Spartan simplicity”. However, this
simplicity makes the implementation of certain applications very difficult. PostgreSQL offers substantial
additional power by incorporating the following additional concepts in such a way that users can easily
extend the system:

« inheritance
- data types
. functions

Other features provide additional power and flexibility:

« constraints

. triggers

- rules

- transactional integrity

These features put PostgreSQL into the category of databases referreabjecgelational Note that

this is distinct from those referred to akject-orientedwhich in general are not as well suited to support-

ing traditional relational database languages. So, although PostgreSQL has some object-oriented features,
itis firmly in the relational database world. In fact, some commercial databases have recently incorporated
features pioneered by PostgreSQL.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html
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2. A Short History of PostgreSQL

The object-relational database management system now known as PostgreSQL (and briefly called Post-
gres95) is derived from the POSTGRES package written at the University of California at Berkeley. With
over a decade of development behind it, PostgreSQL is the most advanced open-source database available
anywhere, offering multiversion concurrency control, supporting almost all SQL constructs (including
subselects, transactions, and user-defined types and functions), and having a wide range of language bind-
ings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were pre-
sented inThe design of POSTGRE®d the definition of the initial data model appearedie POST-
GRES data modelhe design of the rule system at that time was describddh@design of the POST-
GRES rules systerihe rationale and architecture of the storage manager were detailbé iesign of

the POSTGRES storage system

Postgres has undergone several major releases since then. The first “demoware” system became opera-
tional in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, descrifbée im-
plementation of POSTGRE®Bas released to a few external users in June 1989. In response to a critique

of the first rule systemX commentary on the POSTGRES rules syt rule system was redesigned

(On Rules, Procedures, Caching and Views in Database Syssmth¥/ersion 2 was released in June 1990

with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rewrite rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, lllustra Information Technologies
(later merged into Inform# which is now owned by IBM) picked up the code and commercialized it.
POSTGRES became the primary data manager for the Sequoiaxié@tific computing project in late

1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95 was
subsequently released to the Web to find its own way in the world as an open-source descendant of the
original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2. http://Iwww.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html
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Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregates were re-implemented. Support for the GROUP BY query clause was also
added. Thdibpg interface remained available for C programs.

+ In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

« A new front-end libraryjibpgtcl , supported Tcl-based clients. A sample shadtclsh , provided
new Tcl commands to interface Tcl programs with the Postgres95 backend.

- The large-object interface was overhauled. The Inversion large objects were the only mechanism for
storing large objects. (The Inversion file system was removed.)

« The instance-level rule system was removed. Rules were still available as rewrite rules.

- A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

« GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Major enhancements in PostgreSQL include:

- Table-level locking has been replaced by multiversion concurrency control, which allows readers to
continue reading consistent data during writer activity and enables hot backups from pg_dump while
the database stays available for queries.

- Important backend features, including subselects, defaults, constraints, and triggers, have been imple-
mented.

- Additional SQL92-compliant language features have been added, including primary keys, quoted iden-
tifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

« Built-in types have been improved, including new wide-range date/time types and additional geometric
type support.

- Overall backend code speed has been increased by approximately 20-40%, and backend start-up time
has decreased by 80% since version 6.0 was released.
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3. What's In This Book

This book describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL data
commands. The rest of the book treats several aspects that are important for tuning a database for optimal
performance.

The information in this book is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this book is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should look into tRestgreSQL Reference Manual

Readers of this book should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to reRabtgeeSQL Tutoriafirst. SQL
commands are typically entered using the PostgreSQL interactive terminal psql, but other programs that
have similar functionality can be used as well.

This book covers PostgreSQL 7.3.2 only. For information on other versions, please read the documentation
that accompanies that release.

4. Overview of Documentation Resources

The PostgreSQL documentation is organized into several books:

PostgreSQL Tutorial
An informal introduction for new users.
PostgreSQL User’s Guide

Documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

PostgreSQL Administrator's Guide

Installation and server management information. Everyone who runs a PostgreSQL server, either for
personal use or for other users, needs to read this.

PostgreSQL Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensibility,
library interfaces, and application design issues.

PostgreSQL Reference Manual

Reference pages for SQL command syntax, and client and server programs. This book is auxiliary to
the User’s, Administrator’s, and Programmer’s Guides.

PostgreSQL Developer’'s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the Post-
greSQL project; application development information appears iiPtbgrammer’s Guide
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In addition to this manual set, there are other resources to help you with PostgreSQL installation and use:

man pages
TheReference Manual pages in the traditional Unix man format. There is no difference in content.
FAQs
Frequently Asked Questions (FAQ) lists document both general issues and some platform-specific
issues.
READMEs
README files are available for some contributed packages.
Web Site

The PostgreSQL web sitearries details on the latest release, upcoming features, and other informa-
tion to make your work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other

users, and to contact the developers. Consult the User’s Lbaaggon of the PostgreSQL web site
for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation or
through the mailing lists. Consider contributing your knowledge back. If you learn something which
is not in the documentation, write it up and contribute it. If you add features to the code, contribute
them.

Even those without a lot of experience can provide corrections and minor changes in the documenta-
tion, and that is a good way to start. Thegsgl-docs@postgresql.org > mailing list is the place
to get going.

5. Terminology and Notation

An administratoris generally a person who is in charge of installing and running the servasef

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We usé€usr/local/pgsql/ as the root directory of the installation afdr/local/pgsgl/data as
the directory with the database files. These directories may vary on your site, details can be derived in the
Administrator's Guide

5. http://www.postgresql.org
6. http://www.postgresql.org/users-lounge/
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In a command synopsis, brackeftsand] ) indicate an optional phrase or keyword. Anything in brages (
and}) and containing vertical bar$ ) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed from
a Unix shell may be preceded with a dollar sigs”}: Commands executed from particular user accounts
such as root or postgres are specially flagged and explained. SQL commands may be preceded with “

or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout the documentation
set. Please report problems to the documentation mailing list <pgsql-docs@postgresgl.org >,

6. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

6.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that the program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend server.

Vi
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Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

6.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.

If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of stefpsm program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create table
and insert statements, if the output should depend on the data in the tables. We do not have the time
to reverse-engineer your database schema, and if we are supposed to make up our own data we would
probably miss the problem. The best format for a test case for query-language related problems is a file
that can be run through the psql frontend that shows the problem. (Be sure to not have anything in your
~l.psglrc  start-up file.) An easy start at this file is to use pg_dump to dump out the table declarations
and data needed to set the scene, then add the problem query. You are encouraged to minimize the size
of your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files, do not guess that the problem happens for “large files” or “mid-size
databases”, etc. since this information is too inexact to be of use.

- The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server's log output, this would be a good time to start doing so.

Vi
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- The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

- Any command line options and other start-up options, including concerned environment variables or
configuration files that you changed from the default. Again, be exact. If you are using a prepackaged
distribution that starts the database server at boot time, you should try to find out how that is done.

« Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the comm@BdECT version();  to find out the version of
the server you are connected to. Most executable programs also suppersian  option; at least
postmaster --version andpsgl --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. You can also look into the
READMHile in the source directory or at the name of your distribution file or package name. If you run
a prepackaged version, such as RPMs, say so, including any subversion the package may have. If you
are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.3.2 we will almost certainly tell you to upgrade. There are tons of bug
fixes in each new release, that is why we make new releases.

- Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation. In most cases it is sufficient to report the vendor and version, but do not assume everyone knows
what exactly “Debian” contains or that everyone runs on Pentiums. If you have installation problems
then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time

to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend
server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is
quite different from crash of the parent “postmaster” process; please don't say “the postmaster crashed”
when you mean a single backend went down, nor vice versa. Also, client programs such as the interactive
frontend “psql” are completely separate from the backend. Please try to be specific about whether the
problem is on the client or server side.

6.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgéel-bugs@postgresql.org >. You are

viii
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requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpgsaksql@postgresql.org > or
<pgsql-general@postgresgl.org >. These maliling lists are for answering user questions and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please dmot send reports to the developers’ mailing ligtgsgl-hackers@postgresgl.org >,

This list is for discussing the development of PostgreSQL and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug repgdldrackers |, if

the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing

list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org > so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug report web-form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail . For more
information send mail to <majordomo@postgresq|.org > with the single word help in the body of the
message.



Chapter 1. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how the SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because there are
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

1.1. Lexical Structure

SQL input consists of a sequenceadimmandsA command is composed of a sequencéokens ter-
minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be &ey word anidentifier, aquoted identifieraliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

Additionally, commentgan occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instanc&HizATE
command always requiresSET token to appear in a certain position, and this particular variation of
INSERT also requires & ALUESIn order to be complete. The precise syntax rules for each command are
described in th&ostgreSQL Reference Manual

1.1.1. Identifiers and Key Words

Tokens such aSELECT, UPDATE or VALUESIn the example above are exampleskeff words that is,

words that have a fixed meaning in the SQL language. The tokengABLEand A are examples of
identifiers They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be fourpjpendix B

SQL identifiers and key words must begin with a lettez( but also letters with diacritical marks and
non-Latin letters) or an underscore) (Subsequent characters in an identifier or key word can be letters,
digits (0-9), or underscores, although the SQL standard will not define a key word that contains digits or
starts or ends with an underscore.
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The system uses no more th&AMEDATALEN characters of an identifier; longer names can be
written in commands, but they will be truncated. By defallBMEDATALENs 64 so the maximum
identifier length is 63 (but at the time PostgreSQL is buMAMEDATALENcan be changed in
src/include/postgres_ext.h ).

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;
can equivalently be written as

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my table SET a = 5;

There is a second kind of identifier: tdelimited identifieror quoted identifierlt is formed by enclosing

an arbitrary sequence of characters in double-qudtesA( delimited identifier is always an identifier,
never a key word. Stselect”  could be used to refer to a column or table named “select”, whereas an
unquotedselect would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. To include a double quote,
write two double quotes. This allows constructing table or column names that would otherwise not be
possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifieF©Q foo and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOO" are different from these three and each other.

1.1.2. Constants

There are three kinds ahplicitly-typed constants PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. The implicit constants are described below; explicit constants are dis-
cussed afterwards.

1.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (“"his.g.,
is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent single quotes

1. The folding of unquoted names to lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted
names should be folded to upper case. Thas,should be equivalent t&=O0" not"foo" according to the standard. If you want
to write portable applications you are advised to always quote a particular name or never quote it.
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(e.g.,'Dianne”s horse’ ). In PostgreSQL single quotes may alternatively be escaped with a backslash
(“\", e.g., 'Dianne\'s horse’ ).

C-style backslash escapes are also availablds a backspacef is a form feed)n is a newline\r

is a carriage returrnit is a tab, and xxx , wherexxx is an octal number, is the character with the
corresponding ASCII code. Any other character following a backslash is taken literally. Thus, to include
a backslash in a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespéheat least one newlinare concatenated and
effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
‘bar’;

is equivalent to

SELECT ’foobar’;

but

SELECT 'foo’ ‘bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

1.1.2.2. Bit-String Constants

Bit-string constants look like string constants wittBgupper or lower case) immediately before the
opening quote (no intervening whitespace), e8.001’ . The only characters allowed within bit-string
constants aré and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a lea@ipger or
lower case), e.gX'1FF’ . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.

1.1.2.3. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits [ digits ][e[+-] digits ]
[ digits ]. digits [e[+-] digits ]
digits e[+-] digits

wheredigits  is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent magkeif ©ne is present.

There may not be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.
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These are some examples of valid numeric constants:

42

35

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer  if its value fits in typanteger (32 bits); otherwise it is presumed to be typgint  if its value

fits in typebigint (64 bits); otherwise it is taken to be typameric . Constants that contain decimal
points and/or exponents are always initially presumed to bertyperic .

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated astypédfloatd ) by writing

REAL '1.23' -- string style
1.23:REAL  -- PostgreSQL (historical) style

1.1.2.4. Constants of Other Types
A constant of ararbitrary type can be entered using any one of the following notations:

type ’string ’
"string i type
CAST ( 'string ' AS type )

The string’s text is passed to the input conversion routine for the type ¢gfled. The result is a constant

of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to the type the
constant must be (for example, when it is passed as an argument to a non-overloaded function), in which
case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string ')

but not all type names may be used in this way;Seetion 1.2.6or details.

The:: , CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussedaction 1.2.6But the formtype ’'string ' can only be used to
specify the type of a literal constant. Another restrictiontype ’'string ' is that it does not work for
array types; use or CAST() to specify the type of an array constant.
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1.1.2.5. Array constants

The general format of an array constant is the following:

{ wvall delim val2 delim v ¥

wheredelim is the delimiter character for the type, as recorded ipdtsype entry. (For all built-in
types, this is the comma character’.) Eachval is either a constant of the array element type, or a
subarray. An example of an array constant is

'{{1,2,3},{4,5,6}.{7,8,9}}

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

Individual array elements can be placed between double-quote nigrks dvoid ambiguity problems
with respect to whitespace. Without quote marks, the array-value parser will skip leading whitespace.

(Array constants are actually only a special case of the generic type constants discussed in the previous
section. The constant is initially treated as a string and passed to the array input conversion routine. An
explicit type specification might be necessary.)

1.1.3. Operators

An operator is a sequence of upNeMEDATALEN (63 by default) characters from the following list:
+-*<>=~1@#%N"&|'?$

There are a few restrictions on operator names, however:

+ $ (dollar) cannot be a single-character operator, although it can be part of a multiple-character operator
name.

« - and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end or - , unless the name also contains at least one of
these characters:

~1@#N"N&|'?S$

For example@-is an allowed operator name, bBut is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator @ayoed
cannot writeX*@Y, you must writeX* @Yto ensure that PostgreSQL reads it as two operator names not
one.
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1.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

- A dollar sign &) followed by digits is used to represent the positional parameters in the body of a
function definition. In other contexts the dollar sign may be part of an operator name.

- Parentheseg)() have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets [| ) are used to select the elements of an array. Ssstion 5.1%or more information on
arrays.

. Commas () are used in some syntactical constructs to separate the elements of a list.

- The semicolon;() terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

« The colon () is used to select “slices” from arrays. (Sgection 5.19 In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

« The asterisk¥) has a special meaning when used insEeECTcommand or with th€ OUNTaggregate
function.

- The period () is used in floating-point constants, and to separate schema, table, and column names.

1.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end
of the line, e.g.:

-- This is a standard SQL92 comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*

where the comment begins with and extends to the matching occurrence& afThese block comments
nest, as specified in SQL99 but unlike C, so that one can comment out larger blocks of code that may
contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.
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1.1.6. Lexical Precedence

Table 1-1shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operatnds

> have a different precedence than the Boolean operato@nd >=. Also, you will sometimes need to

add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;

will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late --!thatdefined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5 ) - 6;

This is the price one pays for extensibility.

Table 1-1. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[1 left array element selection
- right unary minus
" left exponentiation
* 1 % left multiplication, division, modulo
+ - left addition, subtraction
IS IS TRUE, IS FALSE, IS
UNKNOWNS NULL
ISNULL test for null
NOTNULL test for not null
(any other) left all other native and user-defined
operators
IN set membership
BETWEEN containment
OVERLAPS time interval overlap

LIKE ILIKE SIMILAR

string pattern matching

< >

less than, greater than

= right equality, assignment
NOT right logical negation
IAND left logical conjunction
OR left logical disjunction
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Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used iIOBERATORynNtax, as for example in

SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATORoONStruct is taken to have the default precedence showalite 1-1for “any other” oper-
ator. This is true no matter which specific operator name appears DBIERATOR()

1.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target listSELtEETcommand,

as new column values iINSERT or UPDATE or in search conditions in a number of commands. The
result of a value expression is sometimes callegalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also salild expressiongr even simply
expressions The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

- A constant or literal value; segection 1.1.2

« A column reference.

- A positional parameter reference, in the body of a function declaration.
- An operator invocation.

« A function call.

« An aggregate expression.

« Atype cast.

« A scalar subguery.

- Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location@hapter 6 An example is théS NULL clause.

We have already discussed constantSéction 1.1.2The following sections discuss the remaining op-
tions.

1.2.1. Column References

A column can be referenced in the form

correlation . columnname
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or
correlation . columnname [ subscript ]

(Here, the brackets] are meant to appear literally.)

correlation is the name of a table (possibly qualified), or an alias for a table defined by means of a
FROMclause, or the key wordsEwor OLD (NEwandOLDcan only appear in rewrite rules, while other
correlation names can be used in any SQL statement.) The correlation name and separating dot may be
omitted if the column name is unique across all the tables being used in the current query. (See also
Chapter 4

If column is of an array type, then the optiomalbscript  selects a specific element or elements in
the array. If no subscript is provided, then the whole array is selected S&#®n 5.1Xor more about
arrays.)

1.2.2. Positional Parameters

A positional parameter reference is used to indicate a parameter that is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. The form of a parameter
reference is:

$number

For example, consider the definition of a functidapt , as

CREATE FUNCTION dept(texty RETURNS dept
AS 'SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here the$1 will be replaced by the first function argument when the function is invoked.

1.2.3. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator  token follows the syntax rules &ection 1.1.30r is one of the keywordaNQ OR
andNOT, or is a qualified operator name

OPERATORgCchema. operatorname )

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the u§drapter 6escribes the built-in operators.



Chapter 1. SQL Syntax

1.2.4. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function ([ expression [[  expression 1)

For example, the following computes the square root of 2:

sqri(2)

The list of built-in functions is irChapter 6 Other functions may be added by the user.

1.2.5. Aggregate Expressions

An aggregate expressiaepresents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name  (expression )
aggregate_name  (ALL expression )
aggregate_name (DISTINCT expression )
aggregate_name ( * )

whereaggregate_name is a previously defined aggregate (possibly a qualified name)pxgmes-
sion is any value expression that does not itself contain an aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not --- but all the standard ones do.) The second form is the same as the firgLkirscthe
default. The third form invokes the aggregate for all distinct non-null values of the expression found in
the input rows. The last form invokes the aggregate once for each input row regardless of null or non-null
values; since no particular input value is specified, it is generally only useful faotin®() aggregate
function.

For examplegount(*)  yields the total number of input rowspunt(fl)  yields the number of input
rows in whichfl is non-null; count(distinct f1) yields the number of distinct non-null values of
fl.

The predefined aggregate functions are describ8aation 6.140ther aggregate functions may be added
by the user.

1.2.6. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST ( expression  AS type )
expression : type

10
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The CASTsyntax conforms to SQL; the syntax with is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as shovBeiction 1.1.2.4A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename ( expression )

However, this only works for types whose names are also valid as function names. For exianipte,

precision  can't be used this way, but the equivaléotts can. Also, the namesterval , time
andtimestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided
in new applications. (The function-like syntax is in fact just a function call. When one of the two standard
cast syntaxes is used to do a run-time conversion, it will internally invoke a registered function to perform
the conversion. By convention, these conversion functions have the same name as their output type, but
this is not something that a portable application should rely on.)

1.2.7. Scalar Subqueries

A scalar subquery is an ordinaBELECT query in parentheses that returns exactly one row with one
column. (SeeChapter 4for information about writing queries.) THRRELECTquery is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See als®ection 6.15

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

1.2.8. Expression Evaluation

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

11
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SELECT true OR somefunc();

thensomefunc() would (probably) not be called at all. The same would be the case if one wrote

SELECT somefunc() OR true;
Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation ord&vHERENd HAVING clauses, since

those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDORNOTcombinations) in those clauses may be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation orderCAaSE construct (se€section 6.12 may be used. For
example, this is an untrustworthy way of trying to avoid division by zero\wHERElause:

SELECT ... WHERE x <> 0 AND y/x > 1.5
But this is safe:
SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done when
necessary.

12
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This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned to
tables. Finally, we will briefly look at other features that affect the data storage, such as views, functions,
and triggers. Detailed information on these topics is found irPthetgreSQL Programmer’s Guide

2.1. Table Basics

Atable in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable -- it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order of
the rows in a table. When a table is read, the rows will appear in random order, unless sorting is explicitly
requested. This is covered@hapter 4Furthermore, SQL does not assign unique identifiers to rows, so it

is possible to have several completely identical rows in a table. This is a consequence of the mathematical
model that underlies SQL but is usually not desirable. Later in this chapter we will see how to deal with
this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation taChapter 5 Some of the frequently used data typesiateger for whole numberspu-

meric for possibly fractional numbergext for character stringsjate for datestime for time-of-day

values, andimestamp for values containing both date and time.

To create a table, you use the aptly nan@REATE TABLEcommand. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedy_first_table with two columns. The first column is named
first_column and has a data type afxt ; the second column has the naseeond_column and the

type integer . The table and column names follow the identifier syntax explainefeiction 1.1.1

The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

13
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CREATE TABLE products (
product_no integer,
name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you don't need a table anymore, you can remove it usingReP TABLEommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files to
unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look iS&ction 2.6ater in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahe&htpter 3and read the rest of this
chapter later.

2.2. System Columns

Every table has severaystem columrihat are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was cragtEdOUT OIDSin which case this column

is not present). This column is of typdd (same name as the column); seection 5.10or more
information about the type.

tableoid

The OID of the table containing this row. This attribute is particularly handy for queries that select
from inheritance hierarchies, since without it, it's difficult to tell which individual table a row came
from. Thetableoid can be joined against tlidd column ofpg_class to obtain the table name.

14
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Xmin
The identity (transaction ID) of the inserting transaction for this tuple. (Note: In this context, a tuple
is an individual state of a row; each update of a row creates a new tuple for the same logical row.)
cmin
The command identifier (starting at zero) within the inserting transaction.

Xxmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted tuple. It is possible
for this field to be nonzero in a visible tuple: That usually indicates that the deleting transaction hasn’t
committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.

ctid
The physical location of the tuple within its table. Note that althougtctide can be used to locate
the tuple very quickly, a row'stid will change each time it is updated or moved®yCUUM FULL

Thereforectid is useless as a long-term row identifier. The OID, or even better a user-defined serial
number, should be used to identify logical rows.

2.3. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without knowing what this
value is. (Details about data manipulation commands a@hapter 3

If no default value is declared explicitly, the null value is the default value. This usually makes sense
because a null value can be thought to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric DEFAULT 9.99

The default value may be a scalar expression, which will be evaluated whenever the default value is
inserted fotwhen the table is created).

2.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
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ably only accept positive values. But there is no data type that accepts only positive numbers. Another
issue is that you might want to constrain column data with respect to other columns or rows. For example,
in a table containing product information, there should only be one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

2.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy an arbitrary expression. For instance, to require positive product prices, you could
use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the kegH&ETH
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

);

So, to specify a named constraint, use the key witSTRAINTfollowed by an identifier followed by
the constraint definition.

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

16
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The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from the column definitions. Column constraints can also be written as
table constraints, while the reverse is not necessarily possible. The above example could also be written
as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);
or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);
It's a matter of taste.

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if one operand is null they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section should be used.

2.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL
name text NOT NULL
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraBHECK olumn_name IS NOT NULL), butin PostgreSQL creating

an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created that way.

17
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Of course, a column can have more than one constraint. Just write the constraints after one another:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);
The order doesn’t matter. It does not necessarily affect in which order the constraints are checked.

TheNOT NULLconstraint has an inverse: tNeJLL constraint. This does not mean that the column must

be null, which would surely be useless. Instead, this simply defines the default behavior that the column
may be null. TheNULL constraint is not defined in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert thiOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

2.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE
name text,
price numeric

);
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:
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CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, ¢)

It is also possible to assign names to unique constraints:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

In general, a unique constraint is violated when there are (at least) two rows in the table where the values
of each of the corresponding columns that are part of the constraint are equal. However, null values are not
considered equal in this consideration. That means, in the presence of a multicolumn unique constraint it
is possible to store an unlimited number of rows that contain a null value in at least one of the constrained
columns. This behavior conforms to the SQL standard, but we have heard that other SQL databases may
not follow this rule. So be careful when developing applications that are intended to be portable.

2.4.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY
name text,

price numeric

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, ¢)
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A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, in fact, provide a unique identifier because it does not exclude null values.) This is useful both for
documentation purposes and for client applications. For example, a GUI application that allows modifying
row values probably needs to know the primary key of a table to be able to identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced by
PostgreSQL, but it is usually best to follow it.

2.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintaireféinential integritybetween two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no)
quantity integer

);
Now it is impossible to create orders withoduct_no entries that do not appear in the products table.

We say that in this situation the orders table isréferencingable and the products table is tieéerenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i
because in absence of a column list the primary key of the referenced table is used as referenced column.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:
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CREATE TABLE t1 (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, ¢) REFERENCES other_table (cl1, c2)
);

Of course, the number and type of the constrained columns needs to match the number and type of the
referenced columns.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Note also that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that don’t relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to specify that as well.
Intuitively, we have a few options:

- Disallow deleting a referenced product
+ Delete the orders as well
« Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
When someone wants to remove a product that is still referenced by an orderdgfiatems ), we
disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric
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);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT
order_id integer REFERENCES orders ON DELETE CASCADE
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common oRBAFRICT can also be written asO
ACTIONand it's also the default if you don’t specify anything. There are two other options for what should
happen with the foreign key columns when a primary key is del&gd: NULLandSET DEFAULTNote

that these do not excuse you from observing any constraints. For example, if an action sp&difies
DEFAULTbut the default value would not satisfy the foreign key, the deletion of the primary key will fail.

Analogous toON DELETEhere is alscON UPDATEvhich is invoked when a primary key is changed
(updated). The possible actions are the same.

More information about updating and deleting data i€hapter 3

Finally, we should mention that a foreign key must reference columns that are either a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explainedOREATE TABLEeNtry in

the PostgreSQL Reference Manual

2.5. Inheritance

Let's create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (

name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row of capitaisheritsall attributes (name, population, and altitude) from its parent, cities.
The type of the attribute nametisxt , a native PostgreSQL type for variable length ASCII strings. The
type of the attribute population fvat , a native PostgreSQL type for double precision floating-point
numbers. State capitals have an extra attribute, state, that shows their state. In PostgreSQL, a table can
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inherit from zero or more other tables, and a query can reference either all rows of a table or all rows of a
table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ N
Las Vegas | 2174
Mariposa | 1953

Here the “ONLY” before cities indicates that the query should be run over only cities and not tables below
cities in the inheritance hierarchy. Many of the commands that we have already discuS&tdcT,
UPDATEandDELETE-- support this “ONLY” notation.

In some cases you may wish to know which table a particular tuple originated from. There is a system
column calledTABLEOIDin each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities ¢
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

+ +
t 1
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139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
+ +

cities | Las Vegas | 2174

cites | Mariposa | 1953

capitals | Madison | 845

Deprecated: In previous versions of PostgreSQL, the default was not to get access to child tables.
This was found to be error prone and is also in violation of the SQL standard. Under the old syntax,
to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending *, as well as explicitly specify not
scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for an
undecorated table name is to scan its child tables too, whereas before the default was not to do so.
To get the old default behavior, set the configuration option SQL_Inheritance  to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresgl.conf file.

A limitation of the inheritance feature is that indexes (including unique constraints) and foreign key con-
straints only apply to single tables, not to their inheritance children. Thus, in the above example, specify-
ing that another table’s colunREFERENCES cities(name) would allow the other table to contain city
names but not capital names. This deficiency will probably be fixed in some future release.

2.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
changed, then you can drop the table and create it again. But this is not a convenient option if the table
is already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications on existing
tables.

You can
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« Add columns,

- Remove columns,

- Add constraints,

- Remove constraints,
« Change default values,
« Rename columns,

« Rename tables.

All these actions are performed using thieTER TABLEcommand.

2.6.1. Adding a Column

To add a column, use this command:

ALTER TABLE products ADD COLUMN description text;

The new column will initially be filled with null values in the existing rows of the table.

You can also define a constraint on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <>");

A new column cannot have a not-null constraint since the column initially has to contain null values.
But you can add a not-null constraint later. Also, you cannot define a default value on a new column.
According to the SQL standard, this would have to fill the new columns in the existing rows with the

default value, which is not implemented yet. But you can adjust the column default later on.

2.6.2. Removing a Column

To remove a column, use this command:

ALTER TABLE products DROP COLUMN description;

2.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");

ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);

ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;
To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_ no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

25



Chapter 2. Data Definition

2.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql commgbtename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;
This works the same for all constraint types except not-null constraints. To drop a not null constraint use
ALTER TABLE products ALTER COLUMN product no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

2.6.5. Changing the Default

To set a new default for a column, use a command like this:
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77,
To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is equivalent to setting the default to null, at least in PostgreSQL. As a consequence, it is not an error
to drop a default where one hadn'’t been defined, because the default is implicitly the null value.

2.6.6. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

2.6.7. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

2.7. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can do
anything with the object. In order to allow other users to uggritilegesmust be granted. (There are also
users that have the superuser privilege. Those users can always access any object.)
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Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLEcommand.

There are several different privileges=LECT, INSERT, UPDATE DELETE RULE REFERENCESTRIG-
GER CREATE TEMPORARYEXECUTEUSAGE andALL PRIVILEGES. For complete information on the
different types of privileges supported by PostgreSQL, refer t@ctRaNTeference page. The following
sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

To assign privileges, theRANTcommand is used. So, je is an existing user, anaccounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

The user executing this command must be the owner of the table. To grant a privilege to a group, use

GRANT SELECT ON accounts TO GROUP staff;

The special “user” namBUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right toDiROP GRANT REVOKE etc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

2.8. Schemas

A PostgreSQL database cluster (installation) contains one or more named databases. Users and groups of
users are shared across the entire cluster, but no other data is shared across databases. Any given client
connection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databasesin
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more nansedlemaswhich in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, Bobemal andmyschema may contain

tables namechytable . Unlike databases, schemas are not rigidly separated: a user may access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

- To allow many users to use one database without interfering with each other.
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- To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

2.8.1. Creating a Schema

To create a separate schema, use the com@BBATE SCHEMGive the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, wrgaalified nameconsisting of the schema name and table
name separated by a dot:

schema. table
Actually, the even more general syntax

database .schema. table

can be used too, but at present this is just for pro-forma compliance with the SQL standard; if you write a
database name it must be the same as the database you are connected to.

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (

%

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters.

To drop a schema if it's empty (all objects in it have been dropped), use
DROP SCHEMA myschema;

To drop a schema including all contained objects, use
DROP SCHEMA myschema CASCADE;

SeeSection 2.10or a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAchemaname AUTHORIZATION username ;

You can even omit the schema name, in which case the schema name will be the same as the user name.
SeeSection 2.8.6or how this can be useful.

Schema names beginning with_ are reserved for system purposes and may not be created by users.
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2.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products ( ... );

and

CREATE TABLE public.products ( ... );

2.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred tamgualified namesvhich consist of just the table

name. The system determines which table is meant by follows®pech pathwhich is a list of schemas

to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be createddfREATE TABLEommand does
not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched. Since
no such schema exists yet, this entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit thesuser here because we have no immediate need for it.) And then we can access the table
without schema qualification:
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DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See als@ection 6.130r other ways to access the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR§chema. operator )

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

2.8.4. Schemas and Privileges

By default, users cannot see the objects in schemas they do not own. To allow that, the owner of the
schema needs to grant ti8AGHrivilege on the schema. To allow users to make use of the objects in the
schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow tbREAREprivilege

on the schema needs to be granted. Note that by default, everyone b&Ehesprivilege on the schema

public . This allows all users that manage to connect to a given database to create objects there. If you
do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a reserved word, hence the different capitalization; recall the guidelines
from Section 1.1.))

2.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database containsasalog schema, which
contains the system tables and all the built-in data types, functions, and opgratossalog s always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
beforesearching the path’s schemas. This ensures that built-in names will always be findable. However,
you may explicitly placepg_catalog  at the end of your search path if you prefer to have user-defined
names override built-in names.
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In PostgreSQL versions before 7.3, table names beginningogithwvere reserved. This is no longer true:

you may create such a table name if you wish, in any non-system schema. However, it's best to continue
to avoid such names, to ensure that you won't suffer a conflict if some future version defines a system
catalog named the same as your table. (With the default search path, an unqualified reference to your
table name would be resolved as the system catalog instead.) System catalogs will continue to follow the
convention of having names beginning witth , so that they will not conflict with unqualified user-table
names so long as users avoid fiye prefix.

2.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

- If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default search
path starts witt$user , which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

- To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the
other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their path, as they choose.

2.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations don’t allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
gualified names to really consist afername . tablename . This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of gublic  schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even removeutiie schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at alll.
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2.9. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use

and management of the data more efficient or convenient. They are not discussed in this chapter, but we

give you a list here so that you are aware of what is possible.

+ Views
- Functions, operators, data types, domains

- Triggers and rewrite rules

2.10. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you will implicitly create a net of dependencies between the objects. For instance,
a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered irSection 2.4.5with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;

NOTICE: constraint $1 on table orders depends on table products

ERROR: Cannot drop table products because other objects depend on it
Use DROP ... CASCADE to drop the dependent objects too

The error message contains a useful hint: If you don’t want to bother deleting all the dependent objects
individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check wiROP ... CASCADE will do, run DROP
without CASCADERNd read th&lOTICEmessages.)

All drop commands in PostgreSQL support specifyC®ySCADEOf course, the nature of the possible
dependencies varies with the type of the object. You can also RESTRICTinstead ofCASCADEO get
the default behavior which is to restrict drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICTor CASCADES required. No database
system actually implements it that way, but whether the default behavior is RESTRICTor CASCAD&aries
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade.
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Chapter 3. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We also
introduce ways to effect automatic data changes when certain events occur: triggers and rewrite rules. The
chapter after this will finally explain how to extract your long-lost data back out of the database.

3.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use is
to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than one
row, but there is no way to insert less than one row at a time. Even if you know only some column values,

a complete row must be created.

To create a new row, use thieSERT command. The command requires the table name and a value for
each of the columns of the table. For example, consider the products tabl€frapter 2

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
that you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese’);
INSERT INTO products VALUES (1, 'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;
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Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPYcommand (see Post-
greSQL Reference Manual). It is not as flexible as the INSERT command, but more efficient.

