
PostgreSQL 7.2 Reference Manual

The PostgreSQL Global Development Group

PostgreSQL 7.2 Reference Manual
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
Preface...v

I. SQL Commands..1

ABORT ...2
ALTER GROUP..4
ALTER TABLE...6
ALTER USER...10
ANALYZE ..12
BEGIN ..14
CHECKPOINT...16
CLOSE..17
CLUSTER...19
COMMENT..21
COMMIT ..23
COPY..25
CREATE AGGREGATE...31
CREATE CONSTRAINT TRIGGER...34
CREATE DATABASE..35
CREATE FUNCTION..38
CREATE GROUP...42
CREATE INDEX..44
CREATE LANGUAGE...48
CREATE OPERATOR..51
CREATE RULE..56
CREATE SEQUENCE..59
CREATE TABLE..63
CREATE TABLE AS..72
CREATE TRIGGER...74
CREATE TYPE...77
CREATE USER..81
CREATE VIEW..84
DECLARE..87
DELETE..90
DROP AGGREGATE...92
DROP DATABASE...94
DROP FUNCTION...96
DROP GROUP..98
DROP INDEX...99
DROP LANGUAGE...101
DROP OPERATOR...103
DROP RULE...105
DROP SEQUENCE..107
DROP TABLE...109
DROP TRIGGER..111
DROP TYPE...113
DROP USER...115
DROP VIEW...117
END ..119
EXPLAIN..121
FETCH..124

iii

GRANT...128
INSERT...131
LISTEN...134
LOAD..136
LOCK..137
MOVE ...142
NOTIFY ..144
REINDEX...147
RESET..150
REVOKE...152
ROLLBACK..154
SELECT..156
SELECT INTO..167
SET..169
SET CONSTRAINTS...173
SET SESSION AUTHORIZATION...174
SET TRANSACTION...175
SHOW...177
TRUNCATE..179
UNLISTEN...180
UPDATE..182
VACUUM ..184

II. PostgreSQL Client Applications...187

createdb...188
createlang..191
createuser..193
dropdb...195
droplang..197
dropuser...199
ecpg...201
pgaccess...206
pg_config...209
pg_dump..211
pg_dumpall..217
pg_restore..219
psql..225
pgtclsh...245
pgtksh..246
vacuumdb..247

III. PostgreSQL Server Applications ..250

initdb ...251
initlocation..253
ipcclean...254
pg_ctl...255
pg_passwd...258
postgres...260
postmaster...263

iv

Preface
The entries in thisReference Manualare meant to provide in reasonable length an authorative, com-
plete, and formal summary about the respective subjects. More information about the use of Post-
greSQL, in narrative, tutorial, or example form, may be found in other parts of the PostgreSQL doc-
umentation set. See the cross-references listed on each reference page.

TheReference Manualentries are also available as traditional “man” pages.

v

I. SQL Commands
This part contains reference information for the SQL commands supported by PostgreSQL. By “SQL”
the language in general is meant; information about the standards conformance and compatibility of
each command can be found on the respective reference page.

ABORT

Name
ABORT — abort the current transaction

Synopsis

ABORT [WORK | TRANSACTION]

Inputs

None.

Outputs

ROLLBACK

Message returned if successful.

NOTICE: ROLLBACK: no transaction in progress

If there is not any transaction currently in progress.

Description

ABORT rolls back the current transaction and causes all the updates made by the transaction to
be discarded. This command is identical in behavior to the SQL92 commandROLLBACK , and is
present only for historical reasons.

Notes

UseCOMMIT to successfully terminate a transaction.

Usage

To abort all changes:

ABORT WORK;

2

ABORT

Compatibility

SQL92

This command is a PostgreSQL extension present for historical reasons.ROLLBACK is the SQL92
equivalent command.

3

ALTER GROUP

Name
ALTER GROUP— add users to a group or remove users from a group

Synopsis

ALTER GROUPname ADD USERusername [, ...]
ALTER GROUPname DROP USERusername [, ...]

Inputs

name

The name of the group to modify.

username

Users which are to be added or removed from the group. The user names must exist.

Outputs

ALTER GROUP

Message returned if the alteration was successful.

Description

ALTER GROUP is used to add or remove users from a group. Only database superusers can use this
command. Adding a user to a group does not create the user. Similarly, removing a user from a group
does not drop the user itself.

UseCREATE GROUPto create a new group andDROP GROUPto remove a group.

Usage

Add users to a group:

ALTER GROUP staff ADD USER karl, john;

Remove a user from a group:

ALTER GROUP workers DROP USER beth;

4

ALTER GROUP

Compatibility

SQL92

There is noALTER GROUP statement in SQL92. The concept of roles is similar.

5

ALTER TABLE

Name
ALTER TABLE — change the definition of a table

Synopsis

ALTER TABLE [ONLY] table [*]
ADD [COLUMN] column type [column_constraint [...]]