3.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter 2hat SQL does not, in general, provide a unique identifier for rows. Therefore it is
not necessarily possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (no matter whether
you declared it or not) can you reliably address individual rows, by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does not
match any rows.

Let’s look at that command in detail: First is the key wa@DATEollowed by the table name. As usual,

the table name may be schema-qualified, otherwise it is looked up in the path. Next is the keeword
followed by the column name, an equals sign and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can also refer to the old value. We also left\WHERE
clause. If it is omitted, it means that all rows in the table are updated. If it is present, only those rows
that match the condition after th@HEREre updated. Note that the equals sign in 38 clause is an
assignment while the one in thieHERElause is a comparison, but this does not create any ambiguity. Of
course, the condition does not have to be an equality test. Many other operators are availéthejsee

6). But the expression needs to evaluate to a Boolean result.

You can also update more than one column iv&DATECcommand by listing more than one assignment
in the SET clause. For example:
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UPDATE mytable SET a = 5, b =3, ¢ =1 WHERE a > 0;

3.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we discussed that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar toWP®ATEcommand. For
instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;
If you simply write

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.
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The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data out of the database.

4.1. Overview

The process of retrieving or the command to retrieve data from a database is aglled;dn SQL the
SELECTcommand is used to specify queries. The general syntax &fEhECTcommand is

SELECT select_list FROMtable_expression [ sort_specification ]

The following sections describe the details of the select list, the table expression, and the sort specification.

The simplest kind of query has the form

SELECT * FROM tablel,;

Assuming that there is a table callethlel , this command would retrieve all rows and all columns from
tablel . (The method of retrieval depends on the client application. For example, the psql program will
display an ASCIll-art table on the screen, while client libraries will offer functions to retrieve individual
rows and columns.) The select list specificattomeans all columns that the table expression happens

to provide. A select list can also select a subset of the available columns or make calculations using the
columns. For example, thblel has columns namea b, andc (and perhaps others) you can make the
following query:

SELECT a, b + ¢ FROM tablel;

(assuming thatt andc are of a numerical data type). S8ection 4.3For more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use 8®_.ECTcommand as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random();

4.2. Table Expressions

A table expressiocomputes a table. The table expression contairR@Mclause that is optionally fol-

lowed by WHEREGROUP BYandHAVING clauses. Trivial table expressions simply refer to a table on

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.
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The optionaWHEREGROUP BYandHAVINGclauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived irFth@Mclause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

4.2.1. The FROM Clause

TheFROMlause derives a table from one or more other tables given in a comma-separated table reference
list.

FROMtable_reference [, table_reference [, ...

A table reference may be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listedFRQM

clause they are cross-joined (see below) to form the intermediate virtual table that may then be subject to
transformations by th&/yHEREGROUP BYandHAVINGclauses and is finally the result of the overall table
expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the Reywword
precedes the table name. However, the reference produces only the columns that appear in the named table
--- any columns added in subtables are ignored.

4.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOINT2

For each combination of rows froifil and T2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inr2. If the tables have N and M rows respectively, the
joined table will have N * M rows. A cross join is equivalent to &INER JOIN ON TRUE

Tip: FROMT1 CROSS JOINT2 is equivalent to FROMT1, T2.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING ( join col-
umn list )

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The worddNNER andOUTERare optional in all formsNNER s the defaultLEFT, RIGHT, andFULL
imply an outer join.
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Thejoin conditionis specified in theédNor USING clause, or implicitly by the word\ATURAL The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The ONclause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in@HEREIlause. A pair of rows fronT1 andT2 match if theONexpression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of@IN USING has one column for each of the equated pairs

of input columns, followed by all of the other columns from each table. THB®NG (a, b, ¢)

is equivalent taON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the exception

that if ONis used there will be two columns b, andc in the result, whereas witSING there will

be only one of each.

Finally, NATURALIs a shorthand form ofiSING. it forms aUSING list consisting of exactly those
column names that appear in both input tables. As WhNG, these columns appear only once in
the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will unconditionally have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or bdth ahd T2 may be joined tables.
Parentheses may be used aroumdN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have talies

num | name
_____ -
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andt2

num | value

_____ S,
1] xxx
3| yyy
5| zzz

then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num | value
| xxx
| yyy
| zzz
| xxx
[ yyy
| zzz
| xxx

| yyy
| zzz

O 0 0 ocCoTT9 99O
O WkFrF JogwkEkowek

3
(9 rows)

W WNNNPRE PP

=> SELECT * FROM t1 INNER JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- R S
1| a | 1| xxx
3lc | 31 vyyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

_____ R R
1| a | xxx
3]c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

_____ I E
1| a | xxx
3]c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num;
num | name | num | value

+ + +
T T T

1| a | 1| xxx

Chapter 4. Queries
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2|b I I
3|c | 31 yyy
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

_____ I E
1| a | xxx
2|b I
31lc | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- R R S —
1] a | 1] xxx
31lc I 31 vyy
| | 5| zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON tl.num = t2.num;
num | name | num | value

+ et

1| a | 1| xxx
2|b I I
3]c | 31y
| | 5] zzz
(4 rows)

The join condition specified witbNcan also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;
num | name | num | value

----- S S —
1] a | 1] xxx
2|b I I
31|c I I

(3 rows)

4.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in further processing. This is calletdlale alias

To create a table alias, write

FROMtable_reference AS alias
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or
FROMtable_reference alias

TheASkey word is noisealias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query -- it is no longer possible to
refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard) is that
an implicit table reference is added to tfROM:lause, so the query is processed as if it were written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquerySseton 4.2.1.8

Parentheses are used to resolve ambiguities. The following statement will assign thetalibe result
of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my table) AS b ...

Another form of table aliasing also gives temporary names to the columns of the table:

FROMtable_reference [AS] alias ( columnl [, column2 [, ..]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output ofi@IN clause, using any of these forms, the alias hides the
original names within th@OIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS ¢

is not valid: the table alias is not visible outside the alias
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4.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parenthesesisthe assigned a table alias
name. (Se&ection 4.2.1.2 For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent BROM tablel AS alias_name . More interesting cases, which can't be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

4.2.2. The WHERE Clause
The syntax of th&VHERElause is

WHEREsearch_condition

wheresearch_condition is any value expression as definedSaction 1.2that returns a value of
typeboolean .

After the processing of thEROMlause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(thatis, if the result is false or null) it is discarded. The search condition typically references at least some
column in the table generated in tAROMlause; this is not required, but otherwise WHERElause will

be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of an
inner join in the WHERElause. For example, these table expressions are equivalent:

FROM a, b WHERE a.d = b.id AND bval > 5
and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMlause is probably
not as portable to other SQL database products. For outer joins there is no choice in any case:
they must be done in the FROMclause. An ONUSING clause of an outer join is not equivalent to a
WHEREondition, because it determines the addition of rows (for unmatched input rows) as well as the
removal of rows from the final result.

Here are some exampleswHEREIlauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)
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SELECT ... FROM fdt WHERE cl1 IN (SELECT cl1l FROM t2)
SELECT ... FROM fdt WHERE c1 IN (SELECT ¢3 FROM t2 WHERE c¢2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl1 BETWEEN (SELECT c¢3 FROM t2 WHERE c¢2 = fdt.cl1 + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in thEROMclause. Rows that do not meet the search condition ofMHERE
clause are eliminated frorfdt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notiddthasireferenced in the
subqueries. Qualifyingl asfdt.cl is only necessary i1 is also the name of a column in the derived
input table of the subquery. Qualifying the column name adds clarity even when it is not needed. This
shows how the column naming scope of an outer query extends into its inner queries.

4.2.3. The GROUP BY and HAVING Clauses

After passing thevHERHilter, the derived input table may be subject to grouping, usingReuUP BY
clause, and elimination of group rows using th&VINGclause.

SELECT select_list
FROM ...
[WHERE ..]
GROUP BYgrouping_column_reference [ grouping_column_reference ]-..

The GROUP BXlause is used to group together rows in a table that share the same values in all the
columns listed. The order in which the columns are listed does not matter. The purpose is to reduce each
group of rows sharing common values into one group row that is representative of all rows in the group.
This is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;

x|y
——tem

al| 3
c| 2
b|5
al|1l
(4 rows)

=> SELECT x FROM testl GROUP BY x;
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In the second query, we could not have writ&FLECT * FROM testl GROUP BY xbecause there is
no single value for the columy that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a known constant value per group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum
[ B

a | 4
b|] 5
c | 2
(3 rows)

Heresum() is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be fourgkition 6.14

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the DISTINCT clause (see Section 4.3.3).

Here is another exampleum(sales) on a table grouped by product code gives the total sales for each
product, not the total sales on all products.

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columnsoduct_id , p.name , andp.price  must be in the&sSROUP B¥lause since

they are referenced in the query select list. (Depending on how exactly the products table is set up, name
and price may be fully dependent on the product ID, so the additional groupings could theoretically be
unnecessary, but this is not implemented yet.) The colanmits  does not have to be in tteROUP

BY list since it is only used in an aggregate expresssm() ), which represents the group of sales of a
product. For each product, a summary row is returned about all sales of the product.

In strict SQL,GROUP BYan only group by columns of the source table but PostgreSQL extends this to
also allowGROUP BYo group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped usingsROUP BYlause, but then only certain groups are of interest, the
HAVING clause can be used, much likeAHEREIause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ..] GROUP BY ... HAVING boolean_expression

Expressions in thelAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum
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a | 4
b| 5
(2 rows)

X | sum
R S

a | 4
b| 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, th&yHERElause is selecting rows by a column that is not grouped, while the
HAVING clause restricts the output to groups with total gross sales over 5000. Note that the aggregate
expressions do not necessarily need to be the same everywhere.

4.3. Select Lists

As shown in the previous section, the table expression isEwECTcommand constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by thelect list The select list determines whidolumnsof the intermediate
table are actually output.

4.3.1. Select-List Items

The simplest kind of select list iswhich emits all columns that the table expression produces. Otherwise,
a select listis a comma-separated list of value expressions (as defiection 1.2 For instance, it could
be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names, b, andc are either the actual names of the columns of tables referenced in the
FROMlause, or the aliases given to them as explainegkiction 4.2.1.2The name space available in the
select list is the same as in tieHERElause, unless grouping is used, in which case it is the same as in
the HAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbll.a, thl2.b, thll.c FROM ...
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(See alsection 4.2.9

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each retrieved row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference any
columns in the table expression of thRROM:lause; they could be constant arithmetic expressions as well,

for instance.

4.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display). For
example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified via AS, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the function.
For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROM:lause (see Section
4.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the name chosen in
the select list is the one that will be passed on.

4.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination of
duplicates. Th®ISTINCT key word is written directly after thBELECTto enable this:

SELECT DISTINCT select_list

(Instead oDISTINCT the wordALL can be used to select the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression )| select_list

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for which

all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving atOI&TINCT filter. (DISTINCT ON processing

occurs afteORDER Borting.)
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TheDISTINCT ONclause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious useRIBUP Bwnd subselects in
FROMhe construct can be avoided, but it is often the most convenient alternative.

4.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl andquery2 are queries thatcan use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3

which really says

(queryl UNION query2 ) UNION query3

UNIONeffectively appends the result qfiery2 to the result ofjueryl (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates all duplicate rows,
in the sense dDISTINCT, unlessUNION ALLis used.

INTERSECTreturns all rows that are both in the resuligpferyl and in the result ofjluery2 . Duplicate
rows are eliminated unle$STERSECT ALLis used.

EXCEPTreturns all rows that are in the result qfieryl but not in the result ofjuery2 . (This is
sometimes called thdifferencebetween two queries.) Again, duplicates are eliminated UHESEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they both return the same number of columns, and that the corresponding
columns have compatible data types, as describ&dation 7.5

4.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that case
will depend on the scan and join plan types and the order on disk, but it must not be relied on. A particular
output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYlause specifies the sort order:

SELECT select_list
FROMtable_expression
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ORDER BYcolumnl [ASC | DESC] [, column2 [ASC | DESC] ..]

columnl , etc., refer to select list columns. These can be either the output name of a colurBec¢ten
4.3.2 or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY ga;
SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:
SELECT a, b FROM tablel ORDER BY a + b;

References to column names in #ROMlause that are renamed in the select list are also allowed:
SELECT a AS b FROM tablel ORDER BY a;

But these extensions do not work in queries involvigiglON INTERSECT, or EXCEPT and are not

portable to other SQL databases.

Each column specification may be followed by an optigx@&tor DESCto set the sort direction to ascend-
ing or descendingASCorder is the default. Ascending order puts smaller values first, where “smaller” is
defined in terms of the: operator. Similarly, descending order is determined with-tteperator.

If more than one sort column is specified, the later entries are used to sort rows that are equal under the
order imposed by the earlier sort columns.

4.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
FROMtable_expression
[LIMIT {  number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows)LIMIT ALL is the same as omitting theMIT clause.

OFFSETsays to skip that many rows before beginning to return rows to the ciERSET 0is the same
as omitting theOFFSETclause. If bottOFFSETandLIMIT appear, thelFFSETrows are skipped before
starting to count theIMIT rows that are returned.

When usingLIMIT , it is a good idea to use aDRDER BXtlause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specifiecdRDER BY

The query optimizer takddMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you givelfaiT andOFFSET Thus,
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using differentLIMIT /OFFSETvalues to select different subsets of a query resilltgive inconsistent
resultsunless you enforce a predictable result ordering @RDER BYThis is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unlessORDER BYs used to constrain the order.
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PostgreSQL has a rich set of native data types available to users. Users may add new types to PostgreSQL
using theCREATE TYPEommand.

Table 5-1shows all general-purpose data types included in the standard distribution. Most of the alter-
native names listed in the “Aliases” column are the names used internally by PostgreSQL for historical
reasons. In addition, some internally used or deprecated types are available, but they are not listed here.

Table 5-1. Data Types

Type Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying( n) varbit(  n) \variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in 2D plane

bytea binary data

character varying( n) varchar( n) \variable-length character string

character( n) char( n) fixed-length character string

cidr IP network address

circle circle in 2D plane

date calendar date (year, month, day

double precision float8 double precision floating-point
number

inet IP host address

integer int , int4 signed four-byte integer

interval(  p) general-use time span

line infinite line in 2D plane (not
implemented)

Iseg line segment in 2D plane

macaddr MAC address

money currency amount

numeric [ ( p, S) ] decimal [ ( p, s) ] exact numeric with selectable
precision

path open and closed geometric path in
2D plane

point geometric point in 2D plane

polygon closed geometric path in 2D plahe
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Type Name Aliases Description

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

text \variable-length character string

time [ ( p) ] [ without time of day

time zone ]

time [ ( p) ] with time timetz time of day, including time zone

zone

timestamp [ ( p) ] without timestamp date and time

time zone

timestamp [ ( p) ] [ with timestamptz date and time, including time

time zone ] zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying
boolean , char , character varying , character , varchar , date , double precision , integer , in-
terval , numeric , decimal , real , smallint ,time , timestamp (both with or without time zone).

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as open and closed paths, or have several possibilities for formats, such as the date and time types.
Most of the input and output functions corresponding to the base types (e.g., integers and floating-point
numbers) do some error-checking. Some of the input and output functions are not invertible. That is, the
result of an output function may lose precision when compared to the original input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric oper-
ators for some data types may silently underflow or overflow.

5.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and fixed-precision decimal$able 5-2lists the available types.

Table 5-2. Numeric Types

Type name Storage size Description Range

smallint 2 bytes small range -32768 to +32767
fixed-precision

integer 4 bytes usual choice for -2147483648 to
fixed-precision +2147483647
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Type name Storage size Description Range
bigint 8 bytes large range -9223372036854775808
fixed-precision to
9223372036854775807,
decimal \variable user-specified precisionjno limit
exact
numeric \variable user-specified precisionjno limit
exact
real 4 bytes \variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes \variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing integet to 2147483647
bigserial 8 bytes large autoincrementing [1 to
integer 9223372036854775807

The syntax of constants for the numeric types is describ&®ation 1.1.2The numeric types have a full
set of corresponding arithmetic operators and functions. Ref€hapter 6for more information. The
following sections describe the types in detail.

5.1.1. The Integer Types

The typesmallint , integer , bigint  store whole numbers, that is, numbers without fractional com-
ponents, of various ranges. Attempts to store values outside of the allowed range will result in an error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Themallint  type is generally only used if disk space is at a premium.fifiet  type
should only be used if thiateger  range is not sufficient, because the latter is definitely faster.

Thebigint  type may not function correctly on all platforms, since it relies on compiler support for eight-
byte integers. On a machine without such suppsgint  acts the same asteger  (but still takes up

eight bytes of storage). However, we are not aware of any reasonable platform where this is actually the
case.

SQL only specifies the integer typ@gseger (orint ) andsmallint . The typebigint , and the type
namesnt2 ,int4 ,andint8 are extensions, which are shared with various other SQL database systems.

Note: If you have a column of type smallint  or bigint  with an index, you may encounter problems
getting the system to use that index. For instance, a clause of the form

.... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and PostgreSQL
currently cannot use an index when two different data types are involved. A workaround is to single-
guote the constant, thus:

.... WHERE smallint_column = 42’

This will cause the system to delay type resolution and will assign the right type to the constant.
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5.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1,000 digits of precision and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, theumeric type is very slow compared to the floating-point types described in the
next section.

In what follows we use these terms: Témaleof anumeric is the count of decimal digits in the fractional

part, to the right of the decimal point. Tipgecisionof anumeric is the total count of significant digits in

the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERICfrecision , scale )
The precision must be positive, the scale zero or positive. Alternatively,

NUMERICfrecision )

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereagsmeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the system
will attempt to round the value. If the value cannot be rounded so as to satisfy the declared limits, an error
is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

5.1.3. Floating-Point Types

The data typegeal anddouble precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Managing
these errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed further here, except for the following points:
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- If you require exact storage and calculations (such as for monetary amounts), usenthie type
instead.

- If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

- Comparing two floating-point values for equality may or may not work as expected.

Normally, thereal type has a range of at least -1E+37 to +1E+37 with a precision of at least 6 decimal
digits. Thedouble precision type normally has a range of around -1E+308 to +1E+308 with a pre-
cision of at least 15 digits. Values that are too large or too small will cause an error. Rounding may take
place if the precision of an input number is too high. Numbers too close to zero that are not representable
as distinct from zero will cause an underflow error.

5.1.4. The Serial Types

The serial  data type is not a true type, but merely a notational convenience for setting up identifier
columns (similar to théaUTO_INCREMENTProperty supported by some other databases). In the current
implementation, specifying

CREATE TABLEtablename (
colname SERIAL

);
is equivalent to specifying:

CREATE SEQUENCtablename _colname _seq;
CREATE TABLEtablename (
colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL

):

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. ANOT NULLconstraint is applied to ensure that a null value cannot be explicitly inserted, either.

In most cases you would also want to attaddNIQUEor PRIMARY KEYconstraint to prevent duplicate

values from being inserted by accident, but this is not automatic.

To use aserial  column to insert the next value of the sequence into the table, specify thsdridle
column should be assigned the default value. This can be done either be excluding from the column from
the list of columns in théNSERT statement, or through the use of hEFAULTkeyword.

The type nameserial andserial4  are equivalent: both creabateger columns. The type names
bigserial  andserial8  work just the same way, except that they credigat column.bigserial
should be used if you anticipate the use of more tifard2ntifiers over the lifetime of the table.

The sequence created byerial  type is automatically dropped when the owning column is dropped,

and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3. Note that this
automatic drop linkage will not occur for a sequence created by reloading a dump from a pre-7.3 database;
the dump file does not contain the information needed to establish the dependency link.) Furthermore,

this dependency between sequence and column is made only fegridle column itself; if any other
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columns reference the sequence (perhaps by manually callingetheal() ) function), they may be
broken if the sequence is removed. Us#egial columns in fashion is considered bad form.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE This is no longer automatic. If you wish a
serial column to be UNIQUEoOr a PRIMARY KEYit must now be specified, just as with any other data
type.

5.2. Monetary Type

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function. The money type may become a locale-aware layer over the numeric type in a
future release.

The money type stores a currency amount with fixed decimal point representatioratde 5-3 The
output format is locale-specific.

Input is accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such &s1,000.000 . Output is in the latter form.

Table 5-3. Monetary Types

Type Name Storage Description Range
money 4 bytes currency amount -21474836.48 to
+21474836.47

5.3. Character Types

Table 5-4. Character Types

Type name Description

character varying( n), varchar( n) \variable-length with limit
character(  n),char( n) fixed-length, blank padded
text \variable unlimited length

Table 5-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character typebaracter varying( n) andcharacter( n), wheren is a

positive integer. Both of these types can store strings updbaracters in length. An attempt to store a
longer string into a column of these types will result in an error, unless the excess characters are all spaces,
in which case the string will be truncated to the maximum length. (This somewhat bizarre exception is
required by the SQL standard.) If the string to be stored is shorter than the declared length, values of type
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character  will be space-padded; values of typbaracter varying will simply store the shorter
string.
Note: If one explicitly casts a value to character varying( n) or character( n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising an
error, in either explicit or implicit casting contexts.

The notationsarchar(  n) andchar( n) are aliases focharacter varying( n) andcharacter( n),
respectivelycharacter  without length specifier is equivalenttbaracter(1)  ; if character vary-

ing is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL supports the more geniesal type, which stores strings of any length. Unlike
character varying , text does not require an explicit declared upper limit on the size of the string.
Although the typeext is notin the SQL standard, many other RDBMS packages have it as well.

The storage requirement for data of these types is 4 bytes plus the actual string, and icbasetef

plus the padding. Long strings are compressed by the system automatically, so the physical requirement
on disk may be less. Long values are also stored in background tables so they don't interfere with rapid
access to the shorter column values. In any case, the longest possible character string that can be stored
is about 1 GB. (The maximum value that will be allowed fom the data type declaration is less than

that. It wouldn’t be very useful to change this because with multibyte character encodings the number of
characters and bytes can be quite different anyway. If you desire to store long strings with no specific upper
limit, usetext or character varying without a length specifier, rather than making up an arbitrary
length limit.)

Tip: There are no performance differences between these three types, apart from the increased stor-
age size when using the blank-padded type.

Refer toSection 1.1.2.for information about the syntax of string literals, andCoapter or information
about available operators and functions.

Example 5-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; -- ad
a | char_length
______ S
ok | 4

CREATE TABLE test2 (b varchar(b));
INSERT INTO test2 VALUES ('ok’);
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INSERT INTO test2 VALUES ('good ;
INSERT INTO test2 VALUES (too long’);
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES (too long’:varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ I S —
ok |
good |
too | | 5

0 Thechar_length  function is discussed iSection 6.4

There are two other fixed-length character types in PostgreSQL, showabie 5-5 The name type
existsonly for storage of internal catalog names and is not intended for use by the general user. Its length
is currently defined as 64 bytes (63 usable characters plus terminator) but should be referenced using the
constanNAMEDATALEN he length is set at compile time (and is therefore adjustable for special uses); the
default maximum length may change in a future release. The"type' (note the quotes) is different

from char(1) in that it only uses one byte of storage. It is internally used in the system catalogs as a
poor-man’s enumeration type.

Table 5-5. Specialty Character Types

Type Name Storage Description
"char" 1 byte single character internal type
name 64 bytes sixty-three character internal type

5.4. Binary Strings

Thebytea data type allows storage of binary strings; $able 5-6

Table 5-6. Binary String Types

Type Name Storage Description
bytea 4 bytes plus the actual binary |Variable (not specifically limited
string length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters strings
by two characteristics: First, binary strings specifically allow storing octets of zero value and other “non-
printable” octets. Second, operations on binary strings process the actual bytes, whereas the encoding and
processing of character strings depends on locale settings.

When enterindgpytea values, octets of certain valuesistbe escaped (but all octet valuaaybe escaped)

when used as part of a string literal in an SQL statement. In general, to escape an octet, it is converted
into the three-digit octal number equivalent of its decimal octet value, and preceded by two backslashes.
Some octet values have alternate escape sequences, as sfableib-7
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Table 5-7.bytea Literal Escaped Octets

Decimal Octet Description Input Escaped Example Printed Result
Value Representation
0 zero octet '\\000’ SELECT 000

"\\000"::bytea;

39 single quote '\ or’\\o47’ SELECT ’
'\"::bytea;
92 backslash A or SELECT \
'\\134’ \W::bytea;

Note that the result in each of the example3able 5-7was exactly one octet in length, even though the
output representation of the zero octet and backslash are more than one chayagteioutput octets

are also escaped. In general, each “non-printable” octet decimal value is converted into its equivalent
three digit octal value, and preceded by one backslash. Most “printable” octets are represented by their
standard representation in the client character set. The octet with decimal value 92 (backslash) has a
special alternate output representation. Details alabie 5-8

Table 5-8.bytea Output Escaped Octets

Decimal Octet Description Output Escaped [Example Printed Result
Value Representation
92 backslash \ SELECT \

"\\134"::bytea;

0to 31 and 127 to [‘non-printable” ### (octal SELECT 001
255 octets value) "\001'::bytea;
3210126 “printable” octets |ASCII SELECT ~

representation "\176"::bytea;

To use thebytea escaped octet notation, string literals (input strings) must contain two backslashes
because they must pass through two parsers in the PostgreSQL server. The first backslash is interpreted
as an escape character by the string-literal parser, and therefore is consumed, leaving the characters that
follow. The remaining backslash is recognized by ithtea input function as the prefix of a three digit

octal value. For example, a string literal passed to the backeidas becomed001’ after passing

through the string-literal parser. Th@0o1' is then sentto theytea inputfunction, where itis converted

to a single octet with a decimal value of 1.

For a similar reason, a backslash must be input\is  (or’\134° ). The first and third backslashes

are interpreted as escape characters by the string-literal parser, and therefore are consumed, leaving two
backslashes in the string passed to a input function, which interprets them as representing a
single backslash. For example, a string literal passed to the serWdt as becomes\'  after passing

through the string-literal parser. The is then sent to theytea input function, where it is converted

to a single octet with a decimal value of 92.

A single quote is a bit different in that it must be input\as (or’\047' ), notas\\" . Thisis because,
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while the literal parser interprets the single quote as a special character, and will consume the single
backslash, théytea input function doesiot recognize a single quote as a special octet. Therefore a
string literal passed to the backend\as becomes’ after passing through the string-literal parser. The

" is then sent to theytea input function, where it is retains its single octet decimal value of 39.

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms of
escaping and unescapibgtea strings. For example, you may also have to escape line feeds and carriage
returns if your interface automatically translates these. Or you may have to double up on backslashes if
the parser for your language or choice also treats them as an escape character.

The SQL standard defines a different binary string type, ca@ledBor BINARY LARGE OBJECTThe
input format is different compared toytea , but the provided functions and operators are mostly the
same.

5.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, showabie 5-9

Table 5-9. Date/Time Types

Type Description Storage Earliest Latest Resolution
timestamp [ both date and (8 bytes 4713 BC AD 1465001 |1 microsecond
(p) 11 time 14 digits
without time

zone |

timestamp [ both date and (8 bytes 4713 BC AD 1465001 1 microsecond
(p) 1 with time 14 digits

time zone

interval [ time intervals 12 bytes -178000000 178000000 1 microsecond
(p) ] years years

date dates only 4 bytes 4713 BC 32767 AD 1 day

time [ ( p) ] timesofday [8bytes 00:00:00.00 23:59:59.99 1 microsecond
[ without only

time zone ]

time [ ( p) ] timesofday |12 bytes 00:00:00.00+12[23:59:59.99-12 [1 microsecond
with time only

zone

time , timestamp , andinterval  accept an optional precision valpewhich specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range op is from 0 to 6 for theimestamp andinterval  types.

Note: When timestamp values are stored as double precision floating-point numbers (currently the
default), the effective limit of precision may be less than 6, since timestamp values are stored as
seconds since 2000-01-01. Microsecond precision is achieved for dates within a few years of 2000-
01-01, but the precision degrades for dates further away. When timestamps are stored as eight-byte
integers (a compile-time option), microsecond precision is available over the full range of values.
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For thetime types, the allowed range pfis from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900'’s, but continue to be prone
to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide output time-
zone support, and these systems usually contain information for only the time period 1902 through 2038
(corresponding to the full range of conventional Unix system tinmagstamp with time zone and

time with time zone will use time zone information only within that year range, and assume that
times outside that range are in UTC.

The typetime with time zone is defined by the SQL standard, but the definition exhibits proper-
ties which lead to questionable usefulness. In most cases, a combinatiate gftime , timestamp
without time zone  andtimestamp with time zone should provide a complete range of date/time
functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are discour-
aged from using these types in new applications and are encouraged to move any old ones over when
appropriate. Any or all of these internal types might disappear in a future release.

5.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1ISO 8601, SQL-compatible,
traditional PostgreSQL, and others. For some formats, ordering of month and day in date input can be am-
biguous and there is support for specifying the expected ordering of these fields. The cogfnabdt-

eStyle TO 'US’ or SET DateStyle TO 'NonEuropean’ specifies the variant “month before day”,

the comman®&ET DateStyle TO 'European’ sets the variant “day before month”.

PostgreSQL is more flexible in handling date/time than the SQL standard requireSpsaedix Afor
the exact parsing rules of date/time input and for the recognized text fields including months, days of the
week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 1.1.2.4or more information. SQL requires the following syntax

type [ (p) ]’ value'’
wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specifiedrfar , timestamp , andinterval  types.

5.5.1.1. Dates
Table 5-10shows some possible inputs for tege type.

Table 5-10. Date Input

Example Description
January 8, 1999 unambiguous
1999-01-08 ISO-8601 format, preferred
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Example Description

1/8/1999 U.S.; read as August 1 in European mode
8/1/1999 European; read as August 1 in U.S. mode
1/18/1999 U.S.; read as January 18 in any mode
19990108 ISO-8601 year, month, day

990108 ISO-8601 year, month, day

1999.008 iyear and day of year

99008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

5.5.1.2. Times

Thetime type can be specified asne or astime without time zone . The optional precisiomp

should be between 0 and 6, and defaults to the precision of the input time literal.

Table 5-11shows the validime inputs.

Table 5-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:.05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
allballs same as 00:00:00

The typetime with time zone accepts all input also legal for thieme type, appended with a legal
time zone, as shown ifable 5-12

Table 5-12. Time With Time Zone Input

Example Description
04:05:06.789-8 ISO 8601
04:05:06-08:00 ISO 8601
04:05-08:00 ISO 8601
040506-08 ISO 8601

Refer toTable 5-13or more examples of time zones.
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5.5.1.3. Time stamps

The time stamp types argmestamp [ ( p) ] without time zone and timestamp [ ( p) ]
with time zone . Writing justtimestamp is equivalent taimestamp without time zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone . This was changed for SQL spec compliance.

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. (Séable 5-13) Thus

1999-01-08 04:05:06
and
1999-01-08 04:05:06 -8:00
are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

The optional precisiop should be between 0 and 6, and defaults to the precision of thetimgatamp
literal.

Fortimestamp without time zone , any explicit time zone specified in the input is silently ignored.
That is, the resulting date/time value is derived from the explicit date/time fields in the input value, and is
not adjusted for time zone.

Fortimestamp with time zone , the internally stored value is always in UTC (GMT). An input value
that has an explicit time zone specified is converted to UTC using the appropriate offset for that time
zone. If no time zone is stated in the input string, then it is assumed to be in the time zone indicated by
the system’SimeZone parameter, and is converted to UTC using the offset fofrtineZone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the current
TimeZone zone, and displayed as local time in that zone. To see the time in another time zone, either
changeTimeZone or use theAT TIME ZONEconstruct (se&ection 6.8.3

Conversions betwedimestamp without time zone andtimestamp with time zone normally
assume that thémestamp without time zone value should be taken or given @sneZone local
time. A different zone reference can be specified for the conversion ASINGME ZONE

Table 5-13. Time Zone Input

Time Zone Description

PST Pacific Standard Time
-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST
-8 ISO-8601 offset for PST
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5.5.1.4. Intervals

interval  values can be written with the following syntax:

Quantity Unit [Quantity Unit...] [Direction]
@ Quantity Unit [Quantity Unit...] [Direction]

where:Quantity is a number (possibly signed)nit is second , minute , hour , day, week, month ,
year , decade , century , millennium , or abbreviations or plurals of these unifstection  can be
ago or empty. The at sign@ is optional noise. The amounts of different units are implicitly added up
with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-
ample,’1 12:59:10° is read the same &b day 12 hours 59 min 10 sec’

The optional precisiop should be between 0 and 6, and defaults to the precision of the input literal.

5.5.1.5. Special values

The following SQL-compatible functions can be used as date or time values for the corresponding data
type: CURRENT_DATECURRENT_TIMECURRENT_TIMESTAMHM he latter two accept an optional preci-
sion specification. (See al8ection 6.8.9

PostgreSQL also supports several special date/time input values for convenience, as Stadoh5a14

The valuesnfinity and-infinity are specially represented inside the system and will be displayed
the same way; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read.

Table 5-14. Special Date/Time Inputs

Input string Description

epoch 1970-01-01 00:00:00+00 (Unix system time zero)

infinity later than all other timestamps (not available for
typedate )

-infinity earlier than all other timestamps (not available for
typedate )

now current transaction time

today midnight today

tomorrow midnight tomorrow

yesterday midnight yesterday

zulu ,allballs ,z 00:00:00.00 GMT

5.5.2. Date/Time Output

Output formats can be set to one of the four styles ISO 8601, SQL (Ingres), traditional PostgreSQL, and
German, using th8ET DateStyle . The default is the ISO format. (The SQL standard requires the use
of the ISO 8601 format. The name of the “SQL" output format is a historical accideatily 5-15hows
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examples of each output style. The output ofdaee andtime types is of course only the date or time
part in accordance with the given examples.

Table 5-15. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
PostgreSQL original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

The SQL style has European and non-European (U.S.) variants, which determines whether month follows
day or vice versa. (Se®ection 5.5.%or how this setting also affects interpretation of input valu€able
5-16shows an example.

Table 5-16. Date Order Conventions

Style Specification Description Example
European day /month /year 17/12/1997 15:37:16.00 MET
us month /day /year 12/17/1997 07:37:16.00 PST

interval  output looks like the input format, except that units likeek or century are converted to
years and days. In ISO mode the output looks like

[ Quantity Units [ ... ] ] [ Days ] Hours:Minutes [ ago ]

The date/time styles can be selected by the user usin§EReDATESTYLEcommand, thelatestyle
parameter in th@ostgresgl.conf configuration file, and theGDATESTYLENvironment variable on
the server or client. The formatting functiam char  (seeSection 6.7 is also available as a more flexible
way to format the date/time output.

5.5.3. Time Zones

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

- Although thedate type does not have an associated time zonetjrtiee type can. Time zones in the
real world can have no meaning unless associated with a date as well as a time since the offset may
vary through the year with daylight-saving time boundaries.

- The default time zone is specified as a constant integer offset from GMT/UTC. It is not possible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We recommendt using the typeime with time zone (though it is supported by
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PostgreSQL for legacy applications and for compatibility with other SQL implementations). PostgreSQL
assumes your local time zone for any type containing only date or time. Further, time zone support is
derived from the underlying operating system time-zone capabilities, and hence can handle daylight-
saving time and other expected behavior.

PostgreSQL obtains time-zone support from the underlying operating system for dates between 1902 and
2038 (near the typical date limits for Unix-style systems). Outside of this range, all dates are assumed to
be specified and used in Universal Coordinated Time (UTC).

All dates and times are stored internally in UTC, traditionally known as Greenwich Mean Time (GMT).
Times are converted to local time on the database server before being sent to the client frontend, hence by
default are in the server time zone.

There are several ways to select the time zone used by the server:

- The Tz environment variable on the server host is used by the server as the default time zone, if no
other is specified.

« Thetimezone configuration parameter can be sepastgresgl.conf

- ThePGTZenvironment variable, if set at the client, is used by libpq applications to s&i&d aTIME
ZONEcommand to the server upon connection.

« The SQL comman®&ET TIME ZONEsets the time zone for the session.

Note: If an invalid time zone is specified, the time zone becomes UTC (on most systems anyway).

Refer toAppendix Afor a list of available time zones.

5.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption that
the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

5.6. Boolean Type

PostgreSQL provides the standard SQL tgpelean . boolean can have one of only two states: “true”
or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:
TRUE
iy
'true’
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[NE]

y
yes
T

il 1

For the “false” state, the following values can be used:

FALSE
yfl
‘false’
n
no
0

)

) )

Using the key word§RUEandFALSE s preferred (and SQL-compliant).

Example 5-2. Using theboolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’'sic est);
INSERT INTO testl VALUES (FALSE, 'non est);
SELECT * FROM testl;

a | b

[ S —

t | sic est

f | non est

SELECT * FROM testl WHERE a;
a | b
R S —

t | sic est

Example 5-Zhows thaboolean values are output using the letterandf .

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval AS
integer)  does not work). This can be accomplished using the CASEexpression: CASE WHEMoolval
THEN ‘value if true’ ELSE ‘value if false’ END . See also Section 6.12.

boolean uses 1 byte of storage.

5.7. Geometric Types

Geometric data types represent two-dimensional spatial objesitée 5-17shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.
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Geometric Type Storage Representation Description

Table 5-17. Geometric Types

Geometric Type Storage Representation Description

point 16 bytes (x,y) Point in space

line 32 bytes ((x1,y1),(x2,y2)) Infinite line (not fully
implemented)

Iseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment

box 32 bytes ((x1,y1),(x2,y2)) Rectangular box

path 16+16n bytes ((x1,y1),...) Closed path (similar to
polygon)

path 16+16n bytes [(x1,y1),...] Open path

polygon 40+16n bytes ((x1,y1),...) Polygon (similar to
closed path)

circle 24 bytes <(X,y),r> Circle (center and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explairiekiton 6.9

5.7.1. Point

Points are the fundamental two-dimensional building block for geometric tgpies. is specified using
the following syntax:

where the arguments are

the x-axis coordinate as a floating-point number

the y-axis coordinate as a floating-point number

5.7.2. Line Segment

Line segmentsigeg ) are represented by pairs of pointeg is specified using the following syntax:
(Cx1, yl),( x2,vy2))

(x1, yl),( x2, y2)
x1 , y1 X2, y2
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where the arguments are

(x1,y1)
(x2,y2)

the end points of the line segment

5.7.3. Box
Boxes are represented by pairs of points that are opposite corners of thekds.specified using the

following syntax:

(C x>, vy1),( x2,vy2))
(x1, yl),( x2, y2)
x1, yl1 X2, y2

where the arguments are

(x1,y1)
(x2,y2)

opposite corners of the box

Boxes are output using the first syntax. The corners are reordered on input to store the upper right corner,
then the lower left corner. Other corners of the box can be entered, but the lower left and upper right
corners are determined from the input and stored corners.

5.7.4. Path

Paths are represented by connected sets of points. Paths operp&here the first and last points in
the set are not connected, acldsed where the first and last point are connected. Functpopsn(p)
andpclose(p) are supplied to force a path to be open or closed, and funcikopsen(p) andis-
closed(p) are supplied to test for either type in a query.

path is specified using the following syntax:

(Cxxt, y1), ... ( xn ., yn))
[Cx1, y1), ... ( xn ., yn )]
(x¥, y1), .., ( Xn , yn )
(x1, y1 , e xn , yn )
x1 , yl y e Xn , yn

where the arguments are
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(x.y)
End points of the line segments comprising the path. A leading square brarkaditates an open
path, while a leading parenthesi{g (ndicates a closed path.

Paths are output using the first syntax.

5.7.5. Polygon

Polygons are represented by sets of points. Polygons should probably be considered equivalent to closed
paths, but are stored differently and have their own set of support routines.

polygon is specified using the following syntax:

(C x1, y1), ... ( xn ., yn))
(xxt, y1), .., ( xn , yn )
(x1, y1 Xn , yn )
x1 , vyl Xn , yn

where the arguments are

(x.y)
End points of the line segments comprising the boundary of the polygon

Polygons are output using the first syntax.

5.7.6. Circle
Circles are represented by a center point and a radiae  is specified using the following syntax:
<(xX,vy), r >
(Cx,y), r)
(x,y),r
X,y , I

where the arguments are

(xy)
center of the circle
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radius of the circle

Circles are output using the first syntax.

5.8. Network Address Data Types

PostgreSQL offers data types to store IP and MAC addresses, shdahlan5-18 It is preferable to use
these types over plain text types, because these types offer input error checking and several specialized
operators and functions.

Table 5-18. Network Address Data Types

Name Storage Description Range

cidr 12 bytes IP networks wvalid IPv4 networks

inet 12 bytes IP hosts and networks valid IPv4 hosts or
networks

macaddr 6 bytes MAC addresses customary formats

IPV6 is not yet supported.

5.8.1. inet

Theinet type holds an IP host address, and optionally the identity of the subnet it is in, all in one field.
The subnet identity is represented by the number of bits in the network part of the address (the “netmask”).
If the netmask is 32, then the value does not indicate a subnet, only a single host. Note that if you want to
accept networks only, you should use ti@r type rather thaiet .

The input format for this type ig.x.x.x/ly wherex.x.x.x is an IP address andis the number of
bits in the netmask. If thly part is left off, then the netmask is 32, and the value represents just a single
host. On display, théy portion is suppressed if the netmask is 32.

5.8.2. cidr

Thecidr type holds an IP network specification. Input and output formats follow Classless Internet Do-
main Routing conventions. The format for specifying classless netwoxks.isx/y wherex.x.X.x

is the network ang is the number of bits in the netmask.fis omitted, it is calculated using assump-
tions from the older classful numbering system, except that it will be at least large enough to include all
of the octets written in the input.

Table 5-19shows some examples.
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CIDR Input CIDR Displayed abbrev (CIDR)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

5.8.3. inet Vs cidr

The essential difference betweieat andcidr data types is thabet

to the right of the netmask, whereadr does not.

Tip: If you do not like the output format for inet

functions.

5.8.4. macaddr

The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

'08002b:010203’
'08002b-010203’
'0800.2b01.0203’
'08-00-2b-01-02-03'
'08:00:2h:01:02:03’

or cidr

accepts values with nonzero bits

values, try the host (), text (), and abbrev ()

which would all specify the same address. Upper and lower case is accepted for tha thgitsghf .
Output is always in the last of the shown forms.

The directorycontrib/mac

MAC addresses to hardware manufacturer names.

in the PostgreSQL source distribution contains tools that can be used to map
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5.9. Bit String Types

Bit strings are strings of 1's and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types:BIT( n) andBIT VARYING(n), wheren is a positive integer.

BIT type data must match the lengthexactly; it is an error to attempt to store shorter or longer bit
strings.BIT VARYING data is of variable length up to the maximum lengthlonger strings will be
rejected. WritingBIT without a length is equivalent tBIT(1) , while BIT VARYING without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to BIT( n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
BIT VARYING(n), it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, BIT data was always silently truncated or zero-padded on the right,
with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 1.1.2.2or information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; s&®apter 6

Example 5-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B’00);

INSERT INTO test VALUES (B'10’, B'101’);

ERROR: Bit string length 2 does not match type BIT(3)
INSERT INTO test VALUES (B’10:bit(3), B'101");
SELECT * FROM test;

a | b
_____ SR
101 | 00
100 | 101

5.10. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Also, an OID system column is added to user-created tables (UunM@s8OUT OIDSs specified at table
creation time). Typeid represents an object identifier. There are also several aliaseid foregproc
regprocedure , regoper ,regoperator ,regclass , andregtype . Table 5-20shows an overview.

Theoid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide unigueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.
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Theoid type itself has few operations beyond comparison (which is implemented as unsigned compari-
son). It can be cast to integer, however, and then manipulated using the standard integer operators. (Beware
of possible signed-versus-unsigned confusion if you do this.)

Theoid alias types have no operations of their own except for specialized input and output routines. These
routines are able to accept and display symbolic names for system objects, rather than the raw numeric
value that typeoid would use. The alias types allow simplified lookup of OID values for objects: for
example, one may writénytable’::regclass to get the OID of tablenytable , rather tharSELECT

oid FROM pg_class WHERE relname = 'mytable’ . (In reality, a much more complicat&ELECT

would be needed to deal with selecting the right OID when there are multiple tables namabtk in

different schemas.)

Table 5-20. Object Identifier Types

Type name References Description Value example
oid any numeric object identifier564182
regproc pg_proc function name sum
regprocedure pg_proc function with argument |sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument [¥(integer,integer)
types or -(NONE,integer)
regclass pg_class relation name pg_type
regtype pg_type type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified hames on
output if the object would not be found in the current search path without being qualifiededgrec
andregoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most usesegprocedure  or regoperator  iS more appropriate. Faegoperator

unary operators are identified by writingDNEfor the unused operand.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that they are unique. Recommended practice when using OIDs for
row identification is to create a unique constraint on the OID column of each table for which the OID will

be used. Never assume that OIDs are unique across tables; use the combingiitevidf and row

OID if you need a database-wide identifier. (Future releases of PostgreSQL are likely to use a separate
OID counter for each table, so thableoid  mustbe included to arrive at a globally unique identifier.)

Another identifier type used by the systemxig , or transaction (abbreviated xact) identifier. This is

the data type of the system columxsin andxmax. Transaction identifiers are 32-bit quantities. In a
long-lived database it is possible for transaction IDs to wrap around. This is not a fatal problem given
appropriate maintenance procedures; se@tstgreSQL Administrator's Guider details. However, it is
unwise to depend on uniqueness of transaction IDs over the long term (more than one billion transactions).

A third identifier type used by the systentid , or command identifier. This is the data type of the system
columnscmin andcmax. Command identifiers are also 32-bit quantities. This creates a hard limit of 2
(4 billion) SQL commands within a single transaction. In practice this limit is not a problem --- note that
the limit is on number of SQL commands, not number of tuples processed.
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A final identifier type used by the systemtidg , or tuple identifier. This is the data type of the system
columnctid . A tuple ID is a pair (block number, tuple index within block) that identifies the physical
location of the tuple within its table.

5.11. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-typesA pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL daftetylees-21

lists the existing pseudo-types.

Table 5-21. Pseudo-Types

Type name Description

record Identifies a function returning an unspecified rov
type

any Indicates that a function accepts any input data type
whatever

anyarray Indicates that a function accepts any array data type

void Indicates that a function returns no value

trigger A trigger function is declared to retutrigger

language_handler A procedural language call handler is declared tp

returnlanguage_handler

cstring Indicates that a function accepts or returns a
null-terminated C string

internal Indicates that a function accepts or returns a
server-internal data type

opaque /An obsolete type name that formerly served all the
above purposes

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and
allow onlyvoid as a result type (plusigger  when the function is used as a trigger).

Theinternal ~ pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in a SQL query. If a function has at leagtoae  -type
argument then it cannot be called from SQL. To preserve the type safety of this restriction it is important
to follow this coding rule: do not create any function that is declared to réttsimal  unless it has at

least onenternal  argument.
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5.12. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in type or user-defined type can be created. To illustrate their use, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer[],
schedule text[ll]

);

As shown, an array data type is named by appending square bragketwo (the data type name of
the array elements. The above command will create a table nashasinp with columns including a
text string (hame), a one-dimensional array of tyjpegeger  (pay_by_quarter ), which represents the
employee’s salary by quarter, and a two-dimensional arragxof (schedule ), which represents the
employee’s weekly schedule.

Now we do someNSERTs. Observe that to write an array value, we enclose the element values within
curly braces and separate them by commas. If you know C, this is not unlike the syntax for initializing
structures. (More details appear below.)

INSERT INTO sal_emp
VALUES ('Bill’,
’{10000, 10000, 10000, 10000},
{{"meeting"”, "lunch"}, {}});

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000},
{{"talk", "consult"}, {"'meeting"}});

Now, we can run some queries sal_emp . First, we show how to access a single element of an array at
a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array @fements starts witarray[l] and ends
with array[ n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;
pay_by_quarter

10000
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25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing lower-bound : upper-bound for one or more array dimensions. This query retrieves the first
item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1]] FROM sal_emp WHERE name = 'Bill’;

schedule

{{meeting},{""}}
(1 row)

We could also have written
SELECT schedule[1:2][1] FROM sal_emp WHERE name = 'Bill’;

with the same result. An array subscripting operation is taken to represent an array slice if any of the
subscripts are written in the forfower : upper . A lower bound of 1 is assumed for any subscript where
only one value is specified.

An array value can be replaced completely:

UPDATE sal_emp SET pay_by quarter = '{25000,25000,27000,27000}
WHERE name = ’'Carol’;

or updated at a single element:

UPDATE sal_emp SET pay_by quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by quarter[1:2] = '{27000,27000}
WHERE name = ’'Carol’;

An array can be enlarged by assigning to an element adjacent to those already present, or by assigning to
a slice that is adjacent to or overlaps the data already present. For example, if an array value currently has
4 elements, it will have five elements after an update that assignsay@] . Currently, enlargementin

this fashion is only allowed for one-dimensional arrays, not multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign tarray[-2:7] to create an array with subscript values running from -2 to 7.

The syntax folCREATE TABLRllows fixed-length arrays to be defined:

CREATE TABLE tictactoe (
squares integer[3][3]

);
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However, the current implementation does not enforce the array size limits --- the behavior is the same as
for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either. Arrays
of a particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring number of dimensions or siz€RIBATE TABLHS simply documentation, it

does not affect runtime behavior.

The current dimensions of any array value can be retrieved witarthg dims  function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

2]
(1 row)

array_dims produces #&xt result, which is convenient for people to read but perhaps not so convenient
for programs.

To search for a value in an array, you must check each value of the array. This can be done by hand (if
you know the size of the array):

SELECT * FROM sal_emp WHERE pay_by quarter[l] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. Although it is not part of the primary PostgreSQL distribution, there is an extension available
that defines new functions and operators for iterating over array values. Using this, the above query could
be:

SELECT * FROM sal emp WHERE pay_by_quarter[1:4] *= 10000;

To search the entire array (not just specified columns), you could use:
SELECT * FROM sal_emp WHERE pay_by_quarter *= 10000;

In addition, you could find rows where the array had all values equal to 10 000 with:
SELECT * FROM sal_emp WHERE pay_by quarter **= 10000;

To install this optional module, look in thentrib/array directory of the PostgreSQL source distribu-
tion.

Tip: Arrays are not sets; using arrays in the manner described in the previous paragraph is often a
sign of database misdesign. The array field should generally be split off into a separate table. Tables
can obviously be searched easily.
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Note: A limitation of the present array implementation is that individual elements of an array cannot be
SQL null values. The entire array can be set to null, but you can’t have an array with some elements
null and some not. Fixing this is on the to-do list.

Array input and output syntax. The external representation of an array value consists of items that
are interpreted according to the 1/0 conversion rules for the array’s element type, plus decoration that
indicates the array structure. The decoration consists of curly bracasd(} ) around the array value

plus delimiter characters between adjacent items. The delimiter character is usually a ¢Qrbotaén

be something else: it is determined by thpdelim  setting for the array’s element type. (Among the
standard data types provided in the PostgreSQL distribution,typeuses a semicolon | but all the

others use comma.) In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same level.
You may write whitespace before a left brace, after a right brace, or before any individual item string.
Whitespace after an item is not ignored, however: after skipping leading whitespace, everything up to the
next right brace or delimiter is taken as the item value.

Quoting array elements. As shown above, when writing an array value you may write double quotes
around any individual array element. Yowstdo so if the element value would otherwise confuse the
array-value parser. For example, elements containing curly braces, commas (or whatever the delimiter
character is), double quotes, backslashes, or leading white space must be double-quoted. To put a double
quote or backslash in an array element value, precede it with a backslash. Alternatively, you can use
backslash-escaping to protect all data characters that would otherwise be taken as array syntax or ignorable
white space.

The array output routine will put double quotes around element values if they are empty strings or contain
curly braces, delimiter characters, double quotes, backslashes, or white space. Double quotes and back-
slashes embedded in element values will be backslash-escaped. For numeric data types it is safe to assume
that double quotes will never appear, but for textual data types one should be prepared to cope with either
presence or absence of quotes. (This is a change in behavior from pre-7.2 PostgreSQL releases.)

Tip: Remember that what you write in an SQL command will first be interpreted as a string literal, and
then as an array. This doubles the number of backslashes you need. For example, to insert a text
array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES ({"W\","\"});

The string-literal processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\","\""} . In turn, the strings fed to the text data type’s input routine become \
and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get
one backslash into the stored array element.)
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PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described iRdstgreSQL Programmer’s Guid&he psq|l
commandsdf and\do can be used to show the list of all actually available functions and operators,
respectively.

If you are concerned about portability then take note that most of the functions and operators described in
this chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly

marked functions, are not specified by the SQL standard. Some of this extended functionality is present
in other SQL implementations, and in many cases this functionality is compatible and consistent between
various products.

6.1. Logical Operators

The usual logical operators are available:

AND

OR

NOT
SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the following
truth tables:
a b a AND b a ORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

6.2. Comparison Operators

The usual comparison operators are available, showalite 6-1
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Table 6-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<> 0r!= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison operators are
binary operators that return values of tymlean ; expressions like < 2 < 3 are not valid (because
there is no< operator to compare a Boolean value wajh

In addition to the comparison operators, the speRfafWEENONstruct is available.
a BETWEENx ANDYy
is equivalent to
a >=x ANDa <=y
Similarly,
a NOT BETWEEM ANDy
is equivalent to
a<x ORa >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite the
first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do notwrite expression = NULL becaus&ULL is not “equal to”"NULL (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)
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Some applications may (incorrectly) require tlapression = NULL returns true ifexpression
evaluates to the null value. To support these applications, the run-time eptisform_null_equals
can be turned on (e.gSET transform_null_equals TO ON; ). PostgreSQL will then convert =

NULLclauses tx IS NULL. This was the default behavior in releases 6.5 through 7.1.

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar t&8 NULL in that they will always return true or false, never a null value, even when
the operand is null. A null input is treated as the logical value “unknown”.

6.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common mathemat-
ical conventions for all possible permutations (e.g., date/time types) we describe the actual behavior in
subsequent sections.

Table 6-2shows the available mathematical operators.

Table 6-2. Mathematical Operators

Name Description Example Result

+ addition 2+3 5

- subtraction 2-3 -1

* multiplication 2*3 6

/ division (integer division4 / 2 2
truncates results)

% modulo (remainder) 5% 4 1

A exponentiation 2.0"3.0 3

|/ square root |/ 25.0 5

I/ cube root ||/ 27.0 3

! factorial 5! 120

1! factorial (prefix operator)! 5 120

@ absolute value @ -5.0 5

& binary AND 91 & 15 11

| binary OR 32|3 35

# binary XOR 17#5 20

~ binary NOT ~1 -2

<< binary shift left 1<<4 16
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Name

Description

Example

Result

>>

binary shift right

8 >> 2

2

The “binary” operators are also available for the bit string typ&s andBIT VARYING, as shown in
Table 6-3 Bit string arguments t@&, | , and# must be of equal length. When bit shifting, the original
length of the string is preserved, as shown in the table.

Table 6-3. Bit String Binary Operators

Example Result
B’10001' & B'01101’ 00001
B’10001' | B'01101’ 11101
B'10001’ # B'01101’ 11110
~ B’10001’ 01110
B'10001' << 3 01000
B'10001" >> 2 00100

Table 6-4shows the available mathematical functions. In the tadpgeindicatesdouble precision
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same datatype as its argument. The functions working with
data are mostly implemented on top of the host system’s C library; accuracy and
behavior in boundary cases may therefore vary depending on the host system.

double precision

Table 6-4. Mathematical Functions

15

Function Return Type Description Example Result
abs (X) (same ax) absolute value abs(-17.4) 17.4
cbrt (dp) dp cube root cbrt(27.0) 3
ceil (dp or (same as input)  |smallest integer noteil(-42.8) -42
numeric ) less than argument
degrees (dp) dp radians to degrees|degrees(0.5) 28.6478897565412
exp (dp or (same as input)  [exponential exp(1.0) 2.71828182845904
numeric )
floor (dp or (same as input)  [largest integer not floor(-42.8) -43
numeric ) greater than
argument
In (dp or numeric ) |(same as input)  |natural logarithm [n(2.0) 0.69314718055994
log (dp or (same as input)  |base 10 logarithm [og(100.0) 2
numeric )
log (b numeric , X |[numeric logarithm to basé [log(2.0, 64.0) 6.0000000000
numeric )
mod(y , X) (same as argumentremainder ofy/x ~ mod(9,4) 1

types)
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18

Function Return Type Description Example Result
pi () dp “Pi” constant pi() 3.14159265358979
pow(X dp,edp) |dp raise a number to [pow(9.0, 3.0) 729
exponene
pow(X numeric , e [numeric raise a number to [pow(9.0, 3.0) 729
numeric ) exponene
radians (dp) dp degrees to radians [radians(45.0) 0.78539816339744
random () dp random value random()
between 0.0 and 1.0
round (dp or (same as input)  round to nearest round(42.4) 42
numeric ) integer
round (Vv numeric , [numeric round tos decimal [round(42.4382, 42.44
S integer ) places 2)
sign (dp or (same as input)  |sign of the sign(-8.4) -1
numeric ) argument (-1, 0, +1
sqrt (dp or (same as input)  [square root sqrt(2.0) 1.4142135623731
numeric )
trunc (dp or (same as input)  ftruncate toward  ftrunc(42.8) 42
numeric ) zero
trunc (v numeric , numeric truncate tos trunc(42.4382, 42.43

S integer )

2)

decimal places

Finally, Table 6-5shows the available trigonometric functions. All trigonometric functions take arguments
and return values of typdouble precision

Table 6-5. Trigonometric Functions

Function Description

acos (x) inverse cosine

asin (X) inverse sine

atan (X) inverse tangent
atan2 (X,Y) inverse tangent of /y
cos (X) cosine

cot (X) cotangent

sin (X) sine

tan (X) tangent
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6.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typ€HARACTERCHARACTER VARYINGNd TEXT. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using Gl@ARACTERype. Generally, the functions described

here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details afi@bie 6-6 These functions are also implemented using the
regular syntax for function invocation. (Séable 6-7)

Table 6-6. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String 'Post’ || PostgreSQL
string concatenation 'greSQL’
bit_length  (string fintgger Number of bits in  it_length(’jose’) 32

string
char_length  (stringinteyer Number of char_length(’jose’) 4
or charac- characters in string

ter_length  (string| )

convert (string text Change encoding convert('PostgreSQL[PostgreSQL’  in
usingconver- using specified using Unicode (UTF-8)
sion_name ) conversion hame. jiso_8859 1 to_utf 8gncoding

Conversions can be
defined byCREATE
CONVERSIONAIso
there are some
pre-defined
conversion names.
SeeTable 6-8for
available
conversion names.

lower (string ) [text Convert stringto  [lower(TOM’) tom
lower case
octet_length  (strifigteger Number of bytes injoctet_length(jose’) 14
string
overlay (string text Insert substring  |overlay(Txxxxas’ [Thomas
placingstring placing 'hom’
frominteger [for from 2 for 4)
integer ])
position  (substringnteger Location of position(om’ 3
instring ) T specified substringin 'Thomas’)
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Function Return Type Description Example Result
substring  (string [text Extract substring |substring(Thomas’ jhom
[from integer ] from 2 for 3)
[for integer )
substring  (string fext Extract substring substring(Thomas’ |mas
from pattern ) matching POSIX from '...$)

regular expression
substring  (string [text Extract substring [substring(Thomas’ oma
from pattern  for matching SQL from
escape ) regular expression [%#"o_a#" ' for

)

trim ([leading| fext Remove the trim(both ’x’ Tom
trailing | both] longest string from 'xTomxx’)
[characters ] containing only the
fromstring ) characters (a

space by default)

from the

beginning/end/both

ends of the

string
upper (string ) [text Convert stringto  jupper(‘tom’) TOM

upper case

Additional string manipulation functions are available and are listékhbile 6-7 Some of them are used
internally to implement the SQL-standard string functions listetable 6-6

Table 6-7. Other String Functions

Function Return Type Description Example Result
ascii  (text ) integer IASCII code of the fascii(’x) 120
first character of the
argument.
btrim  (string text Remove (trim) the |ptrim(’xyxtrimyyx’,’xyJrim
text ,trim text ) longest string

consisting only of
characters irrim
from the start and
end ofstring

chr (integer ) text Character with the [chr(65) A
given ASCII code
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Function Return Type Description Example Result

convert (string fext Convert string to  convert(text_in_unicgekt, in_unicode

text dest_encoding . [UNICODE’, represented in ISO
[src_encoding The original 'LATIND’) 8859-1

name,] encoding is

dest_encoding specified by

name) src_encoding

If src_encoding
is omitted, databasge

encoding is

assumed.
decode (string bytea Decode binary datgecode('MTIzAAE=", |123\000\001
text ,type text ) from string 'base64’)

previously encoded
with encode()
Parameter type is
same as in
encode()

encode (data text Encode binary dat@ncode('123\\000\0OMTIZAAE=
bytea , type to ASCll-only 'base64’)
text ) representation.
Supported types
are: base64, hex,
escape.

initcap  (text ) text Convert first letter |initcap(hi Hi Thomas
of each word thomas’)
(whitespace
separated) to uppef

case
length (string ) |integer Length of string  |ength(jose’) 4
Ipad (string text Fill up the Ipad(’hi’, 5, xyxhi
text , length string  to length [xy)

integer [, fill length by

text ]) prepending the

characterdill  (a
space by default). If
thestring is
already longer than
length thenitis
truncated (on the
right).
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encoding name.

Function Return Type Description Example Result
Itrim  (string text Remove the Itrim(’zzzytrim’,’xyz’) {trim
text ,text text ) longest string
containing only
characters from
trim  from the start
of the string.
pg_client_encoding |narfe Current client pg_client_encoding()|SQL_ASCII

quote_ident
text)

(stringext

Return the given
string suitably

an identifier in an
SQL query string.
Quotes are added
only if necessary
(i.e., if the string
contains
non-identifier

be case-folded).
Embedded quotes
are properly
doubled.

quoted to be used as

characters or would

quote_ident(Foo’) ['Foo"

quote_literal
text)

(striegt

Return the given
string suitably

a literal in an SQL
query string.
Embedded quotes
and backslashes a
properly doubled.

quoted to be used as

quote_literal'OVReillyQ"Reilly’

repeat (text ,
integer )

text

Repeat text a
number of times

repeat(’Pg’, 4) PgPgPgPg

replace (string
text ,from text ,
to text )

text

Replace all
occurrences in
string  of
substringfrom

with substringto

replace('abcdefabcdedhXXefabXXef
'cd’, 'XX)
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Function Return Type Description Example Result
rpad (string text Fill up the rpad(hi’, 5, hixyx
text , length string  tolength [xy’)
integer [, fill length by
text 1) appending the

characterdill  (a

space by default). If

thestring is

already longer than

length thenitis

truncated.
rtrim  (string text Remove the rtrim(‘trimxxxx’,’x’) ~ {trim
text, trim  text) longest string

containing only

characters from

trim  from the end

of the string.
split_part  (string ftext Splitstring on split_part(abc~@~dede@~ghi’,~@~',2)
text , delimiter delimiter
text , column returning the
integer ) resulting (one

based)olumn

number.
strpos (string , [text Locate specified [strpos(high’,’ig’) 2
substring ) substring (same as

posi-

tion( substring

in string ), but

note the reversed

argument order)
substr (string , [text Extract specified [substr(alphabet’, |ph
from [, count ]) substring (same asjg, 2)

sub-

string(  string

from from for

count ))
to_ascii (text [, fext Converttextto  fto_ascii(Karel’) Karel
encoding ]) IASCII from other

encoding
to_hex (number fext Convertnumber to [to_hex(922337203685#itrB8t:bigint)
integer  or its equivalent
bigint ) hexadecimal

representation
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a. Theto_ascii

Function Return Type Description Example Result
trans- text Any character in franslate('12345’,  [a23x5
late (string string  that 14", ’ax’)
text ,from text , matches a character
to text ) in thefrom setis

replaced by the

corresponding

character in théo

set.
Notes:

function supports conversion fromATIN1 , LATIN2 , andWIN1250 only.

Table 6-8. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf 8 SQL_ASCII UNICODE
big5_to_euc_tw BIG5 EUC_TW
big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf_8 BIG5 UNICODE
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf 8 EUC_CN UNICODE
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf 8 EUC_JP UNICODE
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf 8 EUC KR UNICODE
euc_tw_to_big5 EUC_TW BIG5
euc_tw_to_mic EUC TW MULE_INTERNAL
euc_tw_to_utf 8 EUC_TW UNICODE
gb18030_to_utf_8 GB18030 UNICODE
gbk_to_utf 8 GBK UNICODE
iso_8859 10 to_utf 8 LATING UNICODE
iso_8859 13 to_utf 8 LATIN7 UNICODE
iso_8859 14 to_utf 8 LATINS UNICODE
iso_8859 15 to_utf 8 LATIN9 UNICODE
iso_8859 16 to_utf 8 LATIN10 UNICODE
iso_8859 1 to_mic LATINL MULE_INTERNAL
iso_8859 1 to_utf 8 LATIN1 UNICODE
iso_8859 2 to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utf 8 LATIN2 UNICODE
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Conversion Name a Source Encoding Destination Encoding
iso_8859 2 to_windows_1250 LATIN2 WIN1250
iso_8859 3 to_mic LATIN3 MULE_INTERNAL
iso_8859 3 to_utf 8 LATIN3 UNICODE
iso_8859 4 to_mic LATIN4 MULE_INTERNAL
iso_8859 4 to_utf 8 LATIN4 UNICODE
iso_8859 5 to_koi8 r ISO_8859 5 KOI8

iso_8859 5 to_mic ISO_8859 5 MULE_INTERNAL
iso_8859_5_to_utf 8 ISO_8859_5 UNICODE
iso_8859 5 to windows_ 1251 ISO 8859 5 WIN

iso_8859 5 to windows_866 ISO 8859 5 ALT
iso_8859_6_to_utf 8 ISO_8859_6 UNICODE
iso_8859_7_to_utf 8 ISO_8859_7 UNICODE
iso_8859_8 to_utf 8 ISO_8859_8 UNICODE
iso_8859 9 to_utf 8 LATINS UNICODE
johab_to_utf 8 JOHAB UNICODE

koi8 r to_iso 8859 5 KOI8 ISO_8859 5

koi8 r_to_mic KOI8 MULE_INTERNAL
koi8 r_to_utf 8 KOI8 UNICODE
koi8_r_to_windows_1251 KOI8 WIN
koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859 1 MULE_INTERNAL LATIN1
mic_to_iso_8859 2 MULE_INTERNAL LATIN2
mic_to_iso_8859 3 MULE_INTERNAL LATIN3
mic_to_iso_8859 4 MULE_INTERNAL LATIN4
mic_to_iso_8859 5 MULE_INTERNAL ISO_8859 5
mic_to_koi8_r MULE_INTERNAL KOI8

mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN
mic_to_windows_866 MULE_INTERNAL ALT
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Conversion Name a Source Encoding Destination Encoding
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf 8 SJIS UNICODE
tcvn_to utf 8 TCVN UNICODE
uhc_to_utf 8 UHC UNICODE
utf_8 to_ascii UNICODE SQL_ASCII
utf_8_to_big5 UNICODE BIG5

utf_8 to_euc_cn UNICODE EUC_CN
utf_8 to_euc_jp UNICODE EUC_JP

utf 8 to_euc_kr UNICODE EUC_KR

utf 8 to_euc_tw UNICODE EUC_TW
utf_8_to_gh18030 UNICODE GB18030
utf_8 to_gbk UNICODE GBK
utf_8_to_iso_8859 1 UNICODE LATINL
utf_8 to_iso_8859 10 UNICODE LATING

utf 8 to_iso_8859 13 UNICODE LATIN7

utf 8 _to_iso_8859 14 UNICODE LATINS
utf_8_to_iso_8859 15 UNICODE LATING

utf 8 to_iso_8859 16 UNICODE LATIN10
utf_8_to_iso_8859 2 UNICODE LATIN2
utf_8 to_iso_8859 3 UNICODE LATIN3

utf 8 to_iso_8859 4 UNICODE LATIN4

utf 8 to_iso_8859 5 UNICODE ISO_8859 5
utf_8_to_iso_8859_6 UNICODE ISO_8859_6
utf_8_to_iso_8859 7 UNICODE ISO_8859_7
utf_8_to_iso_8859_8 UNICODE ISO_8859_8
utf_8 to_iso_8859 9 UNICODE LATINS
utf_8 to_johab UNICODE JOHAB

utf 8 to_koi8_r UNICODE KOI8
utf_8_to_sijis UNICODE SJIS
utf_8_to_tcvn UNICODE TCVN
utf_8_to_uhc UNICODE UHC

utf_8 to_windows_1250 UNICODE WIN1250
utf 8 to_windows_1251 UNICODE WIN

utf 8 to_windows_1256 UNICODE \WIN1256
utf 8 to_windows_866 UNICODE ALT
utf_8_to_windows_874 UNICODE WIN874
windows_1250_to_iso_8859_2  [WIN1250 LATIN2
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Conversion Name a Source Encoding Destination Encoding
windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf 8 WIN1250 UNICODE

windows_1251 to iso 8859 5 'WIN ISO 8859 5

windows_1251 to koi8 r 'WIN KOI8

windows_1251_to_mic WIN MULE_INTERNAL

windows_1251_to_utf 8 WIN UNICODE
windows_1251_to_windows_866 [WIN ALT

windows_1256_to_utf 8 WIN1256 UNICODE

windows_866_to iso 8859 5 ALT ISO 8859 5

windows_866_to_koi8_r ALT KOI8

windows_866_to_mic ALT MULE_INTERNAL
windows_866_to_utf_8 ALT UNICODE
windows_866_to_windows_1251 |ALT WIN

windows_874_to_utf 8 WIN874 UNICODE

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores followew byfollowed by the

equally processed destination encoding name. Therefore the names might deviate from the customary
encoding names.