ALTER TABLE [ONLY] table [*]
ALTER [COLUMN] column { SET DEFAULT value | DROP DEFAULT }

ALTER TABLE [ONLY] table [*]
ALTER [COLUMN] column SET STATISTICS integer

ALTER TABLE [ONLY] table [*]
RENAME [COLUMN]column TO newcolumn

ALTER TABLE table
RENAME TOnewtable

ALTER TABLE table
ADD table constraint definition

ALTER TABLE [ONLY] table
DROP CONSTRAINTconstraint { RESTRICT | CASCADE }

ALTER TABLE table
OWNER TOnew owner

Inputs

table

The name of an existing table to alter.

column

Name of a new or existing column.

type

Type of the new column.

newcolumn

New name for an existing column.

newtable

New name for the table.

table constraint definition

New table constraint for the table

New user

The user name of the new owner of the table.

6

ALTER TABLE

Outputs

ALTER

Message returned from column or table renaming.

ERROR

Message returned if table or column is not available.

Description

ALTER TABLE changes the definition of an existing table. TheADD COLUMNform adds a new
column to the table using the same syntax asCREATE TABLE. TheALTER COLUMN SET/DROP DE-

FAULT forms allow you to set or remove the default for the column. Note that defaults only apply to
subsequentINSERT commands; they do not cause rows already in the table to change. TheALTER

COLUMN SET STATISTICSform allows you to set the statistics-gathering target for subsequentANA-
LYZEoperations. TheRENAMEclause causes the name of a table, column, index, or sequence to change
without changing any of the data. The data will remain of the same type and size after the command
is executed. The ADDtable constraint definition clause adds a new constraint to the
table using the same syntax asCREATE TABLE. The DROP CONSTRAINTconstraint clause
drops all constraints on the table (and its children) that matchconstraint . The OWNER clause
changes the owner of the table to the usernew user .

You must own the table in order to change its schema.

Notes

The keywordCOLUMNis noise and can be omitted.

In the current implementation ofADD COLUMN, default and NOT NULL clauses for the new column
are not supported. You can use theSET DEFAULTform of ALTER TABLE to set the default later.
(You may also want to update the already existing rows to the new default value, usingUPDATE.)

In DROP CONSTRAINT, the RESTRICT keyword is required, although dependencies are not
yet checked. The CASCADE option is unsupported. Currently DROP CONSTRAINT drops only
CHECK constraints. To remove a PRIMARY or UNIQUE constraint, drop the relevant index using
the DROP INDEX command. To remove FOREIGN KEY constraints you need to recreate and
reload the table, using other parameters to theCREATE TABLEcommand.

For example, to drop all constraints on a tabledistributors :

CREATE TABLE temp AS SELECT * FROM distributors;
DROP TABLE distributors;
CREATE TABLE distributors AS SELECT * FROM temp;
DROP TABLE temp;

You must own the table in order to change it. Changing any part of the schema of a system catalog is
not permitted. ThePostgreSQL User’s Guidehas further information on inheritance.

Refer toCREATE TABLE for a further description of valid arguments.

7

ALTER TABLE

Usage

To add a column of typevarchar to a table:

ALTER TABLE distributors ADD COLUMN address VARCHAR(30);

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To add a check constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk RESTRICT;

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFER-
ENCES addresses(address) MATCH FULL;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zip-
code);

Compatibility

SQL92

The ADD COLUMNform is compliant with the exception that it does not support defaults and NOT
NULL constraints, as explained above. TheALTER COLUMNform is in full compliance.

8

ALTER TABLE

SQL92 specifies some additional capabilities forALTER TABLE statement which are not yet di-
rectly supported by PostgreSQL:

ALTER TABLE table DROP [COLUMN]column { RESTRICT | CASCADE }

Removes a column from a table. Currently, to remove an existing column the table must be
recreated and reloaded:

CREATE TABLE temp AS SELECT did, city FROM distributors;
DROP TABLE distributors;
CREATE TABLE distributors (

did DECIMAL(3) DEFAULT 1,
name VARCHAR(40) NOT NULL

);
INSERT INTO distributors SELECT * FROM temp;
DROP TABLE temp;

The clauses to rename tables, columns, indexes, and sequences are PostgreSQL extensions from
SQL92.

9

ALTER USER

Name
ALTER USER — change a database user account

Synopsis

ALTER USERusername [[WITH] option [...]]

where option can be:

[ENCRYPTED | UNENCRYPTED] PASSWORD ’password ’
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| VALID UNTIL ’ abstime ’

Inputs

username

The name of the user whose details are to be altered.

password

The new password to be used for this account.

ENCRYPTED
UNENCRYPTED

These keywords control whether the password is stored encrypted inpg_shadow . (SeeCREATE
USERfor more information about this choice.)

CREATEDB
NOCREATEDB

These clauses define a user’s ability to create databases. If CREATEDB is specified, the user
being defined will be allowed to create his own databases. Using NOCREATEDB will deny a
user the ability to create databases.

CREATEUSER
NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions.

abstime

The date (and, optionally, the time) at which this user’s password is to expire.

Outputs

ALTER USER

Message returned if the alteration was successful.

10

ALTER USER

ERROR: ALTER USER: user "username" does not exist

Error message returned if the specified user is not known to the database.

Description

ALTER USER is used to change the attributes of a user’s PostgreSQL account. Attributes not men-
tioned in the command retain their previous settings.

Only a database superuser can change privileges and password expiration with this command. Ordi-
nary users can only change their own password.

ALTER USER cannot change a user’s group memberships. UseALTER GROUPto do that.

UseCREATE USERto create a new user andDROP USERto remove a user.

Usage

Change a user password:

ALTER USER davide WITH PASSWORD ’hu8jmn3’;

Change a user’s valid until date:

ALTER USER manuel VALID UNTIL ’Jan 31 2030’;

Change a user’s valid until date, specifying that his authorization should expire at midday on 4th May
1998 using the time zone which is one hour ahead of UTC:

ALTER USER chris VALID UNTIL ’May 4 12:00:00 1998 +1’;

Give a user the ability to create other users and new databases:

ALTER USER miriam CREATEUSER CREATEDB;

Compatibility

SQL92

There is noALTER USER statement in SQL92. The standard leaves the definition of users to the
implementation.

11

ANALYZE

Name
ANALYZE — collect statistics about a database

Synopsis

ANALYZE [VERBOSE] [table [(column [, ...])]]

Inputs

VERBOSE

Enables display of progress messages.

table

The name of a specific table to analyze. Defaults to all tables.

column

The name of a specific column to analyze. Defaults to all columns.

Outputs

ANALYZE

The command is complete.

Description

ANALYZE collects statistics about the contents of PostgreSQL tables, and stores the results in the
system tablepg_statistic . Subsequently, the query planner uses the statistics to help determine
the most efficient execution plans for queries.

With no parameter,ANALYZE examines every table in the current database. With a parameter,AN-
ALYZE examines only that table. It is further possible to give a list of column names, in which case
only the statistics for those columns are updated.

Notes

It is a good idea to runANALYZE periodically, or just after making major changes in the contents of a
table. Accurate statistics will help the planner to choose the most appropriate query plan, and thereby
improve the speed of query processing. A common strategy is to runVACUUMandANALYZE once
a day during a low-usage time of day.

Unlike VACUUM FULL , ANALYZE requires only a read lock on the target table, so it can run in
parallel with other activity on the table.

12

ANALYZE

For large tables,ANALYZE takes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note however that
the statistics are only approximate, and will change slightly each timeANALYZE is run, even if the
actual table contents did not change. This may result in small changes in the planner’s estimated costs
shown byEXPLAIN .

The collected statistics usually include a list of some of the most common values in each column and
a histogram showing the approximate data distribution in each column. One or both of these may be
omitted if ANALYZE deems them uninteresting (for example, in a unique-key column, there are no
common values) or if the column data type does not support the appropriate operators. There is more
information about the statistics in theUser’s Guide.

The extent of analysis can be controlled by adjusting the per-column statistics target withALTER
TABLE ALTER COLUMN SET STATISTICS (seeALTER TABLE). The target value sets the
maximum number of entries in the most-common-value list and the maximum number of bins in
the histogram. The default target value is 10, but this can be adjusted up or down to trade off accu-
racy of planner estimates against the time taken forANALYZE and the amount of space occupied
in pg_statistic . In particular, setting the statistics target to zero disables collection of statistics
for that column. It may be useful to do that for columns that are never used as part of the WHERE,
GROUP BY, or ORDER BY clauses of queries, since the planner will have no use for statistics on
such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and
space needed to doANALYZE .

Compatibility

SQL92

There is noANALYZE statement in SQL92.

13

BEGIN

Name
BEGIN — start a transaction block

Synopsis

BEGIN [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

BEGIN

This signifies that a new transaction has been started.

NOTICE: BEGIN: already a transaction in progress

This indicates that a transaction was already in progress. The current transaction is not affected.

Description

By default, PostgreSQL executes transactions inunchained mode(also known as “autocommit” in
other database systems). In other words, each user statement is executed in its own transaction and
a commit is implicitly performed at the end of the statement (if execution was successful, otherwise
a rollback is done).BEGIN initiates a user transaction in chained mode, i.e., all user statements
after BEGIN command will be executed in a single transaction until an explicitCOMMIT, ROLL-
BACK, or execution abort. Statements in chained mode are executed much faster, because transaction
start/commit requires significant CPU and disk activity. Execution of multiple statements inside a
transaction is also required for consistency when changing several related tables.

The default transaction isolation level in PostgreSQL is READ COMMITTED, where queries in-
side the transaction see only changes committed before query execution. So, you have to useSET
TRANSACTION ISOLATION LEVEL SERIALIZABLE just afterBEGIN if you need more rig-
orous transaction isolation. In SERIALIZABLE mode queries will see only changes committed before
the entire transaction began (actually, before execution of the first DML statement in a serializable
transaction).

14

BEGIN

If the transaction is committed, PostgreSQL will ensure either that all updates are done or else that
none of them are done. Transactions have the standard ACID (atomic, consistent, isolatable, and
durable) property.

Notes

Refer toLOCK for further information about locking tables inside a transaction.

UseCOMMIT or ROLLBACKto terminate a transaction.

Usage

To begin a user transaction:

BEGIN WORK;

Compatibility

SQL92

BEGIN is a PostgreSQL language extension. There is no explicitBEGIN command in SQL92; trans-
action initiation is always implicit and it terminates either with aCOMMIT or ROLLBACK state-
ment.

Note: Many relational database systems offer an autocommit feature as a convenience.

Incidentally, theBEGIN keyword is used for a different purpose in embedded SQL. You are advised
to be careful about the transaction semantics when porting database applications.

SQL92 also requires SERIALIZABLE to be the default transaction isolation level.