6.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating binary string values.
Strings in this context mean values of the tyg¢€TEA

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details aflabie 6-9 Some functions are also implemented using the
regular syntax for function invocation. (S&able 6-10)

Table 6-9. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || bytea String "\WPost'::bytea \Post'greSQL\000
string concatenation I

"\\047greSQL\\000"::hytea

octet_length  (Strifigteger Number of bytes injoctet_length('jo\\000s&’::bytea)
T binary string
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Function Return Type Description Example Result
position  (substringnteger Location of position("\\000om’::bygea
instring ) specified substring jin
'Th\\000omas'::bytea

substring  (string |ytea Extract substring [substring('Th\\000oma¥0bwtea
[from integer ] from 2 for 3)
[for integer ])
trim ([both] bytea Remove the trim(\\000"::bytea  [Tom
characters longest string from
fromstring ) containing only the\\000Tom\000’::byte@)

characters

from the

beginning/end/both

ends of the

string
get_byte (string |integer Extract byte from |get_byte( Th\\000omd©9bytea,
offset ) string. 4)
set_byte (string |ytea Set byte in string. [set_byte('Th\000omaR\0YCesas
offset 4, 64)
newvalue )
get_bit (string , [integer Extract bit from  |get_bit('Th\\000Oomast:bytea,
offset ) string. 45)
set_bit (string , |bytea Set bitin string.  set_bit('Th\000omas(TieapmAs
offset 45, 0)
newvalue )

Additional binary string manipulation functions are available and are listdalihe 6-10 Some of them
are used internally to implement the SQL-standard string functions listéahile 6-9

Table 6-10. Other Binary String Functions

Function Return Type Description Example Result

btrim  (string bytea Remove (trim) the |btrim("\\000trim\\000" thigtea, \\00O'::bytea)
bytea trim longest string

bytea ) consisting only of

characters itrim
from the start and
end ofstring
length (string ) |integer Length of binary Iength(‘jo\\OOOse‘::byfa)
string
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Function Return Type Description Example Result

encode (string text Encode binary  encode('123\\0004561 284220456
bytea , type string to 'escape’)
text ) ASCII-only
representation.
Supported types
are: base64, hex,
escape.

decode (string bytea Decode binary  |decode('123\\0004561,23\000456
text ,type text ) string from 'escape’)
string  previously|
encoded with
encode()
Parameter type is
same as in
encode()

6.6. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL.: the traditional SQL
LIKE operator, the more recent SQLSMILAR TO operator, and POSIX-style regular expressions. Ad-
ditionally, a pattern matching functioBUBSTRING is available, using either SQL99-style or POSIX-style
regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

6.6.1. LIKE

string LIKE pattern [ESCAPE escape-character ]
string NOT LIKE pattern  [ESCAPE escape-character ]

Everypattern defines a set of strings. ThéKE expression returns true if thegring  is contained in
the set of strings representedbgttern . (As expected, thBIOT LIKE expression returns falselifkKE
returns true, and vice versa. An equivalent expressiolOis (string  LIKE pattern ).)

If pattern  does not contain percent signs or underscore, then the pattern only represents the string itself;
in that caseLIKE acts like the equals operator. An undersconeirf pattern  stands for (matches) any
single character; a percent sig atches any string of zero or more characters.

Some examples:

‘abc’ LIKE 'abc’ true
‘abc’ LIKE 'a%’ true
‘abc’ LIKE '_b’ true
‘abc’ LIKE ¢’ false
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LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern  must be preceded by the escape character. The default escape character is the backslash but
a different one may be selected by using H®CAPEclause. To match the escape character itself, write

two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant that
contains a backslash you must write two backslashes in the query. Thus, writing a pattern that actually

matches a literal backslash means writing four backslashes in the query. You can avoid this by selecting

a different escape character wiHSCAPE then backslash is not special ttKE anymore. (But it is still

special to the string literal parser, so you still need two of them.)

It's also possible to select no escape character by wiltBQAPE " This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The keywordILIKE can be used instead ofKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator~ is equivalent toLIKE , and~~* corresponds toLIKE . There are alsé~~ and!~~*
operators that represeMOT LIKE andNOT ILIKE . All of these operators are PostgreSQL-specific.

6.6.2. SIMILAR TO and SQL99 Regular Expressions

string SIMILAR TO pattern  [ESCAPE escape-character ]
string NOT SIMILAR TO pattern  [ESCAPE escape-character ]

TheSIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is much likeLIKE , except that it interprets the pattern using SQL99’s definition of a regular expression.
SQL99’s regular expressions are a curious cross betiwi@nh notation and common regular expression
notation.

Like LIKE , theSIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression practice, wherein the pattern may match any part of the string. Also like
LIKE, SIMILAR TO uses%and_ as wildcard characters denoting any string and any single character,
respectively (these are comparablertoand. in POSIX regular expressions).

In addition to these facilities borrowed fromKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

+ | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

- + denotes repetition of the previous item one or more times.

- Parenthese§ may be used to group items into a single logical item.

- Abracket expressiop..]  specifies a character class, just as in POSIX regular expressions.
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Notice that bounded repetitior @nd{...} ) are not provided, though they exist in POSIX. Also, dgt (
is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified \E®CAPE

Some examples:

‘abc’ SIMILAR TO ’abc’ true
‘abc’ SIMILAR TO & false
'abc’ SIMILAR TO '%(b|d)%’ true
‘abc’ SIMILAR TO ’(b|c)%’ false

The SUBSTRINGfUnction with three parameterSUBSTRING(string FROMpattern ~ FOR escape ),

provides extraction of a substring that matches a SQL99 regular expression pattern. AsMiL#R

TO, the specified pattern must match to the entire data string, else the function fails and returns null. To
indicate the part of the pattern that should be returned on success, SQL99 specifies that the pattern must
contain two occurrences of the escape character followed by double ¢gyofehé text matching the

portion of the pattern between these markers is returned.

Some examples:

SUBSTRING(foobar FROM '%#"o_b#'%’ FOR '#') oob
SUBSTRING('foobar FROM '#'0_b#'%’ FOR '#) NULL

6.6.3. POSIX Regular Expressions

Table 6-11lists the available operators for pattern matching using POSIX regular expressions.

Table 6-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, casthomas’ ~ ’.*thomas.*
sensitive

~* Matches regular expression, casthomas’ ~* '*Thomas.*
insensitive

I~ Does not match regular 'thomas’ !~ ’*Thomas.*
expression, case sensitive

1~* Does not match regular 'thomas’ !~* '*vadim.*
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching thaxkghendSim-
ILAR TO operators. Many Unix tools such agrep , sed, orawk use a pattern matching language that is
similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of steggsi(a
se). A string is said to match a regular expression if it is a member of the regular set described by the
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regular expression. As witlKE , pattern characters match string characters exactly unless they are special
characters in the regular expression language --- but regular expressions use different special characters
thanLIKE does. UnlikeLIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

‘abc’ ~ 'abc’ true
‘abc’ ~ na’ true
‘abc’ ~ '(b|d) true
‘abc’ ~ "(b|c) false

TheSUBSTRINGunNction with two parameter§UBSTRING(tring FROMpattern ) , provides extrac-

tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthesis
comes first) is returned. You can always put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception.

Some examples:

SUBSTRING('foobar FROM ’0.b") oob
SUBSTRING(foobar FROM ’o(.)b’) o

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: modern REs (roughly those
of egrep ; 1003.2 calls these “extended” REs) and obsolete REs (roughly thasg 4003.2 “basic”
RESs). PostgreSQL implements the modern form.

A (modern) RE is one or more non-emisanchesseparated by. It matches anything that matches one
of the branches.

A branch is one or morpieces concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is anatom possibly followed by a single, +, ?, or bound An atom followed by* matches a
sequence of 0 or more matches of the atom. An atom followed Imatches a sequence of 1 or more
matches of the atom. An atom followed Bymatches a sequence of 0 or 1 matches of the atom.

A boundis { followed by an unsigned decimal integer, possibly followed hyossibly followed by an-

other unsigned decimal integer, always followed}byrhe integers must lie between 0 aRE_DUP_MAX

(255) inclusive, and if there are two of them, the first may not exceed the second. An atom followed by
a bound containing one integerand no comma matches a sequence of exactiyatches of the atom.

An atom followed by a bound containing one integeand a comma matches a sequence of more
matches of the atom. An atom followed by a bound containing two integarslj matches a sequence

of i throughj (inclusive) matches of the atom.

Note: A repetition operator (?, *, +, or bounds) cannot follow another repetition operator. A repetition
operator cannot begin an expression or subexpression or follow ~ or | .
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An atomis a regular expression enclosed)in (matching a match for the regular expression), an empty
set of() (matching the null string), bracket expressio(see below), (matching any single character),

~ (matching the null string at the beginning of the input strirfgjmatching the null string at the end of

the input string), & followed by one of the characterg$()|*+?{\ (matching that character taken as

an ordinary character),\afollowed by any other character (matching that character taken as an ordinary
character, as if the had not been present), or a single character with no other significance (matching that
character). X followed by a character other than a digit is an ordinary character, not the beginning of a
bound. Itis illegal to end an RE with.

Note that the backslash) already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in the query.

A bracket expressiois a list of characters enclosedin. It normally matches any single character from
the list (but see below). If the list begins with it matches any single character (but see below) not from
the rest of the list. If two characters in the list are separated,lihis is shorthand for the full range
of characters between those two (inclusive) in the collating sequencg)-6]g. in ASCIlI matches any
decimal digit. It is illegal for two ranges to share an endpoint, e-¢e . Ranges are very collating-
sequence-dependent, and portable programs should avoid relying on them.

To include a literal in the list, make it the first character (following a possit)eTo include a literal ,
make it the first or last character, or the second endpoint of a range. To use a lasrtie first endpoint

of arange, encloseitin and.] to make it a collating element (see below). With the exception of these
and some combinations usifgsee next paragraphs), all other special characters, includioge their
special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as
if it were a single character, or a collating-sequence name for either) enclosecim.] stands for the
sequence of characters of that collating element. The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multiple-character collating element can thus match more
than one character, e.qg. if the collating sequence includegallating element, then the Rfch.]J*c

matches the first five charactersobthcc .

Within a bracket expression, a collating element enclosgd iand=] is an equivalence class, standing

for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimitefs \aeck] .)

For example, ib and” are the members of an equivalence class, frer]] ,[="=]] ,and[o"] are

all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclogedaimd:] stands for the list of

all characters belonging to that class. Standard character class namedsuare:alpha , blank , cntrl

digit , graph , lower , print , punct , space , upper , xdigit . These stand for the character classes
defined in ctype. A locale may provide others. A character class may not be used as an endpoint of a
range.

There are two special cases of bracket expressions: the bracket expriissiais and[[:>:]] match

the null string at the beginning and end of a word respectively. A word is defined as a sequence of word

characters which is neither preceded nor followed by word characters. A word character is an alnum

character (as defined by ctype) or an underscore. This is an extension, compatible with but not specified
by POSIX 1003.2, and should be used with caution in software intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, it
matches the longest. Subexpressions also match the longest possible substrings, subject to the constraint
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that the whole match be as long as possible, with subexpressions starting earlier in the RE taking priority
over ones starting later. Note that higher-level subexpressions thus take priority over their lower-level
component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered
longer than no match at all. For exampleh* matches the three middle characters abbbc,
(wee|week)(knights|nights) matches all ten characterswéeknights , when(.*).*  is matched
againstabc the parenthesized subexpression matches all three characters, an¢thtyheris matched
againstc both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.qg.
becomegxX] . When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that (e.y]) becomegxX] and[*x] becomeg$ xX]

There is no particular limit on the length of REs, except insofar as memory is limited. Memory
usage is approximately linear in RE size, and largely insensitive to RE complexity, except
for bounded repetitions. Bounded repetitions are implemented by macro expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An RE like, say,
((((a{1,100}){1,100}){1,100}){1,100}){1,100} will (eventually) run almost any existing
machine out of swap space.

6.7. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data typeJable 6-12ists them. These functions all follow a common calling convention: the

first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

Table 6-12. Formatting Functions

Function Returns Description Example
to_char (timestamp , fext convert time stamp to  [to_char(timestamp
text ) string 'now’,’HH12:MI:SS’)
to_char (interval text convert interval to stringto_char(interval
text ) '15h 2m
12s’’HH24:MI:SS’)
to_char (int ,text ) text convert integer to string to_char(125,
'999")
to_char (double text convert real/double to_char(125.8,
precision ,text ) precision to string '999D9’)

1. This was written in 1994, mind you. The numbers have probably changed, but the problem persists.
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Function Returns Description Example
to_char (numeric |, text convert numeric to stringo_char(numeric
text ) -125.8,
'999D99S")
to_date (text ,text ) [(date convert string to date  [to_date('05 Dec
2000’, 'DD Mon
YYYY’)
to_timestamp (text , [ftimestamp convert string to time  to_timestamp('05
text ) stamp Dec 2000’, 'DD Mon
YYYY’)
to_number (text , numeric convert string to numeri¢to_number(’12,454.8-
text ) ', '99G999D9S’)

In an output template string, there are certain patterns that are recognized and replaced with appropriately-
formatted data from the value to be formatted. Any text that is not a template pattern is simply copied
verbatim. Similarly, in an input template string, template patterns identify the parts of the input data string
to be looked at and the values to be found there.

Table 6-13shows the template patterns available for formatting date and time values.

Table 6-13. Template patterns for date/time conversions

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

MS millisecond (000-999)

us microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

IAMor A.M. or PMor P.M. meridian indicator (upper case)

amora.m. Or pmor p.m. meridian indicator (lower case)

Y, YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCorB.C. orADoOrA.D. era indicator (upper case)

bc orb.c. orad ora.d. era indicator (lower case)

MONTH full upper case month name (blank-padded to 9
chars)
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Pattern Description

Month full mixed case month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars)

Mon abbreviated mixed case month name (3 chars)

mon abbreviated lower case month name (3 chars)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full mixed case day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars)

Dy abbreviated mixed case day name (3 chars)

dy abbreviated lower case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; SUN=1)

W week of month (1-5) where first week start on the
first day of the month

WwW week number of year (1-53) where first week start
on the first day of the year

W ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman Numerals (I-XII; I=January) -
upper case

rm month in Roman Numerals (I-XII; I=January) -
lower case

TZ time-zone name - upper case

tz time-zone name - lower case

Certain modifiers may be applied to any template pattern to alter its behavior. For exafMMarith” is
the “Month " pattern with the ¥M prefix. Table 6-14shows the modifier patterns for date/time formatting.

Table 6-14. Template pattern modifiers for date/time conversions

Modifier Description Example
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Modifier Description Example
FMprefix fill mode (suppress padding FMMonth
blanks and zeroes)
TH suffix add upper-case ordinal number DDTH
suffix
th suffix add lower-case ordinal number DDth
suffix
FX prefix fixed format global option (see [FX Month DD Day
usage notes)
SP suffix spell mode (not yet implemented)DSP

Usage notes for the date/time formatting:

FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a
pattern be fixed-width.

to_timestamp andto_date skip multiple blank spaces in the input string if tA&% option is not
used.FX must be specified as the first item in the template; for exarmplgmestamp('2000
JUN’,’YYYY MON’) s right, butto_timestamp('2000 JUN’,FXYYYY MON’) returns an error,
becauseo_timestamp expects one blank space only.

If a backslash (‘") is desired in a string constant, a double backslash {f must be entered; for
example\WHH\MMNSS? . This is true for any string constant in PostgreSQL.

Ordinary text is allowed ino_char templates and will be output literally. You can put a substring

in double quotes to force it to be interpreted as literal text even if it contains pattern keywords. For
example, in"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the singli

“Year” will not be.

If you want to have a double quote in the output you must precede it with a backslash, for example
NWYYYY Month\\"

YYYY conversion from string timestamp  or date is restricted if you use a year with more than 4
digits. You must use some non-digit character or template aftegl, otherwise the year is always inter-
preted as 4 digits. For example (with year 200@0)date(’200001131’, 'YYYYMMDD’) will be
interpreted as a 4-digit year; better is to use a non-digit separator after the yetar,die(’20000-

1131’, 'YYYY-MMDD’)  orto_date("20000Nov31’, 'YYYYMonDD’)

Millisecond MSand microsecondSvalues in a conversion from string to time stamp are used as part
of the seconds after the decimal point. For exampléimestamp(’'12:3’, 'SS:MS’) is not 3
milliseconds, but 300, because the conversion counts it as 12 + 0.3. This means for thestamsat

the input values12:3 , 12:30 , and12:300 specify the same number of milliseconds. To get three
milliseconds, one must ud2:003 , which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex exampte: timestamp('15:12:02.020.001230’,’HH:MI:SS.MS.US")
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230 seconds.

Table 6-15shows the template patterns available for formatting numeric values.

103



Chapter 6. Functions and Operators

Table 6-15. Template patterns for numeric conversions

Pattern Description

9 \value with the specified number of digits

0 \value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S negative value with minus sign (uses locale)
L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

M minus sign in specified position (if number0)
PL plus sign in specified position (if number 0)
SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THorth convert to ordinal number

\Y shift n digits (see notes)

EEEE scientific notation (not implemented yet)

Usage notes for the numeric formatting:

A sign formatted usingG PL, or Ml is not an anchor in the number; for example,char(-12,
’'S9999")  produces -12’ , butto_char(-12, 'MI9999’) produces- 12° . The Oracle imple-
mentation does not allow the useMf ahead oB, but rather requires thatprecedemi.

9 specifies a value with the same number of digits as theresané a digit is not available it outputs a
space.

THdoes not convert values less than zero and does not convert decimal numbers.
PL, SG andTHare PostgreSQL extensions.

V effectively multiplies the input values b~ n, wheren is the number of digits following. to_char
does not support the usewtombined with a decimal point. (E.@®9.9v99 is not allowed.)

Table 6-16shows some examples of the use ofthechar  function.

Table 6-16.to_char Examples

Input Output
to_char(now(),'Day, DD HH12:MI:SS’) 'Tuesday , 06 05:39:18’
to_char(now(),’FMDay, FMDD ‘Tuesday, 6 05:39:18’
HH12:MI:SS’)
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Input Output
to_char(-0.1,'99.99’) ' -.10°
to_char(-0.1,FM9.99") -1
to_char(0.1,'0.9") ' 0.1
to_char(12,/9990999.9’) ' 0012.0°
to_char(12,,FM9990999.9’) '0012’
to_char(485,'999) ' 485’
to_char(-485,"999’) '-485’
to_char(485,'9 9 9" ' 485
to_char(1485,'9,999") ' 1,485
to_char(1485,'9G999’) ' 1 485’
to_char(148.5,/999.999’) ' 148.500°
to_char(148.5,/999D999) " 148,500’
to_char(3148.5,/9G999D999") ' 3 148,500°
to_char(-485,'999S") '485-'
to_char(-485,'999MI’) '485-"
to_char(485,'999MI’) '485’
to_char(485,’PL999’) '+485’
to_char(485,'SG999’) '+485’
to_char(-485,'SG999’) '-485’
to_char(-485,/9SG99") '4-85'
to_char(-485,"999PR’) ' <485>’
to_char(485,'L999’) 'DM 485
to_char(485,'RN’) " CDLXXXV’
to_char(485,’FMRN") "CDLXXXV’
to_char(5.2,FMRN") \Y
to_char(482,'999th’) ' 482nd’
to_char(485, ™Good number:"999’) 'Good number: 485’
to_char(485.8,"Pre:"999" Post:" 'Pre: 485 Post: .800’
.999)

to_char(12,/99v999’) ' 12000’
to_char(12.4,'99V999’) " 12400’
to_char(12.45, '99V9’) ' 125’

6.8. Date/Time Functions and Operators

Table 6-18shows the available functions for date/time value processing, with details appearing in the
following subsectionsTable 6-17illustrates the behaviors of the basic arithmetic operaters ,(etc.).

For formatting functions, refer t8ection 6.7 You should be familiar with the background information on
date/time data types (s&ection 5.%.
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All the functions and operators described below that take time or timestamp inputs actually come in two

variants: one that takes time or timestamp with time zone, and one that takes time or timestamp without
time zone. For brevity, these variants are not shown separately.

Table 6-17. Date/Time Operators

Name Example Result
+ timestamp '2001-09-28 timestamp '2001-09-29
01:00’ + interval '23 00:00’
hours’
+ date '2001-09-28" + timestamp '2001-09-28
interval '1 hour’ 01:00°
+ time '01:00' + interval time '04:00'
'3 hours’
- timestamp '2001-09-28 timestamp '2001-09-28’
23:00' - interval '23
hours’
- date '2001-09-28 - timestamp '2001-09-27
interval '1 hour’ 23:00°
- time '05:00" - interval time '03:00’
'2 hours’
- interval '2 hours’ - time time '03:00:00’
'05:00’
* interval '1 hour’ * int interval '03:00’
3
/ interval '1 hour’ / int interval '00:20°
g
Table 6-18. Date/Time Functions
Name Return Type Description Example Result
age (timestamp ) |interval Subtract from todayage(timestamp 43 years 8 mons
'1957-06-13") 3 days
age (timestamp , |interval Subtract argumentsage('2001-04- 43 years 9 mons
timestamp ) 10’, timestamp 27 days
'1957-06-13")
current_date date Today’s date; see
Section 6.8.4
current_time time with time Time of day; see
zone Section 6.8.4
current_timestamp  ftimestamp with Date and time; see
time zone Section 6.8.4
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Name Return Type Description Example Result
date_part (text , |double Get subfield date_part(’hour’, 20
timestamp ) precision (equivalent to timestamp
extract ); see also[2001-02-16
below 20:38:40°)
date_part (text , |double Get subfield date_part(month’, [3
interval ) precision (equivalent to interval '2
extract ); see alsolyears 3
below months’)
date_trunc  (text , timestamp Truncate to date_trunc(’hour’,  [2001-02-16
timestamp ) specified precision;timestamp 20:00:00+00
see als@ection  2001-02-16
6.8.2 20:38:40")
extract (field double Get subfield; see lextract(hour 20
from timestamp ) |precision alsoSection 6.8.1 [from timestamp
'2001-02-16
20:38:40")
extract (field double Get subfield; see |extract(month 3
frominterval ) |precision alsoSection 6.8.1 from interval
'2 years 3
months’)
isfinite (timestamppodlean Test for finite time isfinite(timestamp  true
stamp (neither '2001-02-16
invalid nor infinity) [21:28:30")
isfinite (interval |bdpolean Test for finite isfinite(interval true
interval '4 hours’)
localtime time Time of day; see
Section 6.8.4
localtimestamp timestamp Date and time; see
Section 6.8.4
now() timestamp with Current date and
time zone time (equivalent to
cur-
rent_timestamp  );
seeSection 6.8.4
timeofday() text Current date and timeofday() Wed Feb 21
time; seeSection 17:01:13.000126
6.8.4 2001 EST

6.8.1. EXTRACT date_part

EXTRACT (ield

Theextract

FROMsource )

function retrieves subfields from date/time values, such as year ordoauce
expression that evaluates to tyfp@estamp or interval

isav

alue

. (Expressions of typdate ortime will be
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cast totimestamp and can therefore be used as wdlejd is an identifier or string that selects what
field to extract from the source value. Téagract  function returns values of typiuble precision
The following are valid values:

century
The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the conven-
tional definition which puts most years in the 1900’s in the twentieth century.

day
The day (of the month) field (1 - 31)
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 16
decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 200
dow
The day of the week (0 - 6; Sunday is 0) (fonestamp values only)
SELECT EXTRACT(DOW FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 5
doy
The day of the year (1 - 365/366) (fomestamp values only)
SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47
epoch
For date andtimestamp values, the nhumber of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval ~ values, the total number of seconds in the interval
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40";
Result: 982352320
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours’);
Result: 442800
hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 20
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microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5");
Result: 28500000

millennium

The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5);
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 38

month

Fortimestamp values, the number of the month within the year (1 - 12) jd@rval  values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40";
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months’);
Result: 1
quarter

The quarter of the year (1 - 4) that the day is in (forestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40%;
Result: 1

second
The seconds field, including fractional parts (0 )59
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5’);
Result: 28.5

60 if leap seconds are implemented by the operating system
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timezone_hour

The hour component of the time zone offset.
timezone_minute

The minute component of the time zone offset.
week

From atimestamp value, calculate the number of the week of the year that the day is in. By defi-
nition (ISO 8601), the first week of a year contains January 4 of that year. (The 1ISO week starts on
Monday.) In other words, the first Thursday of a year is in week 1 of that year.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 7

year

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time val-
ues for display, seBection 6.7

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract

date_part(’ field ', source )

Note that here théeld parameter needs to be a string value, not a name. The valid field values for
date_part are the same as fextract

SELECT date_part('day’, TIMESTAMP '2001-02-16 20:38:40);
Result: 16

SELECT date_part(hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

6.8.2. date_trunc

The functiondate_trunc  is conceptually similar to theunc function for numbers.

date_trunc(’ field ', source )

source is avalue expression of typienestamp  (values of typelate andtime are cast automatically).
field selectsto which precision to truncate the time stamp value. The return value is ofrtygamp
with all fields that are less than the selected one set to zero (or one, for day and month).

Valid values forfield are:
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microseconds
milliseconds
second
minute

hour

day

month

year
decade
century
millennium

Examples:

SELECT date_trunc(hour’, TIMESTAMP °2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00+00

SELECT date_trunc('year’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00+00

6.8.3. AT TIME ZONE

TheAT TIME ZONEconstruct allows conversions of timestamps to different timezones.

Table 6-19. AT TIME ZONE Variants

Expression Returns Description

timestamp without time timestamp with time zone Convert local time in given
zone AT TIME ZONEzone timezone to UTC

timestamp with time zone timestamp without time Convert UTC to local time in
AT TIME ZONEzone zone given timezone

time with time zone AT time with time zone Convert local time across
TIME ZONEzone timezones

In these expressions, the desired timo@e can be specified either as a text string (RS’ ) or as an
interval (e.g.JNTERVAL -08:00' ).

Examples (supposing th@imezZone is PST8PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40° AT TIME ZONE 'MST’
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05' AT TIME ZONE 'MST’;
Result:  2001-02-16 18:38:40

The first example takes a zone-less timestamp and interprets it as MST time (GMT-7) to produce a UTC
timestamp, which is then rotated to PST (GMT-8) for display. The second example takes a timestamp
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specified in EST (GMT-5) and converts it to local time in MST (GMT-7).

The functiontimezone (zone ,timestamp ) is equivalent to the SQL-compliant constrtiatestamp
AT TIME ZONEzone .

6.8.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME ( precision )
CURRENT_TIMESTAMP (recision )
LOCALTIME

LOCALTIMESTAMP

LOCALTIME ( precision )
LOCALTIMESTAMP (precision )

CURRENT_TIMEand CURRENT_TIMESTAMEHeliver values with time zond;OCALTIME and LOCAL-
TIMESTAMPdeliver values without time zone.

CURRENT_TIMECURRENT_TIMESTAMR.OCALTIME and LOCALTIMESTAMRcan optionally be given
a precision parameter, which causes the result to be rounded to that many fractional digits. Without a
precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
14:39:53.662522-05

SELECT CURRENT_DATE;
2001-12-23

SELECT CURRENT_TIMESTAMP;
2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalent@®ORRENT_TIMESTAMP
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There is alsaimeofday() , which for historical reasons returns a text string rather théumestamp
value:

SELECT timeofday();
Sat Feb 17 19:07:32.000126 2001 EST

It is important to realize thaCURRENT_TIMESTAMBENd related functions return the start time of the
current transaction; their values do not change during the transatti@ofday() returns the wall
clock time and does advance during transactions.

Note: Many other database systems advance these values more frequently.

All the date/time data types also accept the special literal vadueto specify the current date and time.
Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’;

Note: You do not want to use the third form when specifying a DEFAULTclause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

6.9. Geometric Functions and Operators

The geometric typepoint , box, Iseg , line , path , polygon , andcircle  have a large set of native
support functions and operators, showable 6-20 Table 6-21 andTable 6-22

Table 6-20. Geometric Operators

Operator Description Usage

+ Translation box ’((0,0),(1,1))" +
point '(2.0,0)’

- Translation box ’((0,0),(1,1))" -
point '(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1))" *
point '(2.0,0)’
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Operator Description Usage

/ Scaling/rotation box ’((0,0),(2,2)) /
point '(2.0,0)’

# Intersection '((1,-1),(-1,2)) #
((1,1).(-1,-1))

# Number of points in path or # ’((1,0),(0,1),(-1,0))

polygon

#t Point of closest proximity point '(0,0)' ## Iseg
'((2,0),(0,2)y

&& Overlaps? box ’((0,0),(1,1)) &&
box ’((0,0),(2,2))’

&< Overlaps to left? box ’((0,0),(1,1)) & <
box '((0,0),(2,2))’

&> Overlaps to right? box ’((0,0),(3,3)) & >
box ’((0,0),(2,2))’

<> Distance between circle '((0,0),1) <>
circle ’((5,0),1)

<< Left of? circle '((0,0),1) <<
circle ’((5,0),1)

<N Is below? circle ’((0,0),1) <A
circle '((0,5),1)’

>> Is right of? circle '((5,0),1) >>
circle '((0,0),1)

>N Is above? circle ’((0,5),1)' >
circle '((0,0),1)

i Intersects or overlaps Iseg '((-1,0),(1,0)) ?#
box '((-2,-2),(2,2))’

?- Is horizontal? point '(1,0) ?- point
(0,0)

?2-| Is perpendicular? Iseg '((0,0),(0,1)) ?-|
Iseg '((0,0),(1,0))

@-@ Length or circumference @-@ path '((0,0),(1,0))

?| Is vertical? point ’(0,1)' ?| point
'(0,0)

?|| Is parallel? Iseg '((-1,0),(1,0)) ?||
Iseg '((-1,2),(1,2))

@ Contained or on point '(1,1)’ @ circle
'((0,0).2)

@@ Center of @@ circle '((0,0),10)

~= Same as polygon '((0,0),(1,1))’

~= polygon
'((1,1),(0,0))
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Function Returns Description Example

area (object) double precision area of item area(box
'((0,0),(1,1)))

box (box, box) box intersection box box(box
'((0,0),(1,1))",box
'((0.5,0.5),(2,2)))

center (object) point center of item center(box
'((0,0),(1,2)))

diameter (circle) double precision diameter of circle diameter(circle
'((0,0),2.0)")

height (box) double precision \vertical size of box height(box
'((0,0),(1,1)))

isclosed (path) boolean a closed path? isclosed(path
'((0,0),(1,1),(2,0)))

isopen (path) boolean an open path? isopen(path
1(0,0),(1,1),(2,0)])

length (object) double precision length of item length(path
'((-1,0),(1,0)))

npoints (path) integer number of points npoints(path
1(0,0),(1,1),(2,0)])

npoints  (polygon) integer number of points npoints(polygon
'((1,1),(0,0)))

pclose (path) path convert path to closed |popen(path
'1(0,0),(1,1),(2,0)])

popen (path) path convert path to open patpopen(path
'((0,0),(1,1),(2,0)))

radius (circle) double precision radius of circle radius(circle
'((0,0),2.0)")

width (box) double precision horizontal size width(box
'((0,0),(1,1)))

Table 6-22. Geometric Type Conversion Functions

Function Returns Description Example

box (circle ) box circle to box box(circle
'((0,0),2.0)")
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Function Returns Description Example

box (point , point ) box points to box box(point ’(0,0)’,
point '(1,1)’)

box (polygon ) box polygon to box box(polygon
'((0,0),(1,1).(2,0)))

circle  (box) circle to circle circle(box
'((0,0),(1,1)))

circle (point , double [circle point to circle circle(point

precision ) '(0,0)", 2.0)

Iseg (box) Iseg box diagonal tdseg Iseg(box
'((-1,0).(1,0)))

Iseg (point , point ) Iseg points tolseg Iseg(point
'(-1,0)’, point
'(1,0))

path (polygon ) point polygon to path path(polygon
'((0,0),(1,1).(2,0)))

point (circle ) point center point(circle
'((0,0),2.0)")

point (Iseg , Iseg ) point intersection point(Ilseg
'((-1,0),(1,0))",
Iseg
'((-2,-2).(2,2)))

point (polygon ) point center point(polygon
'((0,0),(1,1).(2,0)))

polygon (box) polygon 4-point polygon polygon(box
'((0,0),(1,1)))

polygon (circle ) polygon 12-point polygon polygon(circle
'((0,0),2.0)")

polygon (npts , polygon npts polygon polygon(12, circle

circle ) '((0,0),2.0)")

polygon (path ) polygon path to polygon polygon(path
'((0,0),(1,1).(2,0)))

It is possible to access the two component numberspofra  as though it were an array with subscripts
0, 1. For example, if.p is apoint column thenSELECT p[0] FROM t retrieves the X coordinate;
UPDATE t SET p[1] = ... changes the Y coordinate. In the same wajgp® or anlseg may be
treated as an array of twmint s.
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6.10. Network Address Type Functions

Table 6-23hows the operators available for thet andcidr types. The operators<, <<=, >>, >>=
test for subnet inclusion: they consider only the network parts of the two addresses, ignoring any host part,
and determine whether one network part is identical to or a subnet of the other.