15

CHECKPOINT

Name
CHECKPOINT— force a transaction log checkpoint

Synopsis

CHECKPOINT

Description

Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often. (To adjust the
automatic checkpoint interval, see the run-time configuration optionsCHECKPOINT_SEGMENTS
and CHECKPOINT_TIMEOUT.) The CHECKPOINT command forces an immediate checkpoint
when the command is issued, without waiting for a scheduled checkpoint.

A checkpoint is a point in the transaction log sequence at which all data files have been updated
to reflect the information in the log. All data files will be flushed to disk. Refer to thePostgreSQL
Administrator’s Guidefor more information about the WAL system.

Only superusers may callCHECKPOINT . The command is not intended for use during normal
operation.

See Also

PostgreSQL Administrator’s Guide

Compatibility

TheCHECKPOINT command is a PostgreSQL language extension.

16

CLOSE

Name
CLOSE — close a cursor

Synopsis

CLOSE cursor

Inputs

cursor

The name of an open cursor to close.

Outputs

CLOSE

Message returned if the cursor is successfully closed.

NOTICE PerformPortalClose: portal " cursor " not found

This warning is given ifcursor is not declared or has already been closed.

Description

CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

An implicit close is executed for every open cursor when a transaction is terminated byCOMMIT or
ROLLBACK .

Notes

PostgreSQL does not have an explicitOPEN cursor statement; a cursor is considered open when it is
declared. Use theDECLARE statement to declare a cursor.

Usage

Close the cursorliahona :

CLOSE liahona;

17

CLOSE

Compatibility

SQL92

CLOSE is fully compatible with SQL92.

18

CLUSTER

Name
CLUSTER — cluster a table according to an index

Synopsis

CLUSTER indexname ON tablename

Inputs

indexname

The name of an index.

table

The name of a table.

Outputs

CLUSTER

The clustering was done successfully.

ERROR: relation <tablerelation_number > inherits " table "

ERROR: Relation table does not exist!

Description

CLUSTER instructs PostgreSQL to cluster the table specified bytable approximately based on the
index specified byindexname . The index must already have been defined ontablename .

When a table is clustered, it is physically reordered based on the index information. The clustering
is static. In other words, as the table is updated, the changes are not clustered. No attempt is made to
keep new instances or updated tuples clustered. If one wishes, one can re-cluster manually by issuing
the command again.

Notes

The table is actually copied to a temporary table in index order, then renamed back to the original
name. For this reason, all grant permissions and other indexes are lost when clustering is performed.

In cases where you are accessing single rows randomly within a table, the actual order of the data in
the heap table is unimportant. However, if you tend to access some data more than others, and there
is an index that groups them together, you will benefit from usingCLUSTER.

19

CLUSTER

Another place whereCLUSTER is helpful is in cases where you use an index to pull out several rows
from a table. If you are requesting a range of indexed values from a table, or a single indexed value
that has multiple rows that match,CLUSTER will help because once the index identifies the heap
page for the first row that matches, all other rows that match are probably already on the same heap
page, saving disk accesses and speeding up the query.

There are two ways to cluster data. The first is with theCLUSTER command, which reorders the
original table with the ordering of the index you specify. This can be slow on large tables because the
rows are fetched from the heap in index order, and if the heap table is unordered, the entries are on
random pages, so there is one disk page retrieved for every row moved. PostgreSQL has a cache, but
the majority of a big table will not fit in the cache.

Another way to cluster data is to use

SELECT columnlist INTO TABLE newtable
FROMtable ORDER BYcolumnlist

which uses the PostgreSQL sorting code in the ORDER BY clause to match the index, and which
is much faster for unordered data. You then drop the old table, useALTER TABLE...RENAME to
renamenewtable to the old name, and recreate the table’s indexes. The only problem is that OIDs
will not be preserved. From then on,CLUSTER should be fast because most of the heap data has
already been ordered, and the existing index is used.

Usage

Cluster the employees relation on the basis of its salary attribute:

CLUSTER emp_ind ON emp;

Compatibility

SQL92

There is noCLUSTER statement in SQL92.

20

COMMENT

Name
COMMENT— define or change the comment of an object

Synopsis

COMMENT ON
[

[DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW] object_name |
COLUMNtable_name . column_name |
AGGREGATEagg_name (agg_type) |
FUNCTION func_name (arg1 , arg2 , ...) |
OPERATORop (leftoperand_type rightoperand_type) |
TRIGGER trigger_name ON table_name

] IS ’text’

Inputs

object_name, table_name, column_name, agg_name, func_name, op,
trigger_name

The name of the object to be be commented.

text

The comment to add.

Outputs

COMMENT

Message returned if the table is successfully commented.

Description

COMMENT stores a comment about a database object. Comments can be easily retrieved withpsql’s
\dd, \d+, or \l+ commands. Other user interfaces to retrieve comments can be built atop the same built-
in functions thatpsql uses, namelyobj_description() andcol_description() .

To modify a comment, issue a newCOMMENT command for the same object. Only one comment
string is stored for each object. To remove a comment, writeNULL in place of the text string. Com-
ments are automatically dropped when the object is dropped.

It should be noted that there is presently no security mechanism for comments: any user connected
to a database can see all the comments for objects in that database (although only superusers can

21

COMMENT

change comments for objects that they don’t own). Therefore, don’t put security-critical information
in comments.

Usage

Comment the tablemytable :

COMMENT ON mytable IS ’This is my table.’;

Some more examples:

COMMENT ON DATABASE my_database IS ’Development Database’;
COMMENT ON INDEX my_index IS ’Enforces uniqueness on employee id’;
COMMENT ON RULE my_rule IS ’Logs UPDATES of employee records’;
COMMENT ON SEQUENCE my_sequence IS ’Used to generate primary keys’;
COMMENT ON TABLE my_table IS ’Employee Information’;
COMMENT ON TYPE my_type IS ’Complex Number support’;
COMMENT ON VIEW my_view IS ’View of departmental costs’;
COMMENT ON COLUMN my_table.my_field IS ’Employee ID number’;
COMMENT ON AGGREGATE my_aggregate (double precision) IS ’Computes sample variance’;
COMMENT ON FUNCTION my_function (timestamp) IS ’Returns Roman Numeral’;
COMMENT ON OPERATOR ^ (text, text) IS ’Performs intersection of two text’;
COMMENT ON TRIGGER my_trigger ON my_table IS ’Used for R.I.’;

Compatibility

SQL92

There is noCOMMENT in SQL92.

22

COMMIT

Name
COMMIT — commit the current transaction

Synopsis

COMMIT [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

COMMIT

Message returned if the transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

If there is no transaction in progress.

Description

COMMIT commits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

Notes

The keywords WORK and TRANSACTION are noise and can be omitted.

UseROLLBACKto abort a transaction.

Usage

To make all changes permanent:

COMMIT WORK;

23

COMMIT

Compatibility

SQL92

SQL92 only specifies the two formsCOMMITandCOMMIT WORK. Otherwise full compatibility.

24

COPY

Name
COPY — copy data between files and tables

Synopsis

COPY [BINARY] table [WITH OIDS]
FROM { ’ filename ’ | stdin }
[[USING] DELIMITERS ’ delimiter ’]
[WITH NULL AS ’ null string ’]

COPY [BINARY] table [WITH OIDS]
TO { ’ filename ’ | stdout }
[[USING] DELIMITERS ’ delimiter ’]
[WITH NULL AS ’ null string ’]

Inputs

BINARY

Changes the behavior of field formatting, forcing all data to be stored or read in binary format
rather than as text. The DELIMITERS and WITH NULL options are irrelevant for binary format.

table

The name of an existing table.

WITH OIDS

Specifies copying the internal object id (OID) for each row.

filename

The absolute Unix file name of the input or output file.

stdin

Specifies that input comes from the client application.

stdout

Specifies that output goes to the client application.

delimiter

The character that separates fields within each row (line) of the file.

null string

The string that represents a NULL value. The default is “\N ” (backslash-N). You might prefer
an empty string, for example.

Note: On a copy in, any data item that matches this string will be stored as a NULL value,
so you should make sure that you use the same string as you used on copy out.

25

COPY

Outputs

COPY

The copy completed successfully.

ERROR: reason

The copy failed for the reason stated in the error message.

Description

COPY moves data between PostgreSQL tables and standard file-system files.COPY TO copies the
entire contents of a table to a file, whileCOPY FROM copies data from a file to a table (appending
the data to whatever is in the table already).

COPY with a file name instructs the PostgreSQL backend to directly read from or write to a file.
The file must be accessible to the backend and the name must be specified from the viewpoint of the
backend. Whenstdin or stdout is specified, data flows through the client frontend to the backend.

Tip: Do not confuse COPY with the psql instruction \copy . \copy invokes COPY FROM stdin or
COPY TO stdout , and then fetches/stores the data in a file accessible to the psql client. Thus, file
accessibility and access rights depend on the client rather than the backend when \copy is used.

Notes

COPY can only be used with plain tables, not with views.

The BINARY keyword will force all data to be stored/read as binary format rather than as text. It is
somewhat faster than the normal copy command, but a binary copy file is not portable across machine
architectures.

By default, a text copy uses a tab ("\t") character as a delimiter between fields. The field delimiter may
be changed to any other single character with the keyword phrase USING DELIMITERS. Characters
in data fields which happen to match the delimiter character will be backslash quoted.

You must haveselect accesson any table whose values are read byCOPY, and eitherinsertor update
accessto a table into which values are being inserted byCOPY. The backend also needs appropriate
Unix permissions for any file read or written byCOPY.

COPY TO neither invokes rules nor acts on column defaults. It does invoke triggers and check con-
straints.

COPY stops operation at the first error. This should not lead to problems in the event of aCOPY
FROM , but the target relation will already have received earlier rows in aCOPY TO. These rows
will not be visible or accessible, but they still occupy disk space. This may amount to a considerable
amount of wasted disk space if the failure happened well into a large copy operation. You may wish
to invokeVACUUM to recover the wasted space.

Files named in aCOPY command are read or written directly by the backend, not by the client
application. Therefore, they must reside on or be accessible to the database server machine, not the
client. They must be accessible to and readable or writable by the PostgreSQL user (the user ID the

26

COPY

server runs as), not the client.COPY naming a file is only allowed to database superusers, since it
allows writing on any file that the backend has privileges to write on.

Tip: The psql instruction \copy reads or writes files on the client machine with the client’s permis-
sions, so it is not restricted to superusers.