Table 6-23.cidr andinet Operators

Operator Description Usage

< Less than inet '192.168.1.5’ < inet
'192.168.1.6°

<= Less than or equal inet '192.168.1.5’ <=
inet '192.168.1.5’

= Equals inet '192.168.1.5" = inet
'192.168.1.5’

>= Greater or equal inet '192.168.1.5° >=
inet '192.168.1.5’

> Greater inet '192.168.1.5' > inet
'192.168.1.4’

<> Not equal inet '192.168.1.5’ <>
inet '192.168.1.4'

<< is contained within inet '192.168.1.5’ <<
inet '192.168.1/24’

<<= is contained within or equals  jinet '192.168.1/24 <<=
inet '192.168.1/24’

>> contains inet'192.168.1/24’ >>
inet '192.168.1.5’

>>= contains or equals inet '192.168.1/24’ >>=
inet '192.168.1/24’

Table 6-24shows the functions available for use with thet andcidr types. Thenhost() ,text() |,
andabbrev() functions are primarily intended to offer alternative display formats. You can cast a text
field to inet using normal casting syntamet(expression) or colname::inet

Table 6-24.cidr andinet Functions

Function Returns Description Example Result
broadcast (inet ) |inet broadcast address [proadcast('192.168.11924158.1.255/24
for network
host (inet ) text extract IP address host('192.168.1.5/24'192.168.1.5
as text
masklen (inet ) integer extract netmask  masklen(’192.168.1.5224")
length
set_masklen (inet jirgeger ) set netmask lengthiset_masklen('192.168951%58,14)16
forinet value
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Function Returns Description Example Result

netmask (inet ) inet construct netmask netmask('192.168.1.588°P55.255.0
for network

network (inet ) cidr extract network parhetwork(’192.168.1.5/90)168.1.0/24
of address

text (inet ) text extract IP address [text(inet 192.168.1.5/32
and masklen as text192.168.1.5’)

abbrev (inet ) text extract abbreviatedabbrev(cidr 10.1/16
display as text '10.1.0.0/16")

Table 6-25shows the functions available for use with thectype. The functionrunc (macaddr ) returns

a MAC address with the last 3 bytes set to 0. This can be used to associate the remaining prefix with a
manufacturer. The directoontrib/mac  in the source distribution contains some utilities to create and
maintain such an association table.

Table 6-25.macaddr Functions

Function Returns Description Example Result
trunc (macaddr) |macaddr set last 3 bytes to trunc(macaddr 12:34:56:00:00:00
zero '12:34:56:78:90:ab’)

Themacaddr type also supports the standard relational operators €, etc.) for lexicographical order-
ing.

6.11. Sequence-Manipulation Functions

This section describes PostgreSQL’s functions for operatirgegnence objectSequence objects (also
called sequence generators or just sequences) are special single-row tables creat®Ewih SE-
QUENCEA sequence object is usually used to generate unique identifiers for rows of a table. The sequence
functions, listed ifTable 6-26 provide simple, multiuser-safe methods for obtaining successive sequence
values from sequence objects.

Table 6-26. Sequence Functions

Function Returns Description

nextval (text ) bigint Advance sequence and return new
value

currval  (text ) bigint Return value most recently
obtained withnextval

setval (text ,bigint ) bigint Set sequence’s current value

setval (text ,bigint ,boolean ) |pigint Set sequence’s current value and

is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
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by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names, the
sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval('foo’) operates on sequence foo
nextval(FOQO’) operates on sequence foo
nextval("Foo™) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval(’myschema.foo’) operates on  myschema.foo
nextval("'myschema".foo’) same as above
nextval(’foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is occa-
sionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions executextval concurrently, each will safely receive a distinct sequence value.

currval

Return the value most recently obtainedraxtval for this sequence in the current session. (An

error is reported ihextval has never been called for this sequence in this session.) Notice that
because this is returning a session-local value, it gives a predictable answer even if other sessions are
executingnextval meanwhile.

setval

Reset the sequence object’s counter value. The two-parameter form sets the setpsenci'e

field to the specified value and setsitscalled  field to true , meaning that the nextextval
will advance the sequence before returning a value. In the three-parameteisfaatied  may
be set eithetrue orfalse . Ifit's settofalse ,the nexiextval will return exactly the specified
value, and sequence advancement commences with the folloesngl . For example,

SELECT setval('foo’, 42); Next nextval() will return 43
SELECT setval('foo’, 42, true); Same as above
SELECT setval('foo’, 42, false); Next nextval() will return 42

The result returned byetval s just the value of its second argument.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same sequence,
anextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions may
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.
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If a sequence object has been created with default paramedetisl()  calls on it will return successive
values beginning with one. Other behaviors can be obtained by using special parameteGREARE
SEQUENCEommand; see its command reference page for more information.

6.12. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

6.12.1. CASE

CASE WHENondition THEN result
[WHEN ..]
[ELSE result ]

END

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other lan-
guagesCASEclauses can be used wherever an expression is aidlition  is an expression that
returns aboolean result. If the result is true then the value of thaSEexpression igesult . If the

result is false any subsequantHENlauses are searched in the same manner. WHBNoONdition  is

true then the value of the case expression isélsalt  in theELSEclause. If theELSE clause is omitted

and no condition matches, the result is null.

An example:

=> SELECT * FROM test;

a
1
2
3
=> SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN 'two’
ELSE ’other’
END
FROM test;
a | case
R S
1| one
2 | two
3 | other
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The data types of all theesult  expressions must be coercible to a single output type Seetion 7.5
for more detail.

CASE expression
WHENvalue THEN result

[WHEN ..
[ELSE result ]

END

This “simple” CASEexpression is a specialized variant of the general form aboveeXpeession

is computed and compared to all thalue s in thewHENlauses until one is found that is equal. If no
match is found, theesult  in theELSEclause (or a null value) is returned. This is similar to ¢hdéich
statement in C.

The example above can be written using the singil€Esyntax:

=> SELECT a,
CASE a WHEN 1 THEN ‘one’
WHEN 2 THEN 'two’

ELSE ’other
END
FROM test;
a | case

6.12.2. COALESCE

COALESCEvalue [, ...])

The COALESCHunction returns the first of its arguments that is not null. This is often useful to substitute

a default value for null values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, '(none)’) ...

6.12.3. NULLIF
NULLIF(valuel , value2 )

The NULLIF function returns a null value if and only faluel andvalue2 are equal. Otherwise it
returnsvaluel . This can be used to perform the inverse operation ofdBALESCEexample given
above:

SELECT NULLIF(value, '(none)’) ...
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Tip: COALESCEnd NULLIF are just shorthand for CASEexpressions. They are actually converted into
CASEexpressions at a very early stage of processing, and subsequent processing thinks it is dealing
with CASE Thus an incorrect COALESCEor NULLIF usage may draw an error message that refers to
CASE

6.13. Miscellaneous Functions

Table 6-27shows several functions that extract session and system information.

Table 6-27. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schema() name name of current schema

current_schemas(boolean) name(] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

session_user name session user name

user name equivalent tacurrent_user

version() text PostgreSQL version information

Thesession_user isthe user that initiated a database connection; it is fixed for the duration of that con-
nection. Thecurrent_user  is the user identifier that is applicable for permission checking. Normally, it

is equal to the session user, but it changes during the execution of functions with the aBEBOUWRITY
DEFINER In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must be
called without trailing parentheses.

current_schema  returns the name of the schema that is at the front of the search path (or a null value

if the search path is empty). This is the schema that will be used for any tables or other named objects
that are created without specifying a target schernaent_schemas(boolean) returns an array of

the names of all schemas presently in the search path. The boolean option determines whether or not
implicitly included system schemas such as pg_catalog are included in the search path returned.

The search path may be altered by a run-time setting. The command to USETISSEARCH_PATH
" schema’[,) schema’]...

version()  returns a string describing the PostgreSQL server’s version.
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Table 6-28. Configuration Settings Information Functions
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Name Return Type Description

cur- text value of current setting
rent_setting  (setting_name

set_config(  setting_name , [text new value of current setting
new_value , is_local )

The current_setting

is used to obtain the current value of thetting_name

result. It is the equivalent to the SG@HOV¢ommand. For example:

select current_setting('DateStyle’);
current_setting

ISO with US (NonEuropean) conventions

(2 row)

set_config  allows thesetting_name

setting to be changed tew_value . If is_local is se

setting, as a query

t

to true , the new value will only apply to the current transaction. If you want the new value to apply for

the current session, ugsse

select set_config('show_statement_stats’, off’,'f");

set_config

instead. It is the equivalent to the SGET command. For example:

Table 6-29lists functions that allow the user to query object access privileges programmatically. See

Section 2.7for more information about privileges.

Table 6-29. Access Privilege Inquiry Functions

Name

Return Type

Description

has_table_privilege
table ,access )

(user , |boolean

does user have access to table

has_table_privilege
access )

(table ,boolean

does current user have access to

table

has_database_privilege
database , access )

(usertbgolean

does user have access to datab

ase

has_database_privilege
access )

(d atjlbmﬂean

does current user have access to

database
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Name Return Type Description

has_function_privilege (usetbgolean does user have access to function
function ,access )

has_function_privilege (functiosiean does current user have access to
access ) function

has_language_privilege (usetbgolean does user have access to language
language , access )

has_language_privilege (langb@gean does current user have access to
access ) language

has_schema_privilege (user ,poolean does user have access to schema
schema, access )

has_schema_privilege (schemagolean does current user have access to
access ) schema

has_table_privilege checks whether a user can access a table in a particular way. The user can

be specified by name or by IDbd user .usesysid ), or if the argument is omittedurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , Which can be distinguished by the number and types of their arguments.) When
specifying by name, the name can be schema-qualified if necessary. The desired access type is specified
by a text string, which must evaluate to one of the val8ESECT, INSERT, UPDATE DELETE RULE
REFERENCESr TRIGGER (Case of the string is not significant, however.) An example is:

SELECT has_table_privilege('myschema.mytable’, 'select’);

has_database_privilege checks whether a user can access a database in a particular way. The possi-
bilities for its arguments are analogousts_table_privilege . The desired access type must evaluate
to CREATE TEMPORARYor TEMP(which is equivalent tfEMPORARY

has_function_privilege checks whether a user can access a function in a particular way. The possi-
bilities for its arguments are analogoushts_table_privilege . When specifying a function by a text
string rather than by OID, the allowed input is the same as fordfpgocedure  data type. The desired
access type must currently evaluat&EXECUTE

has_language_privilege checks whether a user can access a procedural language in a particular way.
The possibilities for its arguments are analogousds table_privilege . The desired access type
must currently evaluate 10SAGE

has_schema_privilege checks whether a user can access a schema in a particular way. The possibil-
ities for its arguments are analogoushts_table_privilege . The desired access type must evaluate
to CREATEOr USAGE

Table 6-30shows functions that determine whether a certain objedsiblein the current schema search

path. A table is said to be visible if its containing schema is in the search path and no table of the same
name appears earlier in the search path. This is equivalent to the statement that the table can be referenced
by name without explicit schema qualification. For example, to list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);
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Table 6-30. Schema Visibility Inquiry Functions

Name Return Type Description

pg_table_is_visible (tableOlboog)ean is table visible in search path

pg_type_is_visible (typeOID [goolean is type visible in search path

pg_function_is_visible (funchioni& ) is function visible in search path

pg_operator_is_visible (opefadokatD ) is operator visible in search path

pg_opclass_is_visible (opclabs@éan ) is operator class visible in search
path

pg_table_is_visible performs the check for tables (or views, or any other kindpgfclass

entry). pg_type_is_visible . pg_function_is_visible , Ppg_operator_is_visible , and

pg_opclass_is_visible perform the same sort of visibility check for types, functions, operators, and

operator classes, respectively. For functions and operators, an object in the search path is visible if there
is no object of the same nana@d argument data type(garlier in the path. For operator classes, both
name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an object
by name, it is convenient to use the OID alias typegdlass , regtype , regprocedure , Of regop-
erator ), for example

SELECT pg_type_is_visible(myschema.widget'::regtype);

Note that it would not make much sense to test an unqualified hame in this way --- if the name can be
recognized at all, it must be visible.

Table 6-31lists functions that extract information from the system catal@pgsget viewdef()
pg_get_ruledef() ,  pg_get_indexdef() , and pg_get_constraintdef() respectively
reconstruct the creating command for a view, rule, index, or constraint. (Note that this is a decompiled
reconstruction, not the verbatim text of the command.) At prepgnget_constraintdef() only

works for foreign-key constraintsag_get_userbyid() extracts a user's name givenugesysid

value.

Table 6-31. Catalog Information Functions

Name Return Type Description

pg_get viewdef (viewname) ftext GetCREATE VIEWCommand for
view (deprecatedl

pg_get viewdef (viewOID ) [text GetCREATE VIEWommand for
view

pg_get_ruledef  (ruleOID ) ftext GetCREATE RULEommand for
rule

pg_get_indexdef  (indexOID ) text GetCREATE INDEXcommand
for index

125



Chapter 6. Functions and Operators

Name Return Type Description
pg_get_constraintdef (constragxtOID ) Get definition of a constraint
pg_get_userbyid (userid ) |name Get user name with given ID

The function shown ifmable 6-32extract comments previously stored with th@MMENTommand. A
null value is returned if no comment can be found matching the specified parameters.

Table 6-32. Comment Information Functions

Name Return Type Description

obj_description (objectOID  fext Get comment for a database

tablename ) object

obj_description (objectOID  )ext Get comment for a database
object @eprecatedl

col_description (tableOID |, [text Get comment for a table column

columnnumber )

The two-parameter form of obj_description() returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456, pg_class’) would retrieve the comment for a table with OID 123456.

The one-parameter form abj_description() requires only the object OID. It is now deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment could be returned.

col_description() returns the comment for a table column, which is specified by the OID of its table
and its column numbenbj_description() cannot be used for table columns since columns do not
have OIDs of their own.

6.14. Aggregate Functions

Aggregate functionsompute a single result value from a set of input valdeble 6-33show the built-in
aggregate functions. The special syntax considerations for aggregate functions are explSieettbm
1.2.5 Consult thePostgreSQL Tutoriafor additional introductory information.

Table 6-33. Aggregate Functions

Function \Argument Type |Return Type Description
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Function Argument Type Return Type Description
smallint numeric forany the average
avg( expression ) finteger , bigint , [integer type (arithmetic mean)
real , double argumentdouble  (of all input values
precision precision  fora
numeric , or floating-point
interval argument,
otherwise the same
as the argument
data type
count(*) bigint number of input
values
count( expression [@any bigint number of input

D

values for which the
value of
expression is
not null

max(expression )

any numeric, string
or date/time type

same as argument
type

maximum value of
expression

across all input
values

min( expression )

any numeric, string
or date/time type

same as argument
type

minimum value of
expression
across all input
values

std- smallint double sample standard
dev( expression ) |integer ,bigint , [precision  for deviation of the
real , double floating-point input values
precision , Or arguments,
numeric . otherwise
numeric .
sum(expression ) |smallint bigint  for sum of
integer |, bigint , |smallint  or expression
real , double integer across all input
precision arguments, values
numeric , Or numeric for
interval bigint arguments,
double

precision  for
floating-point
arguments,
otherwise the same
as the argument
data type
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Function Argument Type  |Return Type Description
vari- smallint double sample variance of
ance (expression |nteger |, bigint , |precision  for the input values
real , double floating-point (square of the
precision , or arguments, sample standard
numeric . otherwise deviation)
numeric .

It should be noted that except fosunt , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. The functialesce may be
used to substitute zero for null when necessary.

6.15. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

6.15.1. EXISTS
EXISTS ( subquery )

The argument oEXISTS is an arbitrarySELECT statement, osubquery The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the reEXiI8TS is “true”; if the
subquery returns no rows, the resulEXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is returned,
not all the way to completion. It is unwise to write a subquery that has any side effects (such as calling
sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally uninteresting. A common coding convention is to wiitgI&ITS

tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this rule however, such as
subqueries that USRTERSECT.

This simple example is like an inner join @nl2 , but it produces at most one output row for eaatl
row, even if there are multiple matchimap2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

6.15.2. IN (scalar form)

expression  IN ( value [, ...])
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The right-hand side of this form o is a parenthesized list of scalar expressions. The result is “true” if
the left-hand expression’s result is equal to any of the right-hand expressions. This is a shorthand notation
for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of tReconstruct will be null, not false. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

Note: This form of IN is not truly a subquery expression, but it seems best to document it in the same
place as subquery IN.

6.15.3. IN (subquery form)
expression  IN ( subquery )

The right-hand side of this form ofl is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result. The Ifesult of
is “true” if any equal subquery row is found. The result is “false” if no equal row is found (including the
special case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of thid construct will be null, not false. This is in accordance with
SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(expression [, expression ..]) IN ( subquery )

The right-hand side of this form dN is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result. The resuit @ “true” if any equal subquery row is

found. The result is “false” if no equal row is found (including the special case where the subquery returns
Nno rows).

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null and
equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
of that row comparison is unknown (null). If all the row results are either unequal or null, with at least one
null, then the result ofN is null.
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6.15.4. NOT IN (scalar form)
expression  NOT IN (value [, ...])

The right-hand side of this form diOT IN is a parenthesized list of scalar expressions. The result is
“true” if the left-hand expression’s result is unequal to all of the right-hand expressions. This is a shorthand
notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of h@T IN construct will be null, not true as one might
naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN. It's best to express
your condition positively if possible.

6.15.5. NOT IN (subquery form)
expression NOT IN (subquery )

The right-hand side of this form ®OT INis a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result. The
result ofNOT INis “true” if only unequal subquery rows are found (including the special case where the
subquery returns no rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of tOT IN construct will be null, not true. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(‘expression [, expression ..]) NOT IN ( subquery )

The right-hand side of this form ®dOT IN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and
compared row-wise to each row of the subquery result. The restlOdf IN is “true” if only unequal
subquery rows are found (including the special case where the subquery returns no rows). The result is
“false” if any equal row is found.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null and
equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
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of that row comparison is unknown (null). If all the row results are either unequal or null, with at least one
null, then the result oROT INis null.

6.15.6. ANY/SOME

expression operator ANY (subquery )
expression operator SOME 6éubquery )

The right-hand side of this form @NYis a parenthesized subquery, which must return exactly one col-
umn. The left-hand expression is evaluated and compared to each row of the subquery result using the
given operator , which must yield a Boolean result. The resultAYis “true” if any true result is
obtained. The result is “false” if no true result is found (including the special case where the subquery
returns no rows).

SOMESs a synonym foANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANY construct will be null, not false. This is in accordance with SQL's normal rules for
Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

( expression [, expression ) operator  ANY (subquery )
(‘expression [, expression ) operator SOME 6ubquery )

The right-hand side of this form @&NYis a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result, using the gigerator . Presently, only and<>
operators are allowed in row-wigeNY queries. The result ofNYis “true” if any equal or unequal row

is found, respectively. The result is “false” if no such row is found (including the special case where the
subquery returns no rows).

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null and
equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
of that row comparison is unknown (null). If there is at least one null row result, then the regmivof
cannot be false; it will be true or null.

6.15.7. ALL
expression operator ALL (subquery )

The right-hand side of this form @fLL is a parenthesized subquery, which must return exactly one col-
umn. The left-hand expression is evaluated and compared to each row of the subquery result using the
givenoperator , which must yield a Boolean result. The resultaafi is “true” if all rows yield true
(including the special case where the subquery returns no rows). The result is “false” if any false result is
found.

NOT INis equivalent to<> ALL.

131



Chapter 6. Functions and Operators

Note that if there are no failures but at least one right-hand row yields null for the operator’s result, the
result of theaLL construct will be null, not true. This is in accordance with SQL's normal rules for Boolean
combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

( expression [, expression ) operator  ALL ( subquery )

The right-hand side of this form &LL is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result, using the gigerator . Presently, only and<>
operators are allowed in row-wige L queries. The result ofLL is “true” if all subquery rows are equal

or unequal, respectively (including the special case where the subquery returns no rows). The result is
“false” if any row is found to be unequal or equal, respectively.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null and
equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
of that row comparison is unknown (null). If there is at least one null row result, then the regult of
cannot be true; it will be false or null.

6.15.8. Row-wise Comparison

( expression [, expression )| operator  (subquery )
(‘expression [, expression ) operator  ( expression [[ expression )

The left-hand side is a list of scalar expressions. The right-hand side can be either a list of scalar expres-
sions of the same length, or a parenthesized subquery, which must return exactly as many columns as there
are expressions on the left-hand side. Furthermore, the subquery cannot return more than one row. (If it
returns zero rows, the result is taken to be null.) The left-hand side is evaluated and compared row-wise to
the single subquery result row, or to the right-hand expression list. Presently; anty< > operators are

allowed in row-wise comparisons. The result is “true” if the two rows are equal or unequal, respectively.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null and
equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
of the row comparison is unknown (null).
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SQL queries can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. However,
the implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these
results can be tailored by a user or programmer uskmiicit type coercion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections ilChapter landChapter Gor more information on specific data types and allowed functions
and operators.

The PostgreSQL Programmer’s Guides more details on the exact algorithms used for implicit type
conversion and coercion.

7.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which determines
its behavior and allowed usage. PostgreSQL has an extensible type system that is much more general and
flexible than other SQL implementations. Hence, most type conversion behavior in PostgreSQL should
be governed by general rules rather thanaolyhocheuristics, to allow mixed-type expressions to be
meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: integers,
floating-point numbers, strings, names, and key words. Most extended types are first tokenized into strings.
The SQL language definition allows specifying type names with strings, and this mechanism can be used
in PostgreSQL to start the parser down the correct path. For example, the query

tgl=> SELECT text 'Origin’ AS "Label", point ’(0,0) AS "Value";
Label | Value
________ SR

Origin | (0,0)
1 row)

has two literal constants, of typext andpoint . If a type is not specified for a string literal, then the
placeholder typ&inknownis assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators.

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls have one

or more arguments which, for any specific query, must be matched to the functions available in the

system catalog. Since PostgreSQL permits function overloading, the function name alone does not
uniquely identify the function to be called; the parser must select the right function based on the data
types of the supplied arguments.
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Query targets

SQL INSERT andUPDATEStatements place the results of expressions into a table. The expressions
in the query must be matched up with, and perhaps converted to, the types of the target columns.

UNIONandCASEconstructs

Since all select results from a unioniz8HLECTstatement must appear in a single set of columns,

the types of the results of eadELECTclause must be matched up and converted to a uniform set.
Similarly, the result expressions ofGASEconstruct must be coerced to a common type so that the
CASEexpression as a whole has a known output type.

Many of the general type conversion rules use simple conventions built on the PostgreSQL function and
operator system tables. There are some heuristics included in the conversion rules to better support con-
ventions for the SQL standard native types suchnadlint , integer , andreal .

The system catalogs store information about which conversions, caktsibetween data types are valid,

and how to perform those conversions. Additional casts can be added by the user WIREKEE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between the
built-in types has been carefully crafted and should not be altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL stan-
dard types. There are several basipe categorieslefined:boolean , numeric , string , bitstring
datetime , timespan , geometric , network , and user-defined. Each category, with the exception of
user-defined, has preferred typewhich is preferentially selected when there is ambiguity. In the user-
defined category, each type is its own preferred type. Ambiguous expressions (those with multiple candi-
date parsing solutions) can often be resolved when there are multiple possible built-in types, but they will
raise an error when there are multiple choices for user-defined types.

All type conversion rules are designed with several principles in mind:

- Implicit conversions should never have surprising or unpredictable outcomes.

- User-defined types, of which the parser hasanpriori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type (of
course, only if conversion is necessary).

« User-defined types are not related. Currently, PostgreSQL does not have information available to it on
relationships between types, other than hardcoded heuristics for built-in types and implicit relationships
based on available functions in the catalog.

- There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That s, if a query is well formulated and the types already match up, then the query should
proceed without spending extra time in the parser and without introducing unnecessary implicit con-
version functions into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines an explicit function with the correct argument types, the parser should use this new function
and will no longer do the implicit conversion using the old function.

134



Chapter 7. Type Conversion

7.2. Operators

The operand types of an operator invocation are resolved following the procedure below. Note that this
procedure is indirectly affected by the precedence of the involved operatorSesten 1.1.6or more
information.

Operand Type Resolution

1.

Select the operators to be considered frompdneoperator ~ system catalog. If an unqualified oper-

ator name is used (the usual case), the operators considered are those of the right name and argument
count that are visible in the current search path Geetion 2.8.R If a qualified operator name was

given, only operators in the specified schema are considered.

a. If the search path finds multiple operators of identical argument types, only the one ap-
pearing earliest in the path is considered. But operators of different argument types are
considered on an equal footing regardless of search path position.

Check for an operator accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of operators considered), use it.

a. If one argument of a binary operatoruisknown type, then assume it is the same type as
the other argument for this check. Other cases involviighown will never find a match
at this step.

Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be coerced
(using an implicit coercion function) to matalmknown literals are assumed to be coercible
to anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Runthrough all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have any exact matches. If only one candidate remains, use it; else
continue to the next step.

c. Runthrough all candidates and keep those with the most exact or binary-compatible matches
on input types. Keep all candidates if none have any exact or binary-compatible matches. If
only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most positions
where type coercion will be required. Keep all candidates if none accept preferred types. If
only one candidate remains, use it; else continue to the next step.

e. Ifanyinputarguments are “unknown”, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the "string" category if any
candidate accepts that category (this bias towards string is appropriate since an unknown-
type literal does look like a string). Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot
be deduced without more clues. Also note whether any of the candidates accept a preferred
data type within the selected category. Now discard operator candidates that do not accept
the selected type category; furthermore, if any candidate accepts a preferred type at a given
argument position, discard candidates that accept non-preferred types for that argument.
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f.  If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Examples

Example 7-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes argumentsdofitype
precision . The scanner assigns an initial typeraéger  to both arguments of this query expression:
tgl=> SELECT 2 ~ 3 AS "Exp";
Exp

(1 row)

So the parser does a type conversion on both operands and the query is equivalent to
tgl=> SELECT CAST(2 AS double precision) » CAST(3 AS double precision) AS "Exp";
Exp

or

Exp

Note: This last form has the least overhead, since no functions are called to do implicit type conver-
sion. This is not an issue for small queries, but may have an impact on the performance of queries
involving large tables.

Example 7-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex extended
types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

tgl=> SELECT text 'abc’ || 'def’ AS "Text and Unknown";
Text and Unknown

abcdef
(2 row)

In this case the parser looks to see if there is an operator teing for both arguments. Since there is,
it assumes that the second argument should be interpreted as aixtype
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Concatenation on unspecified types:

tgl=> SELECT ’abc’ || 'def AS "Unspecified";
Unspecified

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the “preferred type” for stringext , is used as the specific type to resolve the unknown literals

to.

Example 7-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix op@ratbof which implement
absolute-value operations for various numeric data types. One of these entries is faratgpe, which
is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
a non-numeric input:
tgl=> select @ text -4.5’ as "abs";
abs

4.5
(1 row)
Here the system has performed an implicit text-to-float8 conversion before applying the chosen operator.
We can verify that float8 and not some other type was used:
tgl=> select @ text -4.5e500’' as "abs";
ERROR: Input '-4.5e500' is out of range for float8

On the other hand, the postfix operatoffactorial) is defined only for integer data types, not for float8.
So, if we try a similar case with, we get:

tgl=> select text '20’ ! as "factorial";
ERROR: Unable to identify a postfix operator '" for type ’'text’
You may need to add parentheses or an explicit cast

This happens because the system can't decide which of the several possg#eators should be pre-
ferred. We can help it out with an explicit cast:

tgl=> select cast(text '20' as int8) ! as “factorial”;

factorial
2432902008176640000
(1 row)
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7.3. Functions

The argument types of function calls are resolved according to the following steps.

Function Argument Type Resolution

1.

Select the functions to be considered from plgeproc system catalog. If an unqualified function

name is used, the functions considered are those of the right name and argument count that are visible
in the current search path (s8ection 2.8.3 If a qualified function name was given, only functions

in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one ap-
pearing earliest in the path is considered. But functions of different argument types are
considered on an equal footing regardless of search path position.

Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. (Cases invalukmpwn will never find a
match at this step.)

If no exact match is found, see whether the function call appears to be a trivial type coercion request.
This happens if the function call has just one argument and the function name is the same as the
(internal) name of some data type. Furthermore, the function argument must be either an unknown-
type literal or a type that is binary-compatible with the named data type. When these conditions are
met, the function argument is coerced to the named data type without any explicit function call.

Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be coerced
(using an implicit coercion function) to matalmknown literals are assumed to be coercible
to anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Runthrough all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have any exact matches. If only one candidate remains, use it; else
continue to the next step.

c. Runthrough all candidates and keep those with the most exact or binary-compatible matches
on input types. Keep all candidates if none have any exact or binary-compatible matches. If
only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most positions
where type coercion will be required. Keep all candidates if none accept preferred types. If
only one candidate remains, use it; else continue to the next step.

e. If any input arguments anenknown , check the type categories accepted at those argument
positions by the remaining candidates. At each position, selestrihg category if any
candidate accepts that category (this bias towards string is appropriate since an unknown-
type literal does look like a string). Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot be
deduced without more clues. Also note whether any of the candidates accept a preferred data
type within the selected category. Now discard candidates that do not accept the selected
type category; furthermore, if any candidate accepts a preferred type at a given argument
position, discard candidates that accept non-preferred types for that argument.
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f.  If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Examples

Example 7-4. Factorial Function Argument Type Resolution

Thereis only onéntafac  function defined in theg_proc catalog. So the following query automatically
converts thént2 argumenttont4 :
tgl=> SELECT int4fac(int2 '4’);
int4fac

24
(1 row)
and is actually transformed by the parser to
tgl=> SELECT int4fac(int4(int2 '4"));
int4fac

Example 7-5. Substring Function Type Resolution

There are twaubstr  functions declared ipg_proc . However, only one takes two arguments, of types
text andint4 .

If called with a string constant of unspecified type, the type is matched up directly with the only candidate
function type:

tgl=> SELECT substr('1234', 3);
substr

34
(1 row)

If the string is declared to be of typarchar , as might be the case if it comes from a table, then the
parser will try to coerce it to becomext :

tgl=> SELECT substr(varchar '1234’, 3);
substr

34
1 row)
which is transformed by the parser to become
tgl=> SELECT substr(text(varchar '1234’), 3);
substr
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Note: Actually, the parser is aware that text and varchar are binary-compatible, meaning that one
can be passed to a function that accepts the other without doing any physical conversion. Therefore,
no explicit type conversion call is really inserted in this case.

And, if the function is called with aimt4 , the parser will try to convert that text :

tgl=> SELECT substr(1234, 3);
substr

34
(1 row)
which actually executes as
tgl=> SELECT substr(text(1234), 3);
substr

34
(1 row)
This succeeds because there is a conversion function text(int4) in the system catalog.

7.4. Query Targets

Values to be inserted into a table are coerced to the destination column’s data type according to the
following steps.

Query Target Type Resolution

1. Check for an exact match with the target.

2. Otherwise, try to coerce the expression to the target type. This will succeed if the two types are known
binary-compatible, or if there is a conversion function. If the expression is an unknown-type literal,
the contents of the literal string will be fed to the input conversion routine for the target type.

3. If the target is a fixed-length type (e.char orvarchar declared with a length) then try to find a
sizing function for the target type. A sizing function is a function of the same name as the type, taking
two arguments of which the first is that type and the second is an integer, and returning the same type.
If one is found, it is applied, passing the column’s declared length as the second parameter.

Example 7-6.character ~ Storage Type Conversion

For a target column declared alsaracter(20) the following query ensures that the target is sized
correctly:

tgl=> CREATE TABLE wv (v character(20));
CREATE

tgl=> INSERT INTO vv SELECT ’abc’ || 'def’;
INSERT 392905 1

140



Chapter 7. Type Conversion

tgl=> SELECT v, length(v) FROM wv;
Y | length
+
abcdef | 20
(1 row)
What has really happened here is that the two unknown literals are resohesd tdy default, allowing
the|| operator to be resolved &t concatenation. Then thext result of the operator is coerced to
bpchar (“blank-padded char”, the internal name of the character data type) to match the target column
type. (Since the parser knows thatt andbpchar are binary-compatible, this coercion is implicit and
does not insert any real function call.) Finally, the sizing functipchar(bpchar, integer) is found
in the system catalogs and applied to the operator’s result and the stored column length. This type-specific
function performs the required length check and addition of padding spaces.