It is recommended that the filename used inCOPY always be specified as an absolute path. This is
enforced by the backend in the case ofCOPY TO, but forCOPY FROM you do have the option of
reading from a file specified by a relative path. The path will be interpreted relative to the backend’s
working directory (somewhere below$PGDATA), not the client’s working directory.

File Formats

Text Format

WhenCOPY TO is used without the BINARY option, the file generated will have each row (instance)
on a single line, with each column (attribute) separated by the delimiter character. Embedded delimiter
characters will be preceded by a backslash character ("\"). The attribute values themselves are strings
generated by the output function associated with each attribute type. The output function for a type
should not try to generate the backslash character; this will be handled byCOPY itself.

The actual format for each instance is

<attr1 ><separator ><attr2 ><separator >... <separator ><attr n><newline >

Note that the end of each row is marked by a Unix-style newline ("\n").COPY FROM will not
behave as desired if given a file containing DOS- or Mac-style newlines.

The OID is emitted as the first column if WITH OIDS is specified. (An error is raised if WITH OIDS
is specified for a table that does not have OIDs.)

If COPY TO is sending its output to standard output instead of a file, after the last row it will send
a backslash ("\") and a period (".") followed by a newline. Similarly, ifCOPY FROM is reading
from standard input, it will expect a backslash ("\") and a period (".") followed by a newline, as the
first three characters on a line to denote end-of-file. However,COPY FROM will terminate correctly
(followed by the backend itself) if the input connection is closed before this special end-of-file pattern
is found.

The backslash character has other special meanings. A literal backslash character is represented as
two consecutive backslashes ("\\"). A literal tab character is represented as a backslash and a tab. (If
you are using something other than tab as the column delimiter, backslash that delimiter character
to include it in data.) A literal newline character is represented as a backslash and a newline. When
loading text data not generated by PostgreSQL, you will need to convert backslash characters ("\") to
double-backslashes ("\\") to ensure that they are loaded properly.

Binary Format

The file format used forCOPY BINARY changed in PostgreSQL v7.1. The new format consists of a
file header, zero or more tuples, and a file trailer.

27

COPY

File Header

The file header consists of 24 bytes of fixed fields, followed by a variable-length header extension
area. The fixed fields are:

Signature

12-byte sequencePGBCOPY\n\377\r\n\0 --- note that the null is a required part of the signa-
ture. (The signature is designed to allow easy identification of files that have been munged by a
non-8-bit-clean transfer. This signature will be changed by newline-translation filters, dropped
nulls, dropped high bits, or parity changes.)

Integer layout field

int32 constant 0x01020304 in source’s byte order. Potentially, a reader could engage in byte-
flipping of subsequent fields if the wrong byte order is detected here.

Flags field

int32 bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB) to
31 (MSB) --- note that this field is stored with source’s endianness, as are all subsequent integer
fields. Bits 16-31 are reserved to denote critical file format issues; a reader should abort if it finds
an unexpected bit set in this range. Bits 0-15 are reserved to signal backwards-compatible format
issues; a reader should simply ignore any unexpected bits set in this range. Currently only one
flag bit is defined, and the rest must be zero:

Bit 16

if 1, OIDs are included in the dump; if 0, not

Header extension area length

int32 length in bytes of remainder of header, not including self. In the initial version this will be
zero, and the first tuple follows immediately. Future changes to the format might allow additional
data to be present in the header. A reader should silently skip over any header extension data it
does not know what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags
field is not intended to tell readers what is in the extension area. Specific design of header extension
contents is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with an int16 count of the number of fields in the tuple. (Presently, all tuples in a
table will have the same count, but that might not always be true.) Then, repeated for each field in
the tuple, there is an int16 typlen word possibly followed by field data. The typlen field is interpreted
thus:

Zero

Field is NULL. No data follows.

28

COPY

> 0

Field is a fixed-length data type. Exactly N bytes of data follow the typlen word.

-1

Field is a varlena data type. The next four bytes are the varlena header, which contains the total
value length including itself.

< -1

Reserved for future use.

For non-NULL fields, the reader can check that the typlen matches the expected typlen for the desti-
nation column. This provides a simple but very useful check that the data is as expected.

There is no alignment padding or any other extra data between fields. Note also that the format does
not distinguish whether a data type is pass-by-reference or pass-by-value. Both of these provisions
are deliberate: they might help improve portability of the files (although of course endianness and
floating-point-format issues can still keep you from moving a binary file across machines).

If OIDs are included in the dump, the OID field immediately follows the field-count word. It is a
normal field except that it’s not included in the field-count. In particular it has a typlen --- this will
allow handling of 4-byte vs 8-byte OIDs without too much pain, and will allow OIDs to be shown as
NULL if that ever proves desirable.

File Trailer

The file trailer consists of an int16 word containing -1. This is easily distinguished from a tuple’s
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Usage

The following example copies a table to standard output, using a vertical bar (|) as the field delimiter:

COPY country TO stdout USING DELIMITERS ’|’;

To copy data from a Unix file into a table country:

COPY country FROM ’/usr1/proj/bray/sql/country_data’;

Here is a sample of data suitable for copying into a table fromstdin (so it has the termination
sequence on the last line):

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE
\.

29

COPY

Note that the white space on each line is actually a TAB.

The following is the same data, output in binary format on a Linux/i586 machine. The data is shown
after filtering through the Unix utilityod -c. The table has three fields; the first ischar(2) , the second
is text , and the third isinteger . All the rows have a null value in the third field.

0000000 P G B C O P Y \n 377 \r \n \0 004 003 002 001
0000020 \0 \0 \0 \0 \0 \0 \0 \0 003 \0 377 377 006 \0 \0 \0
0000040 A F 377 377 017 \0 \0 \0 A F G H A N I S
0000060 T A N \0 \0 003 \0 377 377 006 \0 \0 \0 A L 377
0000100 377 \v \0 \0 \0 A L B A N I A \0 \0 003 \0
0000120 377 377 006 \0 \0 \0 D Z 377 377 \v \0 \0 \0 A L
0000140 G E R I A \0 \0 003 \0 377 377 006 \0 \0 \0 Z
0000160 M 377 377 \n \0 \0 \0 Z A M B I A \0 \0 003
0000200 \0 377 377 006 \0 \0 \0 Z W 377 377 \f \0 \0 \0 Z
0000220 I M B A B W E \0 \0 377 377

Compatibility

SQL92

There is noCOPY statement in SQL92.

30

CREATE AGGREGATE

Name
CREATE AGGREGATE— define a new aggregate function

Synopsis

CREATE AGGREGATEname (BASETYPE = input_data_type ,
SFUNC = sfunc , STYPE = state_type
[, FINALFUNC = ffunc]
[, INITCOND = initial_condition])

Inputs

name

The name of an aggregate function to create.

input_data_type

The input data type on which this aggregate function operates. This can be specified as ANY for
an aggregate that does not examine its input values (an example iscount(*)).

sfunc

The name of the state transition function to be called for each input data value. This is normally
a function of two arguments, the first being of typestate_type and the second of typein-
put_data_type . Alternatively, for an aggregate that does not examine its input values, the
function takes just one argument of typestate_type . In either case the function must return
a value of typestate_type . This function takes the current state value and the current input
data item, and returns the next state value.

state_type

The data type for the aggregate’s state value.

ffunc

The name of the final function called to compute the aggregate’s result after all input data has
been traversed. The function must take a single argument of typestate_type . The output data
type of the aggregate is defined as the return type of this function. Ifffunc is not specified, then
the ending state value is used as the aggregate’s result, and the output type isstate_type .

initial_condition

The initial setting for the state value. This must be a literal constant in the form accepted for the
data typestate_type . If not specified, the state value starts out NULL.

Outputs

CREATE

Message returned if the command completes successfully.

31

CREATE AGGREGATE

Description

CREATE AGGREGATE allows a user or programmer to extend PostgreSQL functionality by defin-
ing new aggregate functions. Some aggregate functions for base types such asmin(integer) and
avg(double precision) are already provided in the base distribution. If one defines new types
or needs an aggregate function not already provided, thenCREATE AGGREGATE can be used to
provide the desired features.

An aggregate function is identified by its name and input data type. Two aggregates can have the same
name if they operate on different input types. To avoid confusion, do not make an ordinary function
of the same name and input data type as an aggregate.

An aggregate function is made from one or two ordinary functions: a state transition functionsfunc ,
and an optional final calculation functionffunc . These are used as follows:

sfunc (internal-state, next-data-item) ---> next-internal-state
ffunc (internal-state) ---> aggregate-value

PostgreSQL creates a temporary variable of data typestype to hold the current internal state of the
aggregate. At each input data item, the state transition function is invoked to calculate a new internal
state value. After all the data has been processed, the final function is invoked once to calculate the
aggregate’s output value. If there is no final function then the ending state value is returned as-is.

An aggregate function may provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a field of typetext , but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts
out NULL.

If the state transition function is declared “strict”, then it cannot be called with NULL inputs. With
such a transition function, aggregate execution behaves as follows. NULL input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is NULL,
then the first non-NULL input value replaces the state value, and the transition function is invoked be-
ginning with the second non-NULL input value. This is handy for implementing aggregates likemax.
Note that this behavior is only available whenstate_type is the same asinput_data_type .
When these types are different, you must supply a non-NULL initial condition or use a non-strict
transition function.

If the state transition function is not strict, then it will be called unconditionally at each input value,
and must deal with NULL inputs and NULL transition values for itself. This allows the aggregate
author to have full control over the aggregate’s handling of NULLs.

If the final function is declared “strict”, then it will not be called when the ending state value is NULL;
instead a NULL result will be output automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning NULL. For example, the final
function foravg returns NULL when it sees there were zero input tuples.

Notes

UseDROP AGGREGATE to drop aggregate functions.

32

CREATE AGGREGATE

The parameters ofCREATE AGGREGATE can be written in any order, not just the order illustrated
above.

Usage

Refer to the chapter on aggregate functions in thePostgreSQL Programmer’s Guidefor complete
examples of usage.

Compatibility

SQL92

CREATE AGGREGATE is a PostgreSQL language extension. There is noCREATE AGGRE-
GATE in SQL92.