7.5. UNIONand CASEConstructs

SQL UNIONconstructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union queryNTERSECTandEXCEPT
constructs resolve dissimilar types in the same wayMi©ON A CASEconstruct also uses the identical
algorithm to match up its component expressions and select a result data type.

UNIONand CASEType Resolution

1. If all inputs are of typeunknown, resolve as typeext (the preferred type for string category).
Otherwise, ignore thenknown inputs while choosing the type.

2. If the non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all the
non-unknown inputs to be implicitly coerced to it.

4. Coerce all inputs to the selected type.
Examples
Example 7-7. Underspecified Types in a Union

tgl=> SELECT text 'a’ AS "Text" UNION SELECT b’
Text

(2 rows)
Here, the unknown-type literdd” will be resolved as type text.
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Example 7-8. Type Conversion in a Simple Union

tgl=> SELECT 1.2 AS "Numeric" UNION SELECT 1;
Numeric

1.2
(2 rows)
The literal1.2 is of typenumeric , and the integer valuecan be cast implicitly taumeric , so that type
is used.

Example 7-9. Type Conversion in a Transposed Union

tgl=> SELECT 1 AS "Real"
tgl-> UNION SELECT CAST(2.2" AS REAL);
Real

2.2
(2 rows)
Here, since typesal cannot be implicitly cast tmteger , butinteger can be implicitly cast teeal |,
the union result type is resolved &l .
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Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

8.1. Introduction

The classical example for the need of an index is if there is a table similar to this:

CREATE TABLE testl (
id integer,
content varchar

)i
and the application requires a lot of queries of the form

SELECT content FROM testl WHERE id = constant

Ordinarily, the system would have to scan the erntisgl table row by row to find all matching entries.

If there are a lot of rows itestl and only a few rows (possibly zero or one) returned by the query, then
this is clearly an inefficient method. If the system were instructed to maintain an index ion toéumn,

then it could use a more efficient method for locating matching rows. For instance, it might only have to
walk a few levels deep into a search tree.

A similar approach is used in most books of non-fiction: Terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can scan
the index relatively quickly and flip to the appropriate page, and would not have to read the entire book
to find the interesting location. As it is the task of the author to anticipate the items that the readers are
most likely to look up, it is the task of the database programmer to foresee which indexes would be of
advantage.

The following command would be used to create the index omdtheolumn, as discussed:

CREATE INDEX testl_id_index ON testl (id);

The nametestl_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use tIROP INDEX:ommand. Indexes can be added to and removed from tables at
any time.

Once the index is created, no further intervention is required: the system will use the index when it thinks
it would be more efficient than a sequential table scan. But you may have to rantéZEcommand
regularly to update statistics to allow the query planner to make educated decisions. AlShagter 10

for information about how to find out whether an index is used and when and why the planner may choose
to notuse an index.

Indexes can benefidPDATE andDELETE with search conditions. Indexes can also be used in join
queries. Thus, an index defined on a column that is part of a join condition can significantly speed up
gueries with joins.
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When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should be
removed. Note that a query or data manipulation command can use at most one index per table.

8.2. Index Types

PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type is more ap-
propriate for a particular query type because of the algorithm it uses. By defaulREWTE INDEX
command will create a B-tree index, which fits the most common situations. In particular, the PostgreSQL
query optimizer will consider using a B-tree index whenever an indexed column is involved in a compar-
ison using one of these operatots:<=, =, >=, >

R-tree indexes are especially suited for spatial data. To create an R-tree index, use a command of the form
CREATE INDEXname ON table USING RTREE ¢olumn );

The PostgreSQL query optimizer will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators; &<, &>, >>, @ ~=, && (Refer toSection 6.9
about the meaning of these operators.)

The query optimizer will consider using a hash index whenever an indexed column is involved in a com-
parison using the operator. The following command is used to create a hash index:

CREATE INDEXname ON table USING HASH ¢olumn );

Note: Testing has shown PostgreSQLs hash indexes to be similar or slower than B-tree indexes,
and the index size and build time for hash indexes is much worse. Hash indexes also suffer poor
performance under high concurrency. For these reasons, hash index use is discouraged.

The B-tree index is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree index
method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index is an
implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that all of
these access methods are fully dynamic and do not have to be optimized periodically (as is the case with,
for example, static hash access methods).

8.3. Multicolumn Indexes

An index can be defined on more than one column. For example, if you have a table of this form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

);

(Say, you keep youev directory in a database...) and you frequently make queries like
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SELECT name FROM test2 WHERE major =constant AND minor = constant ;

then it may be appropriate to define an index on the columajer andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32 columns
may be specified. (This limit can be altered when building PostgreSQL; see thg filenfig.h .)

The query optimizer can use a multicolumn index for queries that involve tha fashsecutive columns

in the index (when used with appropriate operators), up to the total number of columns specified in the
index definition. For example, anindex @gn b, ¢) can be used in queries involving allafb, andc,

or in queries involving botla andb, or in queries involving onlya, but not in other combinations. (In a
query involvinga andc the optimizer might choose to use the indexdamly and treat like an ordinary
unindexed column.)

Multicolumn indexes can only be used if the clauses involving the indexed columns are joineNRith
For instance,

SELECT name FROM test2 WHERE major =constant OR minor = constant ;
cannot make use of the indeest2_mm_idx defined above to look up both columns. (It can be used to
look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are almost certainly inappropriate.

8.4. Unique Indexes

Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEXhame ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
NULL values are not considered equal.

PostgreSQL automatically creates unique indexes when a table is declared with a unique constraint or a
primary key, on the columns that make up the primary key or unique columns (a multicolumn index, if
appropriate), to enforce that constraint. A unique index can be added to a table at any later time, to add a
unique constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly.
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8.5. Functional Indexes

For afunctional indexan index is defined on the result of a function applied to one or more columns of
a single table. Functional indexes can be used to obtain fast access to data based on the result of function
calls.

For example, a common way to do case-insensitive comparisons is to usedhefunction:
SELECT * FROM testl WHERE lower(coll) = 'value’;
This query can use an index, if one has been defined on the resultlofthé&olumn)  operation:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

The function in the index definition can take more than one argument, but they must be table columns, not
constants. Functional indexes are always single-column (namely, the function result) even if the function
uses more than one input field; there cannot be multicolumn indexes that contain function calls.

Tip: The restrictions mentioned in the previous paragraph can easily be worked around by defining a
custom function to use in the index definition that computes any desired result internally.

8.6. Operator Classes
An index definition may specify aoperator clasgor each column of an index.

CREATE INDEXname ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on four-byte integers would use thig _ops class; this operator class includes comparison
functions for four-byte integers. In practice the default operator class for the column’s data type is usually
sufficient. The main point of having operator classes is that for some data types, there could be more
than one meaningful ordering. For example, we might want to sort a complex-number data type either
by absolute value or by real part. We could do this by defining two operator classes for the data type and
then selecting the proper class when making an index. There are also some operator classes with special
purposes:

« The operator classdmx_ops andbigbox_ops both support R-tree indexes on thex data type.
The difference between them is thédbox_ops scales box coordinates down, to avoid floating-point
exceptions from doing multiplication, addition, and subtraction on very large floating-point coordi-
nates. If the field on which your rectangles lie is about 20 000 units square or larger, you should use
bigbox_ops

The following query shows all defined operator classes:

SELECT am.amname AS acc_method,
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opc.opcname AS ops_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY acc_method, ops_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS acc_method,
opc.opcname AS ops_name,
opr.oprname AS ops_comp
FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid
ORDER BY acc_method, ops_name, ops_comp;

8.7. Partial Indexes

A partial indexis an index built over a subset of a table; the subset is defined by a conditional expression
(called thepredicateof the partial index). The index contains entries for only those table rows that satisfy
the predicate.

A major motivation for partial indexes is to avoid indexing common values. Since a query searching for a
common value (one that accounts for more than a few percent of all the table rows) will not use the index
anyway, there is no point in keeping those rows in the index at all. This reduces the size of the index,
which will speed up queries that do use the index. It will also speed up many table update operations
because the index does not need to be updated in all dasasiple 8-1shows a possible application of

this idea.

Example 8-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP range of
your organization but some are from elsewhere (say, employees on dial-up connections). If your searches
by IP are primarily for outside accesses, you probably do not need to index the IP range that corresponds
to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND client_ip < inet '192.168.100.255%;
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A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’'/findex.html’ AND client_ip = inet '212.78.10.32’;

A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet '192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the distribu-
tion of values is inherent (due to the nature of the application) and static (not changing over time), this is
not difficult, but if the common values are merely due to the coincidental data load this can require a lot
of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested

in; this is shown inExample 8-2 This results in the same advantages as listed above, but it prevents the

“uninteresting” values from being accessed via that index at all, even if an index scan might be profitable
in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot of care and

experimentation.

Example 8-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not incedee nr  at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on #meount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;
The order 3501 may be among the billed or among the unbilled orders.

Example 8-2also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be used
in a query only if the system can recognize that the query’s WHERE condition mathemaiticpligs

the index’s predicate. PostgreSQL does not have a sophisticated theorem prover that can recognize math-
ematically equivalent predicates that are written in different forms. (Not only is such a general theorem
prover extremely difficult to create, it would probably be too slow to be of any real use.) The system can
recognize simple inequality implications, for example<xl” implies “x < 2”; otherwise the predicate
condition must exactly match the query’'s WHERE condition or the index will not be recognized to be
usable.
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A third possible use for partial indexes does not require the index to be used in queries at all. The idea here
is to create a unique index over a subset of a table, &x@&mple 8-3 This enforces uniqueness among
the rows that satisfy the index predicate, without constraining those that do not.

Example 8-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:

CREATE TABLE tests (subject text,
target text,
success bool,
)
CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

This is a particularly efficient way of doing it when there are few successful trials and many unsuccessful
ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that data
sets with peculiar distributions will cause the system to use an index when it really should not. In that case
the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will not be much.

More information about partial indexes can be foundire case for partial indexe®artial indexing in
POSTGRES: research projeeindGeneralized Partial Indexes

8.8. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage is done vét the
PLAIN command; its application for this purpose is illustrate@action 10.1

It is difficult to formulate a general procedure for determining which indexes to set up. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation will be necessary in most cases. The rest of this section gives some tips for that.

- Always runANALYZEfirst. This command collects statistics about the distribution of the values in the
table. This information is required to guess the number of rows returned by a query, which is needed by
the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some
default values are assumed, which are almost certain to be inaccurate. Examining an application’s index
usage without having ruANALYZEis therefore a lost cause.
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- Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use proportionally reduced data sets. While selecting 1000 out of 100000 rows
could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows will
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not in
production use yet. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

« When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (described inBostgreSQL Administrator’'s Guidle~or instance,
turning off sequential scangrable_segscan ) and nested-loop joinsfable_nestloop ), which
are the most basic plans, will force the system to use a different plan. If the system still chooses a
sequential scan or nested-loop join then there is probably a more fundamental problem for why the
index is not used, for example, the query condition does not match the index. (What kind of query can
use what kind of index is explained in the previous sections.)

- If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. ERBLAIN ANALYZEcommand
can be useful here.

- Ifit turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is com-
puted from the per-row costs of each plan node times the selectivity estimate of the plan node. The costs
of the plan nodes can be tuned with run-time parameters (describedrodtgre SQL Administrator’s
Guidg. An inaccurate selectivity estimate is due to insufficient statistics. It may be possible to help this
by tuning the statistics-gathering parameters (de(ER TABLEreference).

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine the
issue.
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This chapter describes the behavior of the PostgreSQL database system when two or more sessions try
to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should be
familiar with the topics covered in this chapter.

9.1. Introduction

Unlike traditional database systems which use locks for concurrency control, PostgreSQL maintains data
consistency by using a multiversion model (Multiversion Concurrency Control, MVCC). This means that
while querying a database each transaction sees a snapshot of datalase versignas it was some

time ago, regardless of the current state of the underlying data. This protects the transaction from viewing
inconsistent data that could be caused by (other) concurrent transaction updates on the same data rows,
providingtransaction isolatiorfor each database session.

The main difference between multiversion and lock models is that in MVCC locks acquired for querying
(reading) data don't conflict with locks acquired for writing data, and so reading never blocks writing and
writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot adapt
easily to MVCC behavior. However, proper use of MVCC will generally provide better performance than
locks.

9.2. Transaction Isolation

The SQL standard defines four levels of transaction isolation in terms of three phenomena that must be
prevented between concurrent transactions. These undesirable phenomena are:

dirty read
A transaction reads data written by a concurrent uncommitted transaction.
nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

The four transaction isolation levels and the corresponding behaviors are descriladtei9-1

Table 9-1. SQL Transaction Isolation Levels
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Isolation Level Dirty Read Nonrepeatable Read |Phantom Read
Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

PostgreSQL offers the read committed and serializable isolation levels.

9.2.1. Read Committed Isolation Level

Read Committeds the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECTquery sees only data committed before the query began; it never sees either uncommitted
data or changes committed during query execution by concurrent transactions. (Howe®s Ee

does see the effects of previous updates executed within its own transaction, even though they are not yet
committed.) In effect, SELECTquery sees a snapshot of the database as of the instant that that query
begins to run. Notice that two successBMeLECT can see different data, even though they are within a
single transaction, if other transactions commit changes during execution of tISEliE&CT

UPDATEDELETE andSELECT FOR UPDAT&mmands behave the sameS& ECTin terms of search-

ing for target rows: they will only find target rows that were committed as of the query start time. However,
such a target row may have already been updated (or deleted or marked for update) by another concurrent
transaction by the time it is found. In this case, the would-be updater will wait for the first updating trans-
action to commit or roll back (if it is still in progress). If the first updater rolls back, then its effects are
negated and the second updater can proceed with updating the originally found row. If the first updater
commits, the second updater will ignore the row if the first updater deleted it, otherwise it will attempt

to apply its operation to the updated version of the row. The query search condititERElause) is
re-evaluated to see if the updated version of the row still matches the search condition. If so, the second
updater proceeds with its operation, starting from the updated version of the row.

Because of the above rule, it is possible for updating queries to see inconsistent snapshots --- they can see
the effects of concurrent updating queries that affected the same rows they are trying to update, but they
do not see effects of those queries on other rows in the database. This behavior makes Read Committed
mode unsuitable for queries that involve complex search conditions. However, it is just right for simpler
cases. For example, consider updating bank balances with transactions like

BEGIN;

UPDATE accounts SET balance balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start from the updated version of the account’s row. Because each query is affecting
only a predetermined row, letting it see the updated version of the row does not create any troublesome
inconsistency.

Since in Read Committed mode each new query starts with a new snapshot that includes all transactions
committed up to that instant, subsequent queries in the same transaction will see the effects of the com-
mitted concurrent transaction in any case. The point at issue here is whether or not gitigteguery

we see an absolutely consistent view of the database.
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The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use. However, for applications that do complex queries and updates, it
may be necessary to guarantee a more rigorously consistent view of the database than the Read Committed
mode provides.

9.2.2. Serializable Isolation Level

Serializableprovides the strictest transaction isolation. This level emulates serial transaction execution,
as if transactions had been executed one after another, serially, rather than concurrently. However, appli-
cations using this level must be prepared to retry transactions due to serialization failures.

When a transaction is on the serializable levellFAECTquery sees only data committed before the trans-
action began; it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions. (However, thELECTdoes see the effects of previous updates executed within

its own transaction, even though they are not yet committed.) This is different from Read Committed in
that theSELECTsees a snapshot as of the start of the transaction, not as of the start of the current query
within the transaction. Thus, success8E ECT within a single transaction always see the same data.

UPDATEDELETE andSELECT FOR UPDATE&bmmands behave the sames&s ECTin terms of search-

ing for target rows: they will only find target rows that were committed as of the transaction start time.
However, such a target row may have already been updated (or deleted or marked for update) by another
concurrent transaction by the time it is found. In this case, the serializable transaction will wait for the first
updating transaction to commit or roll back (if it is still in progress). If the first updater rolls back, then

its effects are negated and the serializable transaction can proceed with updating the originally found row.
But if the first updater commits (and actually updated or deleted the row, not just selected it for update)
then the serializable transaction will be rolled back with the message

ERROR: Can't serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serializable
transaction began.

When the application receives this error message, it should abort the current transaction and then retry
the whole transaction from the beginning. The second time through, the transaction sees the previously-
committed change as part of its initial view of the database, so there is no logical conflict in using the new
version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried --- read-only transactions will never have
serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent view
of the database. However, the application has to be prepared to retry transactions when concurrent up-
dates make it impossible to sustain the illusion of serial execution. Since the cost of redoing complex
transactions may be significant, this mode is recommended only when updating transactions contain logic
sufficiently complex that they may give wrong answers in Read Committed mode. Most commonly, Seri-
alizable mode is necessary when a transaction performs several successive queries that must see identical
views of the database.
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9.3. Explicit Locking

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can
be used for application-controlled locking in situations where MVCC does not give the desired behav-
ior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that
referenced tables are not dropped or modified in incompatible ways while the command executes. (For
example ALTER TABLEcannot be executed concurrently with other operations on the same table.)

9.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically by
PostgreSQL. Remember that all of these lock modes are table-level locks, even if the name contains the
word “row”. The names of the lock modes are historical. To some extent the names reflect the typical
usage of each lock mode --- but the semantics are all the same. The only real difference between one lock
mode and another is the set of lock modes with which each conflicts. Two transactions cannot hold locks
of conflicting modes on the same table at the same time. (However, a transaction never conflicts with
itself --- for example, it may acquirkCCESS EXCLUSIVEock and later acquireCCESS SHARBCck on

the same table.) Non-conflicting lock modes may be held concurrently by many transactions. Notice in
particular that some lock modes are self-conflicting (for exanfl&ESS EXCLUSIVEannot be held by

more than one transaction at a time) while others are not self-conflicting (for exahQ@&SS SHARE

can be held by multiple transactions). Once acquired, a lock mode is held till end of transaction.

To examine a list of the currently outstanding locks in a database server, ysg liiiks system view.
For more information on monitoring the status of the lock manager subsystem, referRostigee SQL
Administrator’'s Guide

Table-level lock modes
ACCESS SHARE
Conflicts with theACCESS EXCLUSIVEock mode only.

The SELECTcommand acquires a lock of this mode on referenced tables. In general, any query that
only reads a table and does not modify it will acquire this lock mode.

ROW SHARE
Conflicts with theEXCLUSIVEandACCESS EXCLUSIVEock modes.

TheSELECT FOR UPDAT&Gmmand acquires a lock of this mode on the target table(s) (in addition
to ACCESS SHARMBCcks on any other tables that are referenced but not selECtRAUPDATE

ROW EXCLUSIVE

Conflicts with theSHARE SHARE ROW EXCLUSIVEXCLUSIVE and ACCESS EXCLUSIVHock
modes.

The commandslPDATEDELETE andINSERT acquire this lock mode on the target table (in addition
to ACCESS SHARIBcks on any other referenced tables). In general, this lock mode will be acquired
by any query that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with theSHARE UPDATE EXCLUSIVEBSHARE SHARE ROW EXCLUSIVEXCLUSIVE
and ACCESS EXCLUSIVHock modes. This mode protects a table against concurrent schema
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changes antACUUMunNS.
Acquired byVACUUMwithout FULL).
SHARE

Conflicts with theROW EXCLUSIVESHARE UPDATE EXCLUSIVEBHARE ROW EXCLUSIVEX-
CLUSIVE, andACCESS EXCLUSIVEock modes. This mode protects a table against concurrent data
changes.

Acquired byCREATE INDEX
SHARE ROW EXCLUSIVE

Conflicts with theROW EXCLUSIVESHARE UPDATE EXCLUSIVESHARE SHARE ROW EXCLU-
SIVE, EXCLUSIVE, andACCESS EXCLUSIVEock modes.

This lock mode is not automatically acquired by any PostgreSQL command.
EXCLUSIVE

Conflicts with theROW SHAREROW EXCLUSIVESHARE UPDATE EXCLUSIVEHARE SHARE
ROW EXCLUSIVEEXCLUSIVE, and ACCESS EXCLUSIVHock modes. This mode allows only
concurrenACCESS SHAREH.e., only reads from the table can proceed in parallel with a transaction
holding this lock mode.

This lock mode is not automatically acquired by any PostgreSQL command.
ACCESS EXCLUSIVE

Conflicts with locks of all modessyCCESS SHARROW SHARROW EXCLUSIVESHARE UPDATE
EXCLUSIVE, SHARE SHARE ROW EXCLUSIVEXCLUSIVE, andACCESS EXCLUSIVE This mode
guarantees that the holder is the only transaction accessing the table in any way.

Acquired by theALTER TABLE DROP TABLEandVACUUM FULcommands. This is also the de-
fault lock mode folLOCK TABLEstatements that do not specify a mode explicitly.

Note: Only an ACCESS EXCLUSIVBock blocks a SELECT(without FOR UPDATEStatement.

9.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks. A row-level lock on a specific row is automat-
ically acquired when the row is updated (or deleted or marked for update). The lock is held until the
transaction commits or rolls back. Row-level locks don’t affect data querying; they bldtdes to the

same rowonly. To acquire a row-level lock on a row without actually modifying the row, select the row
with SELECT FOR UPDATHote that once a particular row-level lock is acquired, the transaction may
update the row multiple times without fear of conflicts.

PostgreSQL doesn’'t remember any information about modified rows in memory, so it has no limit to the
number of rows locked at one time. However, locking a row may cause a disk write; thus, for example,
SELECT FOR UPDATW®Ill modify selected rows to mark them and so will result in disk writes.
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In addition to table and row locks, page-level share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a tuple is fetched or
updated. Application writers normally need not be concerned with page-level locks, but we mention them
for completeness.

9.3.3. Deadlocks

Use of explicit locking can caus#geadlocks wherein two (or more) transactions each hold locks that

the other wants. For example, if transaction 1 acquires an exclusive lock on table A and then tries to
acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked table B and now
wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automatically detects
deadlock situations and resolves them by aborting one of the transactions involved, allowing the other(s)
to complete. (Exactly which transaction will be aborted is difficult to predict and should not be relied on.)

The best defense against deadlocks is generally to avoid them by being certain that all applications using
a database acquire locks on multiple objects in a consistent order. One should also ensure that the first
lock acquired on an object in a transaction is the highest mode that will be needed for that object. If it is
not feasible to verify this in advance, then deadlocks may be handled on-the-fly by retrying transactions
that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

9.4. Data Consistency Checks at the Application Level

Because readers in PostgreSQL don’t lock data, regardless of transaction isolation level, data read by one
transaction can be overwritten by another concurrent transaction. In other words, if a row is returned by
SELECTIt doesn’t mean that the row is still current at the instant it is returned (i.e., sometime after the
current query began). The row might have been modified or deleted by an already-committed transaction
that committed after this one started. Even if the row is still valid “now”, it could be changed or deleted
before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and con-
currently executing transactions may very well see different snapshots. So the whole concept of “now” is
somewhat suspect anyway. This is not normally a big problem if the client applications are isolated from
each other, but if the clients can communicate via channels outside the database then serious confusion
may ensue.

To ensure the current validity of a row and protect it against concurrent updates one masLEST
FOR UPDAT®Br an appropriattOCK TABLEStatement. §ELECT FOR UPDATBCks just the returned
rows against concurrent updates, whifeCK TABLEocks the whole table.) This should be taken into
account when porting applications to PostgreSQL from other environments.

Note: Before version 6.5 PostgreSQL used read locks, and so the above consideration is also the
case when upgrading from PostgreSQL versions prior to 6.5.
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Global validity checks require extra thought under MVCC. For example, a banking application might wish

to check that the sum of all credits in one table equals the sum of debits in another table, when both tables
are being actively updated. Comparing the results of two succeSBMECT SUM(...) commands will

not work reliably under Read Committed mode, since the second query will likely include the results of
transactions not counted by the first. Doing the two sums in a single serializable transaction will give an
accurate picture of the effects of transactions that committed before the serializable transaction started
--- but one might legitimately wonder whether the answer is still relevant by the time it is delivered.

If the serializable transaction itself applied some changes before trying to make the consistency check,
the usefulness of the check becomes even more debatable, since now it includes some but not all post-
transaction-start changes. In such cases a careful person might wish to lock all tables needed for the check,
in order to get an indisputable picture of current realitySMWAREmMode (or higher) lock guarantees that

there are no uncommitted changes in the locked table, other than those of the current transaction.

Note also that if one is relying on explicit locks to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries. An
explicit lock obtained in a serializable transaction guarantees that no other transactions modifying the
table are still running --- but if the snapshot seen by the transaction predates obtaining the lock, it may
predate some now-committed changes in the table. A serializable transaction’s snapshot is actually frozen
at the start of its first querySELECT, INSERT, UPDATE or DELETE), so it's possible to obtain explicit

locks before the snapshot is frozen.

9.5. Locking and Indexes

Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL.

The various index types are handled as follows:

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released imme-
diately after each index tuple is fetched or inserted. B-tree indexes provide the highest concurrency
without deadlock conditions.

GiST and R-tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after the state-
ment (command) is done.

Hash indexes

Share/exclusive page-level locks are used for read/write access. Locks are released after the page
is processed. Page-level locks provide better concurrency than index-level ones but are liable to
deadlocks.

In short, B-tree indexes are the recommended index type for concurrent applications.
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Query performance can be affected by many things. Some of these can be manipulated by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

10.1. Using EXPLAIN

PostgreSQL devisesquery planfor each query it is given. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance. You can EXe the
PLAIN command to see what query plan the system creates for any query. Plan-reading is an art that
deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quotedEXPLAIN are:

- Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in a
sort node.)

- Estimated total cost (If all rows are retrieved, which they may not be --- a query wifla clause
will stop short of paying the total cost, for example.)

- Estimated number of rows output by this plan node (Again, only if executed to completion.)

- Estimated average width (in bytes) of rows output by this plan node

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-page
units using some fairly arbitrary fudge factors. If you want to experiment with these factors, see the list of
run-time configuration parameters in thestgreSQL Administrator's Guide

It's important to note that the cost of an upper-level node includes the cost of all its child nodes. It's also
important to realize that the cost only reflects things that the planner/optimizer cares about. In particular,
the cost does not consider the time spent transmitting result rows to the frontend --- which could be a
pretty dominant factor in the true elapsed time, but the planner ignores it because it cannot change it by
altering the plan. (Every correct plan will output the same row set, we trust.)

Rows output is a little tricky because it i@t the number of rows processed/scanned by the query --- it
is usually less, reflecting the estimated selectivity of AtyEREIause constraints that are being applied

at this node. Ideally the top-level rows estimate will approximate the number of rows actually returned,
updated, or deleted by the query.

Here are some examples (using the regress test database\afievdM ANALYZENd 7.3 development
sources):

regression=# EXPLAIN SELECT * FROM tenkl;
QUERY PLAN

Seq Scan on tenkl (cost=0.00..333.00 rows=10000 width=148)

This is about as straightforward as it gets. If you do
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SELECT * FROM pg_class WHERE relname = 'tenkl’;

you will find out thattenkl has 233 disk pages and 10000 rows. So the cost is estimated at 233 page
reads, defined as costing 1.0 apiece, plus 1006@u*tuple_cost  which is currently 0.01 (tnSHOW
cpu_tuple_cost ).

Now let's modify the query to add WHEREoNdition:

regression=# EXPLAIN SELECT * FROM tenkl WHERE uniquel < 1000;
QUERY PLAN

Seq Scan on tenkl (cost=0.00..358.00 rows=1033 width=148)
Filter: (uniquel < 1000)

The estimate of output rows has gone down because ®WYHERElause. However, the scan will still have
to visit all 10000 rows, so the cost hasn't decreased; in fact it has gone up a bit to reflect the extra CPU
time spent checking the&yHEREondition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If you try
to duplicate this experiment, you will probably get a slightly different estimate; moreover, it will change
after eacClANALYZEcommand, because the statistics producedNwLYZEare taken from a randomized
sample of the table.

Modify the query to restrict the condition even more:

regression=# EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50;
QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

and you will see that if we make thgHEREoNdition selective enough, the planner will eventually decide

that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 rows because of
the index, so it wins despite the fact that each individual fetch is more expensive than reading a whole
disk page sequentially.

Add another clause to th#! HEREondition:
regression=# EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50 AND

regression-# stringul = 'xxx’;
QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.45 rows=1 width=148)
Index Cond: (uniquel < 50)
Filter: (stringul = 'xxx’::name)

The added clausstringul = 'xxx’ reduces the output-rows estimate, but not the cost because we
still have to visit the same set of rows. Notice that #iihgul  clause cannot be applied as an index
condition (since this index is only on thaiquel column). Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra checking.

Let’s try joining two tables, using the fields we have been discussing:
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regression=# EXPLAIN SELECT * FROM tenkl t1, tenk2 t2 WHERE tl.uniquel < 50
regression-# AND tl.unique2 = t2.uniquez;
QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)

Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and so
its cost and row count are the same because we are applyingithel < 50 WHERElause at that

node. Thel.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect row count of the
outer scan. For the inner scan, theéque2 value of the current outer-scan row is plugged into the inner
index scan to produce an index condition likainique2 =  constant .So we get the same inner-scan

plan and costs that we'd get from, sBXPLAIN SELECT * FROM tenk2 WHERE unique2 = 42. The

costs of the loop node are then set on the basis of the cost of the outer scan, plus one repetition of the inner
scan for each outer row (49 * 3.01, here), plus a little CPU time for join processing.

In this example the loop’s output row count is the same as the product of the two scans’ row counts, but
that's not true in general, because in general you can WaERElauses that mention both relations and

so can only be applied at the join point, not to either input scan. For example, if we ad¢eRE ...

AND tl.hundred < t2.hundred , that would decrease the output row count of the join node, but not
change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. SEctts0
10.3)

regression=# SET enable_nestloop = off;

SET
regression=# EXPLAIN SELECT * FROM tenkl tl1, tenk2 t2 WHERE tl.uniquel < 50
regression-# AND tl.unique2 = t2.uniquez;

QUERY PLAN

Hash Join (cost=179.45..563.06 rows=49 width=296)
Hash Cond: ("outer".unique2 = "inner".unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..333.00 rows=10000 width=148)
-> Hash (cost=179.33..179.33 rows=49 width=148)
-> Index Scan using tenkl_uniquel on tenkl tl
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

This plan proposes to extract the 50 interesting roms@l using ye same olde index scan, stash them
into an in-memory hash table, and then do a sequential scamk¥ , probing into the hash table for
possible matches af.unique2 = t2.unique2 at eachtenk2 row. The cost to reatknkl and set

up the hash table is entirely start-up cost for the hash join, since we won't get any rows out until we can
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start readingenk2 . The total time estimate for the join also includes a hefty charge for the CPU time to
probe the hash table 10000 times. Note, however, that weaicharging 10000 times 179.33; the hash
table setup is only done once in this plan type.

Itis possible to check on the accuracy of the planner’s estimated costs byEx$hgIN ANALYZE This
command actually executes the query, and then displays the true run time accumulated within each plan
node along with the same estimated costs that a gl&RLAIN shows. For example, we might get a result

like this:

regression=# EXPLAIN ANALYZE

regression-# SELECT * FROM tenkl tl1, tenk2 t2

regression-# WHERE tl.uniquel < 50 AND tl.unique2 = t2.unique2;
QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
(actual time=1.18..29.82 rows=50 loops=1)
-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
(actual time=0.63..8.91 rows=50 loops=1)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
(actual time=0.29..0.32 rows=1 loops=50)
Index Cond: ("outer".unique2 = t2.unique2)
Total runtime: 31.60 msec

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention to
is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the

inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the “loops”

value reports the total number of executions of the node, and the actual time and rows values shown are

averages per-execution. This is done to make the numbers comparable with the way that the cost estimates
are shown. Multiply by the “loops” value to get the total time actually spent in the node.

The Total runtime shown byEXPLAIN ANALYZEincludes executor start-up and shut-down time, as

well as time spent processing the result rows. It does not include parsing, rewriting, or planning time. For
a SELECTquery, the total run time will normally be just a little larger than the total time reported for the
top-level plan node. FONSERT, UPDATE andDELETEcommands, the total run time may be considerably
larger, because it includes the time spent processing the result rows. In these commands, the time for the
top plan node essentially is the time spent computing the new rows and/or locating the old ones, but it
doesn't include the time spent making the changes.

It is worth noting thaEXPLAIN results should not be extrapolated to situations other than the one you are
actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables. The
planner’s cost estimates are not linear and so it may well choose a different plan for a larger or smaller
table. An extreme example is that on a table that only occupies one disk page, you'll nearly always get a
sequential scan plan whether indexes are available or not. The planner realizes that it's going to take one
disk page read to process the table in any case, so there’s no value in expending additional page reads to
look at an index.
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10.2. Statistics Used by the Planner

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kepf iclass 's reltuples ~ and
relpages columns. We can look at it with queries similar to this one:

regression=# SELECT relname, relkind, reltuples, relpages FROM pg_class
regression-# WHERE relname LIKE ’'tenk1%’;

relname | relkind | reltuples | relpages
tenkl [ r | 10000 | 233
tenkl_hundred | i | 10000 | 30
tenk1_uniquel | i | 10000 | 30
tenkl_unique2 | i | 10000 | 30
(4 rows)

Here we can see thankl contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasonsgltuples  andrelpages are not updated on-the-fly, and so they usually contain

only approximate values (which is good enough for the planner’s purposes). They are initialized with
dummy values (presently 1000 and 10 respectively) when a table is created. They are updated by certain
commands, presentfyACUUMANALYZE andCREATE INDEXA stand-aloneANALYZE that is one not

part of VACUUMgenerates an approximatétuples  value since it does not read every row of the table.

Most queries retrieve only a fraction of the rows in a table, due to havHgRElauses that restrict the
rows to be examined. The planner thus needs to make an estimateseféhtvityof WHERElauses, that
is, the fraction of rows that match each clause ofwi¢EREONdition. The information used for this task
is stored in thepg_statistic system catalog. Entries jyy_statistic are updated bpNALYZEand
VACUUM ANALYZ&Eommands, and are always approximate even when freshly updated.

Rather than look gig_statistic directly, it's better to look at its viewg_stats when examining the
statistics manuallypg_stats is designed to be more easily readable. Furthernporestats  is readable

by all, whereapg_statistic is only readable by the superuser. (This prevents unprivileged users from
learning something about the contents of other people’s tables from the statistiggy Ftags view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

regression=# SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE table-
name = 'road’;
atthame | n_distinct |
+ +

name | -0.467008 | {"I- 580 Ramp","l- 880
road ""l- 580 ""l- 680
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80 Ramp","14th St ","5th
sion Blvd","l- 880 "
thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}
(2 rows)

regression=#

Table 10-1shows the columns that existpig_stats

Table 10-1.pg_stats Columns

Name Type Description

tablename name Name of the table containing the
column

attname name Column described by this row

null_frac real Fraction of column’s entries that
are null

avg_width integer IAverage width in bytes of the

column’s entries

n_distinct real If greater than zero, the estimated
number of distinct values in the
column. If less than zero, the
negative of the number of disting¢
\values divided by the number of]
rows. (The negated form is used
whenANALYZEbelieves that the
number of distinct values is likely
to increase as the table grows; the
positive form is used when the
column seems to have a fixed
number of possible values.) For
example, -1 indicates a unique
column in which the number of
distinct values is the same as the
number of rows.

~+

most_common_vals text(] A list of the most common values
in the column. (Omitted if no
\values seem to be more comman
than any others.)

most_common_freqs real[] A list of the frequencies of the
most common values, i.e.,
number of occurrences of each
divided by total number of rows.
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Name Type Description

histogram_bounds text(] A list of values that divide the
column’s values into groups of
approximately equal population|
Themost_common_vals , if
present, are omitted from the
histogram calculation. (Omitted
column data type does not have|a
< operator, or if the
most_common_vals list
accounts for the entire
population.)

=N

correlation real Statistical correlation between
physical row ordering and logical
ordering of the column values.
This ranges from -1 to +1. Wher
the value is near -1 or +1, an
index scan on the column will be
estimated to be cheaper than
when itis near zero, due to

reduction of random access to the
disk. (Omitted if column data

type does not have a operator.)

The maximum number of entries in thest_common_vals andhistogram_bounds  arrays can be set

on a column-by-column basis using tReTER TABLE SET STATISTICScommand. The default limitis
presently 10 entries. Raising the limit may allow more accurate planner estimates to be made, particularly
for columns with irregular data distributions, at the price of consuming more spagestatistic and

slightly more time to compute the estimates. Conversely, a lower limit may be appropriate for columns
with simple data distributions.

10.3. Controlling the Planner with Explicit ~ JOIN Clauses

Beginning with PostgreSQL 7.1 it has been possible to control the query planner to some extent by using
the explicitJOIN syntax. To see why this matters, we first need some background.

In a simple join query, such as
SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that
joins A to B, using thewHEREonditiona.id = b.id , and then joins C to this joined table, using the
otherwHEREondition. Or it could join B to C and then join A to that result. Or it could join A to C and
then join them with B --- but that would be inefficient, since the full Cartesian product of A and C would
have to be formed, there being no applicable condition inthERElause to allow optimization of the

join. (All joins in the PostgreSQL executor happen between two input tables, so it's necessary to build up
the result in one or another of these fashions.) The important point is that these different join possibilities
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give semantically equivalent results but may have hugely different execution costs. Therefore, the planner
will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it's no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning may take an annoyingly long time. When there are too many input tables, the
PostgreSQL planner will switch from exhaustive searchdereticprobabilistic search through a limited
number of possibilities. (The switch-over threshold is set byGB©®O_THRESHOUDN-time parameter
described in théPostgreSQL Administrator's GuideThe genetic search takes less time, but it won't
necessarily find the best possible plan.

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider

SELECT * FROM a LEFT JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and
C. Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query.

The PostgreSQL query planner treats all expliGitN syntaxes as constraining the join order, even though
it is not logically necessary to make such a constraint for inner joins. Therefore, although all of these
gueries give the same result:

SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN ¢ WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

but the second and third take less time to plan than the first. This effect is not worth worrying about for
only three tables, but it can be a lifesaver with many tables.

You do not need to constrain the join order completely in order to cut search time, because it's OK to use
JOIN operators in a plaifFROMist. For example,

SELECT * FROM a CROSS JOIN b, ¢, d, e WHERE ..,

forces the planner to join A to B before joining them to other tables, but doesn’t constrain its choices
otherwise. In this example, the number of possible join orders is reduced by a factor of 5.

If you have a mix of outer and inner joins in a complex query, you might not want to constrain the planner’s
search for a good ordering of inner joins inside an outer join. You can’t do that directly JotNesyntax,
but you can get around the syntactic limitation by using subselects. For example,

SELECT * FROM d LEFT JOIN
(SELECT * FROM a, b, ¢ WHERE ..) AS ss
ON (..);

Here, joining D must be the last step in the query plan, but the planner is free to consider various join
orders for A, B, C.

Constraining the planner’s search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you can
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force it to choose a better order W®IN syntax --- assuming that you know of a better order, that is.
Experimentation is recommended.

10.4. Populating a Database

One may need to do a large number of table insertions when first populating a database. Here are some
tips and technigues for making that as efficient as possible.

10.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means issE®Y at the

start andCOMMITat the end. Some client libraries may do this behind your back, in which case you need
to make sure the library does it when you want it done.) If you allow each insertion to be committed
separately, PostgreSQL is doing a lot of work for each record added. An additional benefit of doing all
insertions in one transaction is that if the insertion of one record were to fail then the insertion of all
records inserted up to that point would be rolled back, so you won't be stuck with partially loaded data.

10.4.2. Use COPY FROM

Use COPY FROM STDIKD load all the records in one command, instead of using a serig¢S&RT
commands. This reduces parsing, planning, etc. overhead a great deal. If you do this then it is not necessary
to turn off autocommit, since it is only one command anyway.

10.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk-loaDRitlthen
create any indexes needed for the table. Creating an index on pre-existing data is quicker than updating it
incrementally as each record is loaded.

If you are augmenting an existing table, you @GROP INDEXIload the table, then recreate the index. Of
course, the database performance for other users may be adversely affected during the time that the index
is missing. One should also think twice before dropping unique indexes, since the error checking afforded
by the unique constraint will be lost while the index is missing.

10.4.4. Run ANALYZE Afterwards

It's a good idea to rurANALYZEor VACUUM ANALYZz&nytime you've added or updated a lot of data,
including just after initially populating a table. This ensures that the planner has up-to-date statistics about
the table. With no statistics or obsolete statistics, the planner may make poor choices of query plans,
leading to bad performance on queries that use your table.
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PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input as
strings, and are broken up into distinct fields with a preliminary determination of what kind of information
may be in the field. Each field is interpreted and either assigned a numeric value, ignored, or rejected. The
parser contains internal lookup tables for all textual fields, including months, days of the week, and time
zones.

This appendix includes information on the content of these lookup tables and describes the steps used by
the parser to decode dates and times.

A.1. Date/Time Input Interpretation

The date/time types are all decoded using a common set of routines.

Date/Time Input Interpretation
1. Break the input string into tokens and categorize each token as a string, time, time zone, or number.

a. Ifthe numeric token contains a colon)( this is a time string. Include all subsequent digits
and colons.

b.  If the numeric token contains a dash,(slash (), or two or more dots.(), this is a date
string which may have a text month.

c. Ifthe token is numeric only, then it is either a single field or an ISO 8601 concatenated date
(e.0.,19990113 for January 13, 1999) or time (e.;#1516 for 14:15:16).

d. If the token starts with a plusf or minus ¢ ), then itis either a time zone or a special field.
2. Ifthe token is a text string, match up with possible strings.
a. Do a binary-search table lookup for the token as either a special stringt¢eay., ), day
(e.g.,Thursday ), month (e.g.January ), or noise word (e.gat , on).

Set field values and bit mask for fields. For example, set year, month, daydéyr , and
additionally hour, minute, second foow.

b. If not found, do a similar binary-search table lookup to match the token with a time zone.
c. If not found, throw an error.
3. Thetoken is a number or number field.
a. If there are more than 4 digits, and if no other date fields have been previously read, then

interpret as a “concatenated date” (e19990118 ). 8 and 6 digits are interpreted as year,
month, and day, while 7 and 5 digits are interpreted as year, day of year, respectively.

b. If the token is three digits and a year has already been decoded, then interpret as day of
year.

c. If four or six digits and a year has already been read, then interpret as a time.

d. If four or more digits, then interpret as a year.
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e. Ifin European date mode, and if the day field has not yet been read, and if the value is less
than or equal to 31, then interpret as a day.
f.  If the month field has not yet been read, and if the value is less than or equal to 12, then

interpret as a month.

g. If the day field has not yet been read, and if the value is less than or equal to 31, then
interpret as a day.

h.  If two digits or four or more digits, then interpret as a year.
i.  Otherwise, throw an error.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero in
the Gregorian calendar, so numericdlBC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to 4 digits.
If the field was less than 70, then add 2000; otherwise, add 1900.

Tip: Gregorian years AD 1-99 may be entered by using 4 digits with leading zeros (e.g., 0099 is AD
99). Previous versions of PostgreSQL accepted years with three digits and with single digits, but
as of version 7.0 the rules have been tightened up to reduce the possibility of ambiguity.

A.2. Date/Time Key Words

Table A-1shows the tokens that are permissible as abbreviations for the names of the month.

Table A-1. Month Abbreviations

Month /Abbreviations
April Apr
August Aug
December Dec
February Feb
January Jan

July Jul

June Jun
March Mar
November Nov
October Oct
September Sep, Sept

Note: The month May has no explicit abbreviation, for obvious reasons.
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Table A-2shows the tokens that are permissible as abbreviations for the names of the days of the week.

Table A-2. Day of the Week Abbreviations

Day Abbreviation
Sunday Sun

Monday Mon

Tuesday Tue, Tues
Wednesday \Wed, Weds
Thursday Thu, Thur, Thurs
Friday Fri

Saturday Sat

Table A-3shows the tokens that serve various modifier purposes.

Table A-3. Date/Time Field Modifiers

Identifier Description

ABSTIME Key word ignored

AM Time is before 12:00

AT Key word ignored

JULIAN, JD, J Next field is Julian Day

ON Key word ignored

PM Time is on or after after 12:00
T Next field is time

The key wordABSTIMEIs ignored for historical reasons; in very old releases of PostgreSQL invalid fields
of type abstime were emitted asvalid Abstime . This is no longer the case however and this key
word will likely be dropped in a future release.

Table A-4shows the time zone abbreviations recognized by PostgreSQL. PostgreSQL contains internal
tabular information for time zone decoding, since there is no standard operating system interface to pro-
vide access to general, cross-time zone information. The underlying operating ysised to provide

time zone information fooutput however.

The table is organized by time zone offset from UTC, rather than alphabetically; this is intended to facili-
tate matching local usage with recognized abbreviations for cases where these might differ.

Table A-4. Time Zone Abbreviations

Time Zone Offset from UTC Description

NzZDT +13:00 New Zealand Daylight Time
IDLE +12:00 International Date Line, East
NZST +12:00 New Zealand Standard Time
NZT +12:00 New Zealand Time
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Time Zone Offset from UTC Description

AESST +11:00 Australia Eastern Summer
Standard Time

ACSST +10:30 Central Australia Summer
Standard Time

CADT +10:30 Central Australia Daylight
Savings Time

SADT +10:30 South Australian Daylight Time

AEST +10:00 /Australia Eastern Standard Time

EAST +10:00 East Australian Standard Time

GST +10:00 Guam Standard Time, USSR
Zone 9

LIGT +10:00 Melbourne, Australia

SAST +09:30 South Australia Standard Time

CAST +09:30 Central Australia Standard Time

AWSST +09:00 Australia Western Summer
Standard Time

JST +09:00 Japan Standard Time, USSR Zohe
8

KST +09:00 Korea Standard Time

MHT +09:00 Kwajalein Time

WDT +09:00 \West Australian Daylight Time

MT +08:30 Moluccas Time

AWST +08:00 Australia Western Standard Timge

CCT +08:00 China Coastal Time

WADT +08:00 West Australian Daylight Time

WST +08.00 \West Australian Standard Time

JT +07:30 Java Time

ALMST +07:00 Almaty Summer Time

WAST +07:00 \West Australian Standard Time

CXT +07:00 Christmas (Island) Time

MMT +06:30 Myannar Time

ALMT +06:00 Almaty Time

MAWT +06:00 Mawson (Antarctica) Time

10T +05:00 Indian Chagos Time

MVT +05:00 Maldives Island Time

TFT +05:00 Kerguelen Time

AFT +04:30 )Afganistan Time

EAST +04:00 Antananarivo Savings Time

MUT +04:00 Mauritius Island Time
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Time Zone Offset from UTC Description

RET +04.00 Reunion Island Time

SCT +04:00 Mahe Island Time

IRT, IT +03:30 Iran Time

EAT +03:00 /Antananarivo, Comoro Time

BT +03:00 Baghdad Time

EETDST +03:00 Eastern Europe Daylight Savings
Time

HMT +03:00 Hellas Mediterranean Time (?)

BDST +02:00 British Double Standard Time

CEST +02:00 Central European Savings Time|

CETDST +02:00 Central European Daylight
Savings Time

EET +02:00 Eastern Europe, USSR Zone 1

FWT +02:00 French Winter Time

IST +02:00 Israel Standard Time

MEST +02:00 Middle Europe Summer Time

METDST +02:00 Middle Europe Daylight Time

SST +02:00 Swedish Summer Time

BST +01:00 British Summer Time

CET +01:00 Central European Time

DNT +01.00 Dansk Normal Tid

FST +01:00 French Summer Time

MET +01:00 Middle Europe Time

MEWT +01:00 Middle Europe Winter Time

MEZ +01:00 Middle Europe Zone

NOR +01:00 Norway Standard Time

SET +01:00 Seychelles Time

SWT +01:00 Swedish Winter Time

WETDST +01:00 \Western Europe Daylight Savings
Time

GMT +00:00 Greenwich Mean Time

uT +00:00 Universal Time

UTC +00:00 Universal Time, Coordinated

z +00:00 Same as UTC

ZULU +00:00 Same as UTC

WET +00:00 \Western Europe

WAT -01:00 \West Africa Time

NDT -02:30 Newfoundland Daylight Time

ADT -03:00 Atlantic Daylight Time
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Time Zone Offset from UTC Description

AWT -03:00 (unknown)

NFT -03:30 Newfoundland Standard Time

NST -03:30 Newfoundland Standard Time

AST -04:00 Atlantic Standard Time (Canada)

ACST -04:00 /Atlantic/Porto Acre Summer
Time

ACT -05:00 Atlantic/Porto Acre Standard
Time

EDT -04:00 Eastern Daylight Time

CDT -05:00 Central Daylight Time

EST -05:00 Eastern Standard Time

CST -06:00 Central Standard Time

MDT -06:00 Mountain Daylight Time

MST -07:00 Mountain Standard Time

PDT -07:00 Pacific Daylight Time

AKDT -08:00 Alaska Daylight Time

PST -08:00 Pacific Standard Time

YDT -08:00 Yukon Daylight Time

AKST -09:00 Alaska Standard Time

HDT -09:00 Hawaii/Alaska Daylight Time

YST -09:00 Yukon Standard Time

MART -09:30 Marquesas Time

AHST -10:00 IAlaska-Hawaii Standard Time

HST -10:00 Hawaii Standard Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

Australian Time Zones. There are three naming conflicts between Australian time zone names with
time zones commonly used in North and South AmerigasT, CST, andEST. If the run-time option
AUSTRALIAN_TIMEZONESs set to true theCST, CST, EST, andSAT are interpreted as Australian time
zone names, as shownTable A-5 Ifitis false (which is the default), thesCST, CST, andEST are taken

as American time zone names, 88T is interpreted as a noise word indicating Saturday.

Table A-5. Australian Time Zone Abbreviations

Time Zone Offset from UTC Description

ACST +09:30 Central Australia Standard Time
CST +10:30 /Australian Central Standard Time
EST +10:00 Australian Eastern Standard Time
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Time Zone Offset from UTC Description
SAT +09:30 South Australian Standard Time

A.3. History of Units

Note: Contributed by José Soares (<jose@sferacarta.com  >)

The Julian Day was invented by the French scholar Joseph Justus Scaliger (1540-1609) and probably takes
its name from the Scaliger’s father, the Italian scholar Julius Caesar Scaliger (1484-1558). Astronomers
have used the Julian period to assign a unique number to every day since 1 January 4713 BC. This is the
so-called Julian Day (JD). JD 0 designates the 24 hours from noon UTC on 1 January 4713 BC to noon
UTC on 2 January 4713 BC.

The “Julian Day” is different from the “Julian Date”. The Julian date refers to the Julian calendar, which
was introduced by Julius Caesar in 45 BC. It was in common use until the 1582, when countries started
changing to the Gregorian calendar. In the Julian calendar, the tropical year is approximated as 365 1/4
days = 365.25 days. This gives an error of about 1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIlI to reform the calendar in accordance with
instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approximated as 365
+ 97 /400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical year to shift one
day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the following
rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap yeatr.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years. By
contrast, in the older Julian calendar only years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal,
and Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to
change, and the Greek orthodox countries didn’t change until the start of the 20th century. The reform was
observed by Great Britain and Dominions (including what is now the USA) in 1752. Thus 2 September
1752 was followed by 14 September 1752. This is why Unix systems hawalthprogram produce the
following:

$ cal 9 1752
September 1752
S MTu WTh F S
1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
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Note: The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime value’s
are constrained by the natural rules for dates and times according to the Gregorian calendar”. Dates
between 1752-09-03 and 1752-09-13, although eliminated in some countries by Papal fiat, conform
to “natural rules” and are hence valid dates.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century BC.
Legend has it that the Emperor Huangdi invented the calendarin 2637 BC. The People’s Republic of China
uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining festivals.
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Table B-1lists all tokens that are key words in the SQL standard and in PostgreSQL 7.3.2. Background
information can be found iection 1.1.1

SQL distinguishes betweerservedand non-reservedey words. According to the standard, reserved

key words are the only real key words; they are never allowed as identifiers. Non-reserved key words only

have a special meaning in particular contexts and can be used as identifiers in other contexts. Most non-
reserved key words are actually the names of built-in tables and functions specified by SQL. The concept
of non-reserved key words essentially only exists to declare that some predefined meaning is attached to
a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special status in
the parser as compared to an ordinary identifier. (The latter is usually the case for functions specified by
SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be used as column
labels (for exampleSELECT 55 AS CHECKeven thouglCHECKs a reserved key word).

In Table B-1in the column for PostgreSQL we classify as “non-reserved” those key words that are explic-

itly known to the parser but are allowed in most or all contexts where an identifier is expected. Some key
words that are otherwise non-reserved cannot be used as function or data type names and are marked ac-
cordingly. (Most of these words represent built-in functions or data types with special syntax. The function

or type is still available but it cannot be redefined by the user.) Labeled “reserved” are those tokens that
are only allowed as “AS” column label names (and perhaps in very few other contexts). Some reserved
key words are allowable as names for functions; this is also shown in the table.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key words
as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studyimgble B-1that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table B-1. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
ABORT non-reserved

ABS non-reserved

ABSOLUTE non-reserved reserved reserved
IACCESS non-reserved

IACTION non-reserved reserved reserved
IADA non-reserved non-reserved
IADD non-reserved reserved reserved
IADMIN reserved

AFTER non-reserved reserved

AGGREGATE non-reserved reserved

ALIAS reserved
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Key Word PostgreSQL SQL 99 SQL 92
ALL reserved reserved reserved
IALLOCATE reserved reserved
ALTER non-reserved reserved reserved
IANALYSE reserved
IANALYZE reserved
IAND reserved reserved reserved
ANY reserved reserved reserved
ARE reserved reserved
IARRAY reserved
AS reserved reserved reserved
ASC reserved reserved reserved
IASENSITIVE non-reserved
IASSERTION non-reserved reserved reserved
IASSIGNMENT non-reserved non-reserved
ASYMMETRIC non-reserved
AT non-reserved reserved reserved
ATOMIC non-reserved
AUTHORIZATION reserved (can be reserved reserved
function)
AVG non-reserved reserved
BACKWARD non-reserved
BEFORE non-reserved reserved
BEGIN non-reserved reserved reserved
BETWEEN reserved (can be non-reserved reserved
function)
BIGINT non-reserved (cannot be
function or type)
BINARY reserved (can be reserved
function)
BIT non-reserved (cannot begreserved reserved
function or type)
BITVAR non-reserved
BIT_LENGTH non-reserved reserved
BLOB reserved
BOOLEAN non-reserved (cannot beeserved
function or type)
BOTH reserved reserved reserved
BREADTH reserved
BY non-reserved reserved reserved
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Key Word PostgreSQL SQL 99 SQL 92

C non-reserved non-reserved

CACHE non-reserved

CALL reserved

CALLED non-reserved non-reserved

CARDINALITY non-reserved

CASCADE non-reserved reserved reserved

CASCADED reserved reserved

CASE reserved reserved reserved

CAST reserved reserved reserved

CATALOG reserved reserved

CATALOG_NAME non-reserved non-reserved

CHAIN non-reserved non-reserved

CHAR non-reserved (cannot begeserved reserved
function or type) T

CHARACTER non-reserved (cannot b&eserved reserved
function or type)

CHARACTERISTICS non-reserved

CHARACTER_LENGTH non-reserved reserved

CHARACTER_SET_CATA

\LOG

non-reserved

non-reserved

CHARACTER_SET_NAM

non-reserved

non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved

CHAR_LENGTH non-reserved reserved

CHECK reserved reserved reserved

CHECKED non-reserved

CHECKPOINT non-reserved

CLASS non-reserved reserved

CLASS_ORIGIN non-reserved non-reserved

CLOB reserved

CLOSE non-reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved (cannot bénon-reserved reserved
function or type)

COBOL non-reserved non-reserved

COLLATE reserved reserved reserved

COLLATION reserved reserved

COLLATION_CATALOG

non-reserved

non-reserved

COLLATION_NAME

non-reserved

non-reserved
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Key Word PostgreSQL SQL 99 SQL 92
COLLATION_SCHEMA non-reserved non-reserved
COLUMN reserved reserved reserved
COLUMN_NAME non-reserved non-reserved
COMMAND_FUNCTION non-reserved non-reserved
COMMAND_FUNCTION_CODE non-reserved

COMMENT non-reserved

COMMIT non-reserved reserved reserved
COMMITTED non-reserved non-reserved non-reserved
COMPLETION reserved

CONDITION_NUMBER non-reserved non-reserved
CONNECT reserved reserved
CONNECTION reserved reserved
CONNECTION_NAME non-reserved non-reserved
CONSTRAINT reserved reserved reserved
CONSTRAINTS non-reserved reserved reserved

CONSTRAINT_CATALOG

non-reserved

non-reserved

CONSTRAINT_NAME

non-reserved

non-reserved

CONSTRAINT_SCHEMA

non-reserved

non-reserved

CONSTRUCTOR reserved

CONTAINS non-reserved

CONTINUE reserved reserved

CONVERSION non-reserved

CONVERT non-reserved (cannot bénon-reserved reserved
function or type)

COPY non-reserved

CORRESPONDING reserved reserved

COUNT non-reserved reserved

CREATE reserved reserved reserved

CREATEDB non-reserved

CREATEUSER non-reserved

CROSS reserved (can be reserved reserved
function)

CUBE reserved

CURRENT reserved reserved

CURRENT_DATE reserved reserved reserved

CURRENT_PATH reserved

CURRENT_ROLE reserved

CURRENT_TIME reserved reserved reserved
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Key Word PostgreSQL SQL 99 SQL 92

CURRENT_TIMESTAMP |reserved reserved reserved

CURRENT_USER reserved reserved reserved

CURSOR non-reserved reserved reserved

CURSOR_NAME non-reserved non-reserved

CYCLE non-reserved reserved

DATA reserved non-reserved

DATABASE non-reserved

DATE reserved reserved

DATETIME_INTERVAL_QODE non-reserved non-reserved

DATETIME_INTERVAL_PRECISION non-reserved non-reserved

DAY non-reserved reserved reserved

DEALLOCATE non-reserved reserved reserved

DEC non-reserved (cannot bgeserved reserved
function or type) T

DECIMAL non-reserved (cannot beeserved reserved
function or type)

DECLARE non-reserved reserved reserved

DEFAULT reserved reserved reserved

DEFERRABLE reserved reserved reserved

DEFERRED non-reserved reserved reserved

DEFINED non-reserved

DEFINER non-reserved non-reserved

DELETE non-reserved reserved reserved

DELIMITER non-reserved

DELIMITERS non-reserved

DEPTH reserved

DEREF reserved

DESC reserved reserved reserved

DESCRIBE reserved reserved

DESCRIPTOR reserved reserved

DESTROY reserved

DESTRUCTOR reserved

DETERMINISTIC reserved

DIAGNOSTICS reserved reserved

DICTIONARY reserved

DISCONNECT reserved reserved

DISPATCH non-reserved
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Key Word PostgreSQL SQL 99 SQL 92
DISTINCT reserved reserved reserved
DO reserved

DOMAIN non-reserved reserved reserved
DOUBLE non-reserved reserved reserved
DROP non-reserved reserved reserved
DYNAMIC reserved

DYNAMIC_FUNCTION

non-reserved

non-reserved

DYNAMIC_FUNCTION_CODE non-reserved

EACH non-reserved reserved

ELSE reserved reserved reserved

ENCODING non-reserved

ENCRYPTED non-reserved

END reserved reserved reserved

END-EXEC reserved reserved

EQUALS reserved

ESCAPE non-reserved reserved reserved

EVERY reserved

EXCEPT reserved reserved reserved

EXCEPTION reserved reserved

EXCLUSIVE non-reserved

EXEC reserved reserved

EXECUTE non-reserved reserved reserved

EXISTING non-reserved

EXISTS non-reserved (cannot behon-reserved reserved
function or type)

EXPLAIN non-reserved

EXTERNAL non-reserved reserved reserved

EXTRACT non-reserved (cannot bénon-reserved reserved
function or type)

FALSE reserved reserved reserved

FETCH non-reserved reserved reserved

FINAL non-reserved

FIRST reserved reserved

FLOAT non-reserved (cannot begreserved reserved
function or type)

FOR reserved reserved reserved

FORCE non-reserved

FOREIGN reserved reserved reserved
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Key Word PostgreSQL SQL 99 SQL 92
FORTRAN non-reserved non-reserved
FORWARD non-reserved
FOUND reserved reserved
FREE reserved
FREEZE reserved (can be
function)
FROM reserved reserved reserved
FULL reserved (can be reserved reserved
function)
FUNCTION non-reserved reserved
G non-reserved
GENERAL reserved
GENERATED non-reserved
GET non-reserved reserved reserved
GLOBAL non-reserved reserved reserved
GO reserved reserved
GOTO reserved reserved
GRANT reserved reserved reserved
GRANTED non-reserved
GROUP reserved reserved reserved
GROUPING reserved
HANDLER non-reserved
HAVING reserved reserved reserved
HIERARCHY non-reserved
HOLD non-reserved
HOST reserved
HOUR non-reserved reserved reserved
IDENTITY reserved reserved
IGNORE reserved
ILIKE reserved (can be
function)
IMMEDIATE non-reserved reserved reserved
IMMUTABLE non-reserved
IMPLEMENTATION non-reserved
IMPLICIT non-reserved
IN reserved (can be reserved reserved
function)
INCREMENT non-reserved
INDEX non-reserved
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Key Word PostgreSQL SQL 99 SQL 92

INDICATOR reserved reserved

INFIX non-reserved

INHERITS non-reserved

INITIALIZE reserved

INITIALLY reserved reserved reserved

INNER reserved (can be reserved reserved
function)

INOUT non-reserved reserved

INPUT non-reserved reserved reserved

INSENSITIVE non-reserved non-reserved reserved

INSERT non-reserved reserved reserved

INSTANCE non-reserved

INSTANTIABLE non-reserved

INSTEAD non-reserved

INT non-reserved (cannot beeserved reserved
function or type) T

INTEGER non-reserved (cannot béeserved reserved
function or type)

INTERSECT reserved reserved reserved

INTERVAL non-reserved (cannot beeserved reserved
function or type)

INTO reserved reserved reserved

INVOKER non-reserved non-reserved

IS reserved (can be reserved reserved
function)

ISNULL reserved (can be
function)

ISOLATION non-reserved reserved reserved

ITERATE reserved

JOIN reserved (can be reserved reserved
function)

K non-reserved

KEY non-reserved reserved reserved

KEY_MEMBER non-reserved

KEY_TYPE non-reserved

LANCOMPILER non-reserved

LANGUAGE non-reserved reserved reserved

LARGE reserved

LAST reserved reserved

LATERAL reserved
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Key Word PostgreSQL SQL 99 SQL 92

LEADING reserved reserved reserved

LEFT reserved (can be reserved reserved
function)

LENGTH non-reserved non-reserved

LESS reserved

LEVEL non-reserved reserved reserved

LIKE reserved (can be reserved reserved
function)

LIMIT reserved reserved

LISTEN non-reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved

LOCALTIME reserved reserved

LOCALTIMESTAMP reserved reserved

LOCATION non-reserved

LOCATOR reserved

LOCK non-reserved

LOWER non-reserved reserved

M non-reserved

MAP reserved

MATCH non-reserved reserved reserved

MAX non-reserved reserved

MAXVALUE non-reserved

MESSAGE_LENGTH

non-reserved

non-reserved

MESSAGE_OCTET_LEN(

5TH

non-reserved

non-reserved

MESSAGE_TEXT

non-reserved

non-reserved

METHOD non-reserved

MIN non-reserved reserved
MINUTE non-reserved reserved reserved
MINVALUE non-reserved

MOD non-reserved

MODE non-reserved

MODIFIES reserved

MODIFY reserved

MODULE reserved reserved
MONTH non-reserved reserved reserved
MORE non-reserved non-reserved
MOVE non-reserved
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MUMPS non-reserved non-reserved
NAME non-reserved non-reserved
NAMES non-reserved reserved reserved
NATIONAL non-reserved reserved reserved
NATURAL reserved (can be reserved reserved
function)
NCHAR non-reserved (cannot beeserved reserved
function or type)
NCLOB reserved
NEW reserved reserved
NEXT non-reserved reserved reserved
NO non-reserved reserved reserved
NOCREATEDB non-reserved
NOCREATEUSER non-reserved
NONE non-reserved (cannot begreserved
function or type)
NOT reserved reserved reserved
NOTHING non-reserved
NOTIFY non-reserved
NOTNULL reserved (can be
function)
NULL reserved reserved reserved
NULLABLE non-reserved non-reserved
NULLIF non-reserved (cannot bénon-reserved reserved
function or type)
NUMBER non-reserved non-reserved
NUMERIC non-reserved (cannot baeserved reserved
function or type)
OBJECT reserved
OCTET_LENGTH non-reserved reserved
OF non-reserved reserved reserved
OFF reserved reserved
OFFSET reserved
OIDS non-reserved
OLD reserved reserved
ON reserved reserved reserved
ONLY reserved reserved reserved
OPEN reserved reserved
OPERATION reserved
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OPERATOR non-reserved

OPTION non-reserved reserved reserved

OPTIONS non-reserved

OR reserved reserved reserved

ORDER reserved reserved reserved

ORDINALITY reserved

ouT non-reserved reserved

OUTER reserved (can be reserved reserved
function)

OUTPUT reserved reserved

OVERLAPS reserved (can be non-reserved reserved
function)

OVERLAY non-reserved (cannot beon-reserved
function or type)

OVERRIDING non-reserved

OWNER non-reserved

PAD reserved reserved

PARAMETER reserved

PARAMETERS reserved

PARAMETER_MODE non-reserved

PARAMETER_NAME non-reserved

PARAMETER_ORDINAL_|[POSITION non-reserved

PARAMETER_SPECIFIC | CATALOG non-reserved

PARAMETER_SPECIFIC | NAME non-reserved

PARAMETER_SPECIFIC | SCHEMA non-reserved

PARTIAL non-reserved reserved reserved

PASCAL non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved reserved

PENDANT non-reserved

PLACING reserved

PLI non-reserved non-reserved

POSITION non-reserved (cannot benon-reserved reserved
function or type)

POSTFIX reserved

PRECISION non-reserved reserved reserved
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PREFIX reserved

PREORDER reserved

PREPARE non-reserved reserved reserved

PRESERVE reserved reserved

PRIMARY reserved reserved reserved

PRIOR non-reserved reserved reserved

PRIVILEGES non-reserved reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved

PUBLIC reserved reserved

READ non-reserved reserved reserved

READS reserved

REAL non-reserved (cannot begeserved reserved
function or type)

RECHECK non-reserved

RECURSIVE reserved

REF reserved

REFERENCES reserved reserved reserved

REFERENCING reserved

REINDEX non-reserved

RELATIVE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved

REPLACE non-reserved

RESET non-reserved

RESTRICT non-reserved reserved reserved

RESULT reserved

RETURN reserved

RETURNED_LENGTH

non-reserved

non-reserved

RETURNED_OCTET_LEN

N\GTH

non-reserved

non-reserved

RETURNED_SQLSTATE

non-reserved

non-reserved

RETURNS non-reserved reserved

REVOKE non-reserved reserved reserved

RIGHT reserved (can be reserved reserved
function)

ROLE reserved

ROLLBACK non-reserved reserved reserved

ROLLUP reserved
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ROUTINE reserved
ROUTINE_CATALOG non-reserved
ROUTINE_NAME non-reserved
ROUTINE_SCHEMA non-reserved
ROW non-reserved (cannot bgeserved

function or type)
ROWS reserved reserved
ROW_COUNT non-reserved non-reserved
RULE non-reserved
SAVEPOINT reserved
SCALE non-reserved non-reserved
SCHEMA non-reserved reserved reserved
SCHEMA_NAME non-reserved non-reserved
SCOPE reserved
SCROLL non-reserved reserved reserved
SEARCH reserved
SECOND non-reserved reserved reserved
SECTION reserved reserved
SECURITY non-reserved non-reserved
SELECT reserved reserved reserved
SELF non-reserved
SENSITIVE non-reserved
SEQUENCE non-reserved reserved
SERIALIZABLE non-reserved non-reserved non-reserved
SERVER_NAME non-reserved non-reserved
SESSION non-reserved reserved reserved
SESSION_USER reserved reserved reserved
SET non-reserved reserved reserved
SETOF non-reserved (cannot be

function or type)
SETS reserved
SHARE non-reserved
SHOW non-reserved
SIMILAR reserved (can be non-reserved

function)
SIMPLE non-reserved non-reserved
SIZE reserved reserved
SMALLINT non-reserved (cannot b reserved

function or type)

Teserved
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SOME reserved reserved reserved

SOURCE non-reserved

SPACE reserved reserved

SPECIFIC reserved

SPECIFICTYPE reserved

SPECIFIC_NAME non-reserved

SQL reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved

SQLSTATE reserved reserved

SQLWARNING reserved

STABLE non-reserved

START non-reserved reserved

STATE reserved

STATEMENT non-reserved reserved

STATIC reserved

STATISTICS non-reserved

STDIN non-reserved

STDOUT non-reserved

STORAGE non-reserved

STRICT non-reserved

STRUCTURE reserved

STYLE non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved

SUBLIST non-reserved

SUBSTRING non-reserved (cannot bgnon-reserved reserved
function or type)

SUM non-reserved reserved

SYMMETRIC non-reserved

SYSID non-reserved

SYSTEM non-reserved

SYSTEM_USER reserved reserved

TABLE reserved reserved reserved

TABLE_NAME non-reserved non-reserved
TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved reserved reserved
TERMINATE reserved
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THAN reserved
THEN reserved reserved reserved
TIME non-reserved (cannot begreserved reserved
function or type) T
TIMESTAMP non-reserved (cannot beeserved reserved
function or type)
TIMEZONE_HOUR reserved reserved
TIMEZONE_MINUTE reserved reserved
TO reserved reserved reserved
TOAST non-reserved
TRAILING reserved reserved reserved
TRANSACTION non-reserved reserved reserved
TRANSACTIONS_COMMITTED non-reserved
TRANSACTIONS_ROLLED_BACK non-reserved
TRANSACTION_ACTIVE non-reserved
TRANSFORM non-reserved
TRANSFORMS non-reserved
TRANSLATE non-reserved reserved
TRANSLATION reserved reserved
TREAT non-reserved (cannot beeserved
function or type)
TRIGGER non-reserved reserved
TRIGGER_CATALOG non-reserved
TRIGGER_NAME non-reserved
TRIGGER_SCHEMA non-reserved
TRIM non-reserved (cannot beon-reserved reserved
function or type)
TRUE reserved reserved reserved
TRUNCATE non-reserved
TRUSTED non-reserved
TYPE non-reserved non-reserved non-reserved
UNCOMMITTED non-reserved non-reserved
UNDER reserved
UNENCRYPTED non-reserved
UNION reserved reserved reserved
UNIQUE reserved reserved reserved
UNKNOWN non-reserved reserved reserved
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UNLISTEN non-reserved
UNNAMED non-reserved non-reserved
UNNEST reserved
UNTIL non-reserved
UPDATE non-reserved reserved reserved
UPPER non-reserved reserved
USAGE non-reserved reserved reserved
USER reserved reserved reserved
USER_DEFINED_TYPE_CATALOG non-reserved
USER_DEFINED_TYPE_NAME non-reserved
USER_DEFINED_TYPE_SCHEMA non-reserved
USING reserved reserved reserved
VACUUM non-reserved
VALID non-reserved
VALIDATOR non-reserved
VALUE reserved reserved
VALUES non-reserved reserved reserved
VARCHAR non-reserved (cannot bgeserved reserved
function or type)
VARIABLE reserved
VARYING non-reserved reserved reserved
VERBOSE reserved (can be
function)
VERSION non-reserved
VIEW non-reserved reserved reserved
VOLATILE non-reserved
WHEN reserved reserved reserved
WHENEVER reserved reserved
WHERE reserved reserved reserved
WITH non-reserved reserved reserved
WITHOUT non-reserved reserved
WORK non-reserved reserved reserved
WRITE non-reserved reserved reserved
YEAR non-reserved reserved reserved
ZONE non-reserved reserved reserved

190



Appendix C. SQL Conformance

This section attempts to outline to what extent PostgreSQL conforms to the SQL standard. Full compliance
to the standard or a complete statement about the compliance to the standard is complicated and not
particularly useful, so this section can only give an overview.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL". A revised version
of the standard is released from time to time; the most recent one appearing in 1999. That version is
refered to as ISO/IEC 9075:1999, or informally as SQL99. The version prior to that was SQL92. Post-
greSQL development tends to aim for conformance with the latest official version of the standard where
such conformance does not contradict traditional features or common sense. At the time of this writing,
ballotting is under way for a new revision of the standard, which, if approved, will eventually become the
conformance target for future PostgreSQL development.

SQL92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database products
claiming SQL standard conformance were conforming at only the Entry level, since the entire set of
features in the Intermediate and Full levels was either too voluminous or in conflict with legacy behaviors.

SQL99 defines a large set of individual features rather than the ineffectively broad three levels found in
SQL92. A large subset of these features represents the “core” features, which every conforming SQL im-
plementation must supply. The rest of the features are purely optional. Some optional features are grouped
together to form “packages”, which SQL implementations can claim conformance to, thus claiming con-
formance to particular groups of features.

The SQL99 standard is also split into 5 parts: Framework, Foundation, Call Level Interface, Persistent
Stored Modules, and Host Language Bindings. PostgreSQL only covers parts 1, 2, and 5. Part 3 is similar
to the ODBC interface, and part 4 is similar to the PL/pgSQL programming language, but exact confor-
mance is not specifically intended in either case.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed
by a list of the features defined in SQL99 which are not yet supported in PostgreSQL. Both of these
lists are approximate: There may be minor details that are nonconforming for a feature that is listed as
supported, and large parts of an unsupported feature may in fact be implemented. The main body of the
documentation always contains the most accurate information about what does and does not work.

Note: Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature is not
supported, the main feature is listed as unsupported even if some other subfeatures are supported.

C.1. Supported Features

Identifier Package Description Comment
B012 Core Embedded C
B021 Direct SQL
EO011 Core Numeric data types
EO011-01 Core INTEGER and
SMALLINT data types
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Identifier Package Description Comment

E011-02 Core REAL, DOUBLE
PRECISON, and FLOAT
data types

E011-03 Core DECIMAL and
NUMERIC data types

E011-04 Core Arithmetic operators

E011-05 Core Numeric comparison

E011-06 Core Implicit casting among
the numeric data types

E021 Core Character data types

E021-01 Core CHARACTER data type

E021-02 Core CHARACTER
VARYING data type

E021-03 Core Character literals

E021-04 Core CHARACTER_LENGTH
function

E021-05 Core OCTET_LENGTH
function

E021-06 Core SUBSTRING function

E021-07 Core Character concatenation

E021-08 Core UPPER and LOWER
functions

E021-09 Core ITRIM function

E021-10 Core Implicit casting among
the character data types

E021-11 Core POSITION function

E011-12 Core Character comparison

E031 Core Identifiers

E031-01 Core Delimited identifiers

E031-02 Core Lower case identifiers

E031-03 Core Trailing underscore

EO051 Core Basic query specification

E051-01 Core SELECT DISTINCT

E051-02 Core GROUP BY clause

E051-04 Core GROUP BY can contain
columns not in<select
list>

E051-05 Core Select list items can be |AS is required
renamed

E051-06 Core HAVING clause
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Identifier Package Description Comment

E051-07 Core Quialified * in select list

E051-08 Core Correlation names in the
FROM clause

E051-09 Core Rename columns in the
FROM clause

E061 Core Basic predicates and
search conditions

E061-01 Core Comparison predicate

E061-02 Core BETWEEN predicate

E061-03 Core IN predicate with list of
values

E061-04 Core LIKE predicate

E061-05 Core LIKE predicate ESCAPE
clause

E061-06 Core NULL predicate

E061-07 Core Quantified comparison
predicate

E061-08 Core EXISTS predicate

E061-09 Core Subqueries in
comparison predicate

E061-11 Core Subqueries in IN
predicate

E061-12 Core Subqueries in quantified
comparison predicate

E061-13 Core Correlated subqueries

E061-14 Core Search condition

EO071 Core Basic query expressions

E071-01 Core UNION DISTINCT table
operator

E071-02 Core UNION ALL table
operator

E071-03 Core EXCEPT DISTINCT
table operator

E071-05 Core Columns combined via

table operators need not
have exactly the same

data type
E071-06 Core Table operators in

subqueries
E081-01 Core SELECT privilege
E081-02 Core DELETE privilege
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Identifier Package Description Comment

E081-03 Core INSERT privilege at the
table level

E081-04 Core UPDATE privilege at the
table level

E081-06 Core REFERENCES privilege
at the table level

E091 Core Set functions

E091-01 Core AVG

E091-02 Core COUNT

E091-03 Core MAX

E091-04 Core MIN

E091-05 Core SUM

E091-06 Core ALL quantifier

E091-07 Core DISTINCT quantifier

E101 Core Basic data manipulation

E101-01 Core INSERT statement

E101-03 Core Searched UPDATE
statement

E101-04 Core Searched DELETE
statement

E111 Core Single row SELECT
statement

E121-01 Core DECLARE CURSOR

E121-02 Core ORDER BY columns
need not be in select list

E121-03 Core \Value expressions in
ORDER BY clause

E121-08 Core CLOSE statement (cursor)

E121-10 Core FETCH statement
implicit NEXT

E131 Core Null value support (nulls
in lieu of values)

E141 Core Basic integrity
constraints

E141-01 Core NOT NULL constraints

E141-02 Core UNIQUE constraints of
NOT NULL columns

E141-03 Core PRIMARY KEY
constraints

194



Appendix C. SQL Conformance

Identifier Package Description Comment

E141-04 Core Basic FOREIGN KEY
constraint with the NO
IACTION default for both
referential delete action
and referential update

action
E141-06 Core CHECK constraints
E141-07 Core Column defaults
E141-08 Core NOT NULL inferred on
PRIMARY KEY
E141-10 Core Names in a foreign key
can be specified in any
order
E151 Core Transaction support
E151-01 Core COMMIT statement
E151-02 Core ROLLBACK statement
E152-01 Core SET TRANSACTION
statement: ISOLATION
LEVEL
SERIALIZABLE clause
E161 Core SQL comments using
leading double minus
F031 Core Basic schema
manipulation
F031-01 Core CREATE TABLE

statement to create
persistent base tables

F031-02 Core CREATE VIEW
statement

F031-03 Core GRANT statement

F031-04 Core ALTER TABLE

statement: ADD
COLUMN clause

F031-13 Core DROP TABLE
statement: RESTRICT
clause

F031-16 Core DROP VIEW statement;
RESTRICT clause

F032 CASCADE drop
behavior

FO033 ALTER TABLE

statement: DROP
COLUMN clause
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Identifier Package Description Comment
F041 Core Basic joined table
F041-01 Core Inner join (but not
necessarily the INNER
keyword)
F041-02 Core INNER keyword
F041-03 Core LEFT OUTER JOIN
F041-04 Core RIGHT OUTER JOIN
F041-05 Core Outer joins can be nested
F041-07 Core The inner table in a left

or right outer join can
also be used in an inner

join

F041-08 Core All comparison operators
are supported (rather
than just =)

FO51 Core Basic date and time

F051-01 Core DATE data type
(including support of
DATE literal)

F051-02 Core TIME data type

(including support of
TIME literal) with
fractional seconds
precision of at least 0

F051-03 Core TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0 and
6
F051-04 Core Comparison predicate o
DATE, TIME, and
TIMESTAMP data typeg
F051-05 Core Explicit CAST between
datetime types and
character types

>

F051-06 Core CURRENT_DATE

F051-07 Core LOCALTIME

F051-08 Core LOCALTIMESTAMP

F052 Enhanced datetime Intervals and datetime
facilities arithmetic

196



Appendix C. SQL Conformance

Identifier Package Description Comment
F081 Core UNION and EXCEPT in
views
F111-02 READ COMMITTED
isolation level
F131 Core Grouped operations
F131-01 Core WHERE, GROUP BY,

and HAVING clauses
supported in queries with
grouped views
F131-02 Core Multiple tables
supported in queries with
grouped views

F131-03 Core Set functions supported
in queries with grouped
views

F131-04 Core Subqueries with GROUP

BY and HAVING
clauses and grouped
views

F131-05 Core Single row SELECT
with GROUP BY and
HAVING clauses and
grouped views

F171 Multiple schemas per
user

F191 Enhanced integrity Referential delete actions

management

F201 Core CAST function

F221 Core Explicit defaults

F222 INSERT statement:
DEFAULT VALUES
clause

F251 Domain support

F261 Core CASE expression

F261-01 Core Simple CASE

F261-02 Core Searched CASE

F261-03 Core NULLIF

F261-04 Core COALESCE

F271 Compound character
literals

F281 LIKE enhancements
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Identifier Package Description Comment

F302 OLAP facilities INTERSECT table
operator

F302-01 OLAP facilities INTERSECT DISTINCT|
table operator

F302-02 OLAP facilities INTERSECT ALL table
operator

F304 OLAP facilities EXCEPT ALL table
operator

F311 Core Schema definition
statement

F311-01 Core CREATE SCHEMA

F311-02 Core CREATE TABLE for
persistent base tables

F311-03 Core CREATE VIEW

F311-05 Core GRANT statement

F321 User authorization

F361 Subprogram support

F381 Extended schema
manipulation

F381-01 ALTER TABLE

statement: ALTER
COLUMN clause

F381-02 IALTER TABLE
statement: ADD
CONSTRAINT clause

F381-03 ALTER TABLE
statement: DROP
CONSTRAINT clause

F391 Long identifiers

F401 OLAP facilities Extended joined table

F401-01 OLAP facilities NATURAL JOIN

F401-02 OLAP facilities FULL OUTER JOIN

F401-03 OLAP facilities UNION JOIN

F401-04 OLAP facilities CROSS JOIN

F411 Enhanced datetime Time zone specification
facilities

F421 National character

F431-01 FETCH with explicit

NEXT
F431-04 FETCH PRIOR
F431-06 FETCH RELATIVE

198



Appendix C. SQL Conformance

Identifier Package Description Comment
F441 Extended set function
support
F471 Core Scalar subquery values
F481 Core Expanded NULL
predicate
F491 Enhanced integrity Constraint managemen
management
F511 BIT data type
F531 Temporary tables
F555 Enhanced datetime Enhanced seconds
facilities precision
F561 Full value expressions
F571 ITruth value tests
F591 OLAP facilities Derived tables
F611 Indicator data types
F651 Catalog name qualifiers
F701 Enhanced integrity Referential update
management actions
F761 Session management
F791 Insensitive cursors
F801 Full set function
S071 Enhanced object suppof®QL paths in function
and type name resolutign
S111 Enhanced object suppoi®NLY in query
expressions
S211 Enhanced object suppoftiser-defined cast
SQL/MM support functions
TO31 BOOLEAN data type
T141 SIMILAR predicate
T151 DISTINCT predicate
T191 Enhanced integrity Referential action
management RESTRICT
T201 Enhanced integrity Comparable data types
management for referential constraints
T211-01 Enhanced integrity Triggers activated on
management UPDATE, INSERT, or
DELETE of one base
table
T211-02 Enhanced integrity BEFORE triggers
management
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Identifier Package Description Comment
T211-03 Enhanced integrity AFTER triggers
management
T211-04 Enhanced integrity FOR EACH ROW
management triggers
T211-07 Enhanced integrity TRIGGER privilege
management
T231 SENSITIVE cursors
T241 START
TRANSACTION
statement
T312 OVERLAY function
T321-01 Core User-defined functions
with no overloading
T321-03 Core Function invocation
T322 PSM, SQL/MM support Overloading of

SQL-invoked functions
and procedures

T323 Explicit security for
external routines

T351 Bracketed SQL
comments (/*...*/
comments)

T441 IABS and MOD functions

T501 Enhanced EXISTS
predicate

T551 Optional key words for
default syntax

T581 Regular expression
substring function

T591 UNIQUE constraints of

possibly null columns

C.2. Unsupported Features

The following features defined in SQL99 are not implemented in the current release of PostgreSQL. In a
few cases, equivalent functionality is available.

Identifier Package Description Comment
BO11 Core Embedded Ada
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B0O13 Core Embedded COBOL
B014 Core Embedded Fortran
B0O15 Core Embedded MUMPS
B0O16 Core Embedded Pascal
BO17 Core Embedded PL/I
B031 Basic dynamic SQL
B032 Extended dynamic SQL
B032-1 <describe input
statement
B041 Extensions to embedded
SQL exception
declarations
B0O51 Enhanced execution
rights
E081 Core Basic Privileges
E081-05 Core UPDATE privilege at the
column level
E081-07 Core REFERENCES privilege
at the column level
E081-08 Core WITH GRANT OPTION
E121 Core Basic cursor support
E121-04 Core OPEN statement (cursor)
E121-06 Core Positioned UPDATE  |(cursor)
statement
E121-07 Core Positioned DELETE  |(cursor)
statement
E121-17 Core WITH HOLD cursors  |Cursor to stay open
across transactions
E152 Core Basic SET
TRANSACTION
statement
E152-02 Core SET TRANSACTION [|Syntax accepted; READ
statement: READ ONLY|JONLY not supported
and READ WRITE
clauses
E153 Core Updatable queries with
subqueries
E171 Core SQLSTATE support
F181 Multiple module support
E182 Core Module language
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Identifier Package Description Comment
F021 Core Basic information
schema
F021-01 Core COLUMNS view
F021-02 Core TABLES view
F021-03 Core VIEWS view
F021-04 Core TABLE_CONSTRAINTS
view
F021-05 Core REFERENTIAL_CONSTRAINTS
view
F021-06 Core CHECK_CONSTRAINT|S
view
FO031-19 Core REVOKE statement:
RESTRICT clause
F034 Extended REVOKE
statement
F034-01 REVOKE statement

performed by other than
the owner of a schema

object

F034-02 REVOKE statement:
GRANT OPTION FOR
clause

F034-03 REVOKE statement to

revoke a privilege that
the grantee has WITH
GRANT OPTION
F111 Isolation levels other
than SERIALIZABLE
F111-01 READ
UNCOMMITTED
isolation level
F111-03 REPEATABLE READ
isolation level

F121 Basic diagnostics
management
F121-01 GET DIAGNOSTICS
statement

F121-02 SET TRANSACTION
statement:
DIAGNOSTICS SIZE
clause

F231 Privilege Tables
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Identifier Package Description Comment

F231-01 TABLE_PRIVILEGES
view

F231-02 COLUMN_PRIVILEGES
view

F231-03 USAGE_PRIVILEGES
view

F291 UNIQUE predicate

F301 CORRESPONDING in
query expressions

F311-04 Core CREATE VIEW: WITH
CHECK OPTION

F341 Usage tables

F431 Read-only scrollable
cursors

F431-02 FETCH FIRST

F431-03 FETCH LAST

F431-05 FETCH ABSOLUTE

F451 Character set definition

F461 Named character sets

F501 Core Features and
conformance views

F501-01 Core SQL_FEATURES view

F501-02 Core SQL_SIZING view

F501-03 Core SQL_LANGUAGES
view

F502 Enhanced documentation
tables

F502-01 SQL_SIZING_PROFILES
view

F502-02 SQL_IMPLEMENTATION_INFO
view

F502-03 SQL_PACKAGES view

F521 Enhanced integrity Assertions

management

F641 OLAP facilities Row and table
constructors

F661 Simple tables

F671 Enhanced integrity Subqueries in CHECK |intentionally omitted

management
F691 Collation and translation
F711 ALTER domain
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Identifier Package Description Comment
F721 Deferrable constraints foreign keys only
F731 INSERT column
privileges
F741 Referential MATCH no partial match yet
types
F751 View CHECK
enhancements
F771 Connection management
F781 Self-referencing
operations
F811 Extended flagging
F812 Core Basic flagging
F813 Extended flagging for

"Core SQL Flagging”
and "Catalog Lookup”

only

F821 Local table references

F831 Full cursor update

F831-01 Updatable scrollable
cursors

F831-02 Updatable ordered
cursors

S011 Core Distinct data types

S011-01 Core USER_DEFINED_TYPES
view

S023 Basic object support, [Basic structured types

SQL/MM support
S024, SQL/MM support[Enhanced object suppoffEnhanced structured

types
S041 Basic object support  Basic reference types
S043 Enhanced object suppofEnhanced reference
types
S051 Basic object support  |Create table of type
S081 Enhanced object suppofBubtables
S091 SQL/MM support Basic array support PostgreSQL arrays are
different
S091-01 SQL/MM support Arrays of built-in data
types
S091-02 SQL/MM support Arrays of distinct types
S091-03 SQL/MM support Array expressions
S092 SQL/MM support Arrays of user-defined
types
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S094 Arrays of reference types
S151 Basic object support  [Type predicate IS OF
S161 Enhanced object suppo(Subtype treatment TREAT (expr AS type)
S201 SQL routines on arrays
S201-01 Array parameters
S201-02 Array as result type of
functions
S231 Enhanced object suppoistructured type locators
S232 Array locators
S241 Enhanced object suppofiransform functions
S251 User-defined orderings CREATE ORDERING
FOR
S261 Specific type method
TO11 Timestamp in
Information Schema
TO41 Basic object support  |Basic LOB data type
support
T041-01 Basic object support [ BLOB data type
T041-02 Basic object support  |CLOB data type
T041-03 Basic object support  [POSITION, LENGTH,
LOWER, TRIM,
UPPER, and
SUBSTRING functions
for LOB data types
T041-04 Basic object support  |Concatenation of LOB
data types
T041-05 Basic object support  [LOB locator:
non-holdable
T042 Extended LOB data type
support
TO51 Row types
T111 Updatable joins, unions
and columns
T121 WITH (excluding
RECURSIVE) in query
expression
T131 Recursive query
T171 LIKE clause in table CREATE TABLE T1
definition (LIKE T2)
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Identifier Package Description Comment
T211 Enhanced integrity Basic trigger capability
management, Active
database
T211-05 Enhanced integrity Ability to specify a
management search condition that

must be true before the
trigger is invoked

T211-06 Enhanced integrity Support for run-time
management rules for the interaction
of triggers and
constraints

T211-08 Enhanced integrity Multiple triggers for the
management same the event are
executed in the order in
which they were created

T212 Enhanced integrity Enhanced trigger
management capability

T251 SET TRANSACTION
statement: LOCAL
option

T261 Chained transactions

T271 Savepoints

T281 SELECT privilege with
column granularity

T301 Functional Dependencigs

T321 Core Basic SQL-invoked
routines

T321-02 Core User-defined stored
procedures with no
overloading

T321-04 Core CALL statement

T321-05 Core RETURN statement

T321-06 Core ROUTINES view

T321-07 Core PARAMETERS view

T331 Basic roles

T332 Extended roles

T401 INSERT into a cursor

T411 UPDATE statement: SE[T
ROW option

T431 OLAP facilities CUBE and ROLLUP
operations
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Identifier Package Description Comment

T461 Symmetric BETWEEN
predicate

T471 Result sets return value

T491 LATERAL derived table

T511 ITransaction counts

T541 Updatable table
references

T561 Holdable locators

T571 Array-returning external
SQL-invoked functions

T601 Local cursor references
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Symbols

$libdir, ?

aggregate, ?
aggregate function4,0

extending, ?
alias

(See label)

for table name in query, ?
all, ?
and

operator, ?
any,75, ?
anyarray,/5
arrays, ?, ?

constants, ?
Australian time zones, ?
auto-increment

(See serial)
autocommit, ?
average, ?

function, ?

B-tree
(See indexes)
backup, ?
betweeng85
bigint, 52
bigserial,55
binary strings
concatenation, ?
length, ?
bison, ?
bit strings
constants3
data type2
BLOB
(See large object)

Boolean
data type£6
operators
(See operators, logical)
box (data type), ?
BSD/OS, ?, ?

case, ?
case sensitivity
SQL commands, ?
catalogs, ?
character set encoding, ?
character strings
concatenation, ?
constants2
data types56
length, ?
cid, 73
cidr, ?
circle, ?
client authentication, ?
cluster, ?
column, ?
columns
system columns, ?
col_description122
comments
in SQL,6
comparison
operators80
concurrency, ?
conditionals, ?
configuration
server, ?
configure, ?
connection loss, ?
constants2
COPY, ?
with libpg, ?
count, ?
CREATE TABLE, ?
createdb, ?
crypt, ?
cstring,75
currval, ?
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data area

(See database cluster)
data types51, ?

constants, ?

extending, ?

numeric,52

type casts, ?
database, ?

creating, ?
database cluster, ?
date

constants, ?

current, ?

data type, ?

output format, ?

(See Also Formatting)

date style, ?
deadlock

timeout, ?
decimal

(See numeric)
DELETE, ?
Digital UNIX

(See Tru64 UNIX)
dirty read, ?
disk space, ?
disk usage, ?
DISTINCT, 2,47
double precision2
DROP TABLE, ?
duplicate, ?
dynamic loading, ?
dynamic_library_path, ?, ?

elog, ?

PL/Perl, ?
embedded SQL

inC,?
environment variables, ?
error message, ?
escaping binary strings, ?
escaping strings, ?
except48
exists, ?

Index

extending SQL, ?
types, ?

false,66
FETCH

embedded SQL, ?
files, ?
flex, ?
float4

(Seereal)
float8

(See double precision)
floating point,52
foreign key, ?
formatting,100
FreeBSD, ?,?,?
fsync, ?
function, ?, ?

internal, ?

SQL, ?
functions,80

genetic query optimization, ?
GEQO

(See genetic query optimization)
get_bit, ?
get_byte, ?
group,44
GROUP BY, ?

hash

(See indexes)
has_database_privilegE22
has_function_privilegel 22
has_language_privileg&22
has_schema_privileg#&22
has_table_privilegel,22
HAVING, ?
hierarchical database, ?
HP-UX, ?, ?
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ident, ?
identifiers,1
in, ?
index scan, ?
indexes 143
B-tree, ?
hash, ?
multicolumn,144
on functions145
partial, 147
R-tree, ?
unique,145
inet (data type), ?
inheritance, ?, ?
initlocation, ?
input function, ?
INSERT, ?
installation, ?
on Windows, ?, ?
int2
(See smallint)
int4
(See integer)
int8
(See bigint)
integer,52
internal, 75
intersection48
interval, ?
IRIX, ?
IS NULL, ?
isolation levels, ?
read committed, ?
read serializable, ?

join, ?
outer, ?
self, ?

joins, 38
cross, ?
left, 52
natural, ?
outer, ?

Index

Kerberos, ?

key words
list of, 175
syntax,1

label
column,47
table,41
language_handler5
large object, ?
LC_COLLATE, ?
Idconfig, ?
length
binary strings
(See binary strings, length)
character strings
(See character strings, length)
libperl, ?
libpgtcl, ?
libpg, ?
libpg-fe.h, ?
libpg-int.h, ?, ?
libpython, ?
like, ?
limit, 49
line, ?
Linux, ?,?, ?
locale, ?, ?
locking, ?
log files, ?

MAC address

(See macaddr)
macaddr (data type), ?
MacOS X, ?, ?
make, ?
MANPATH, ?

(See Also man pages)
max, ?
MD5, ?
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min, ?
multibyte, ?

names
qualified, ?
unqualified, ?
namespaces, ?, ?
NetBSD, ?,?, ?
network
addressed/1
nextval, ?
nonblocking connection, ?, ?
nonrepeatable read, ?
not
operator, ?
notin, ?
notice processor, ?
NOTIFY, ?, ?
nullif, ?
numeric
constants, ?
numeric (data typeh2

object identifier
data typey3
object-oriented database, ?
obj_description122
offset
with query results49
OID, ?,73
opaque/5
OpenBSD, ?,?,?
OpenSSL, ?
(See Also SSL)
operators80
logical, 80
precedence
syntax,5
or
operator, ?
Oracle, ?, ?
ORDER BY, ?, ?
output function, ?

overlay, ?
overloading, ?

password, ?

.pgpass, ?
PATH, ?
path (data type), ?
Perl, ?
PGDATA, ?
PGDATABASE, ?
PGHOST, ?
PGPASSWORD, ?
PGPORT, ?
pgtcl

closing, ?

connecting, ?,?,?,?,7?,?

connection loss, ?

creating, ?

delete, ?

export, ?

import, ?

notify, ?

opening, ?

positioning, ?, ?

query, ?

reading, ?

writing, ?
PGUSER, ?
pg_config, ?, ?
pg_conndefaults, ?
pg_connect, ?, ?,?,?,?
pg_ctl, ?
pg_dumpall, ?
pg_execute, ?
pg_function_is_visible122
pg_get_constraintdef22
pg_get_indexdefl22
pg_get_ruledefl22
pg_get_userbyid, 22
pg_get_viewdefl22
pg_hba.conf, ?
pg_ident.conf, ?
pg_lo_close, ?
pg_lo_creat, ?
pg_lo_export, ?

Index
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pg_lo_import, ?
pg_lo_lIseek, ?
pg_lo_open, ?
pg_lo_read, ?
pg_lo_tell, ?
pg_lo_unlink, ?
pg_lo_write, ?

pg_opclass_is_visibld,22
pg_operator_is_visiblg,22

pg_table_is_visible]22
pg_type_is_visible]122
phantom read, ?
PIC, ?
PL/Perl, ?
PL/pgSQL, ?
PL/Python, ?
PL/SQL, ?
PL/Tcl, ?
point, ?
polygon, ?
port, ?
postgres user, ?
postmaster, ?, ?
ps
to monitor activity, ?
psql, ?
Python, ?

qualified names, ?
query, ?
guotes
and identifiers, ?
escaping, ?

R-tree

(See indexes)
range table, ?
readline, ?
real,52
record,75
referential integrity, ?
regclassy3
regoper,/3

Index

regoperator73
regproc,/3
regprocedure?3
regression test, ?
regtype,73
regular expression86, 97
(See Also pattern matching)
reindex, ?
relation, ?
relational database, ?
row, ?
rules, ?
and views, ?

schema

current, 122
schemas, ?

current schema, ?
SCO OpenServer, ?
search path, ?

changing at runtime, ?

current,122
search_path, ?
SELECT, ?

select list, ?
semaphores, ?
sequences, ?

and serial type, ?
sequential scan, ?
serial,55
serial4,55
serial8,55
SETOF, ?

(See Also function)
setting

current,122

set,122
setval, ?
set_bit, ?
set_byte, ?
shared libraries, ?
shared memory, ?
SHMMAX, ?
SIGHUP, ?,?,?
similar to, ?
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sliced bread
(See TOAST)
smallint,52
Solaris, ?, ?, ?
some, ?
sorting
query results48
SPI
allocating space, ?,?,?,?,?,?
connecting, ?, ?,?, ?
copying tuple descriptors, ?
copying tuples, ?, ?
cursors, ?,?,?,?,?
decoding tuples, ?,?,?,?,?,?,?
disconnecting, ?
executing, ?
modifying tuples, ?
SPI_connect, ?
SPI_copytuple, ?
SPI_copytupledesc, ?
SPI_copytupleintoslot, ?
SPI_cursor_close, ?
SPI_cursor_fetch, ?
SPI_cursor_find, ?
SPI_cursor_move, ?
SPI_cursor_open, ?
SPI_exec, ?
SPI_execp, ?
SPI_finish, ?
SPI_fname, ?
SPI_fnumber, ?
SPI_freeplan, ?
SPI_freetuple, ?
SPI_freetuptable, ?
SPI_getbinval, ?
SPI_getrelname, ?
SPI_gettype, ?
SPI_gettypeid, ?
SPI_getvalue, ?
spi_lastoid, ?
SPI_modifytuple, ?
SPI_palloc, ?
SPI_pfree, ?
SPI_prepare, ?
SPI_repalloc, ?
SPI_saveplan, ?
ssh, ?
SSL, ?,?,?

Index

standard deviation, ?
statistics, ?
strings

(See character strings)
subqueries42, ?
subquery?2
substring, ?, ?, ?
sum, ?
superuser, ?
syntax

SQL,1

table, ?
Tcl, ?,?
TCP/IP, ?
text
(See character strings)
threads
with libpg, ?
tid, 73
time
constants, ?
current, ?
data type, ?
output format, ?
(See Also Formatting)
time with time zone
data type, ?
time without time zone
time, ?
time zone, ?
time zonesp5, ?
timeout
authentication, ?
deadlock, ?
timestamp
data type, ?
timestamp with time zone
data type, ?
timestamp without time zone
data type, ?
timezone
conversion, ?
TOAST, ?
and user-defined types, ?
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transaction 1D
wraparound, ?
transaction isolation level, ?
transactions, ?
trigger,75
triggers
in PL/Tcl, ?
Tru64 UNIX, ?
true,66
types
(See data types)

union,48
UnixWare, ?, ?
unqualified names, ?
UPDATE, ?
upgrading, ?, ?
user

current, 122

vacuum, ?

variance, ?

version, 7122

view, ?

views
updating, ?

void, 75

where 43

xid, 73

yacc, ?
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