33

CREATE CONSTRAINT TRIGGER

Name
CREATE CONSTRAINT TRIGGER— define a new constraint trigger

Synopsis

CREATE CONSTRAINT TRIGGERname
AFTER events ON
relation constraint attributes
FOR EACH ROW EXECUTE PROCEDUREfunc ’(’ args ’)’

Inputs

name

The name of the constraint trigger.

events

The event categories for which this trigger should be fired.

relation

Table name of the triggering relation.

constraint

Actual constraint specification.

attributes

Constraint attributes.

func (args)

Function to call as part of the trigger processing.

Outputs

CREATE CONSTRAINT

Message returned if successful.

Description

CREATE CONSTRAINT TRIGGER is used from inside ofCREATE/ALTER TABLE and by
pg_dump to create the special triggers for referential integrity.

It is not intended for general use.

34

CREATE DATABASE

Name
CREATE DATABASE— create a new database

Synopsis

CREATE DATABASEname
[WITH [LOCATION = ’ dbpath ’]

[TEMPLATE = template]
[ENCODING = encoding]]

Inputs

name

The name of a database to create.

dbpath

An alternate file-system location in which to store the new database, specified as a string literal;
or DEFAULTto use the default location.

template

Name of template from which to create the new database, orDEFAULTto use the default template
(template1).

encoding

Multibyte encoding method to use in the new database. Specify a string literal name (e.g.,
’SQL_ASCII’), or an integer encoding number, orDEFAULTto use the default encoding.

Outputs

CREATE DATABASE

Message returned if the command completes successfully.

ERROR: user ’ username ’ is not allowed to create/drop databases

You must have the special CREATEDB privilege to create databases. SeeCREATE USER.

ERROR: createdb: database " name" already exists

This occurs if a database with thename specified already exists.

ERROR: database path may not contain single quotes

The database locationdbpath cannot contain single quotes. This is required so that the shell
commands that create the database directory can execute safely.

ERROR: CREATE DATABASE: may not be called in a transaction block

If you have an explicit transaction block in progress you cannot callCREATE DATABASE .
You must finish the transaction first.

35

CREATE DATABASE

ERROR: Unable to create database directory ’ path ’.

ERROR: Could not initialize database directory.

These are most likely related to insufficient permissions on the data directory, a full disk, or other
file system problems. The user under which the database server is running must have access to
the location.

Description

CREATE DATABASE creates a new PostgreSQL database. The creator becomes the owner of the
new database.

An alternate location can be specified in order to, for example, store the database on a different disk.
The path must have been prepared with theinitlocationcommand.

If the path name does not contain a slash, it is interpreted as an environment variable name, which
must be known to the server process. This way the database administrator can exercise control over
locations in which databases can be created. (A customary choice is, e.g.,PGDATA2.) If the server is
compiled withALLOW_ABSOLUTE_DBPATHS(not so by default), absolute path names, as identified by
a leading slash (e.g.,/usr/local/pgsql/data), are allowed as well.

By default, the new database will be created by cloning the standard system databasetemplate1 . A
different template can be specified by writingTEMPLATE =name. In particular, by writingTEMPLATE

= template0 , you can create a virgin database containing only the standard objects predefined by
your version of PostgreSQL. This is useful if you wish to avoid copying any installation-local objects
that may have been added totemplate1 .

The optional encoding parameter allows selection of the database encoding, if your server was com-
piled with multibyte encoding support. When not specified, it defaults to the encoding used by the
selected template database.

Optional parameters can be written in any order, not only the order illustrated above.

Notes

CREATE DATABASE is a PostgreSQL language extension.

UseDROP DATABASEto remove a database.

The programcreatedbis a shell script wrapper around this command, provided for convenience.

There are security and data integrity issues involved with using alternate database locations specified
with absolute path names, and by default only an environment variable known to the backend may be
specified for an alternate location. See the Administrator’s Guide for more information.

Although it is possible to copy a database other thantemplate1 by specifying its name as the tem-
plate, this is not (yet) intended as a general-purpose COPY DATABASE facility. We recommend that
databases used as templates be treated as read-only. See theAdministrator’s Guidefor more informa-
tion.

36

CREATE DATABASE

Usage

To create a new database:

olly=> create database lusiadas;

To create a new database in an alternate area~/private_db :

$ mkdir private_db
$ initlocation ~/private_db

The location will be initialized with username "olly".

This user will own all the files and must also own the server process.

Creating directory /home/olly/private_db

Creating directory /home/olly/private_db/base

initlocation is complete.

$ psql olly
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

\h for help with SQL commands

\? for help on internal slash commands

\g or terminate with semicolon to execute query

\q to quit

olly=> CREATE DATABASE elsewhere WITH LOCATION = ’/home/olly/private_db’;
CREATE DATABASE

Compatibility

SQL92

There is noCREATE DATABASE statement in SQL92. Databases are equivalent to catalogs whose
creation is implementation-defined.

37

CREATE FUNCTION

Name
CREATE FUNCTION— define a new function

Synopsis

CREATE [OR REPLACE] FUNCTIONname ([argtype [, ...]])
RETURNSrettype
AS ’ definition ’
LANGUAGElangname
[WITH (attribute [, ...])]

CREATE [OR REPLACE] FUNCTIONname ([argtype [, ...]])
RETURNSrettype
AS ’ obj_file ’, ’ link_symbol ’
LANGUAGElangname
[WITH (attribute [, ...])]

Description

CREATE FUNCTION defines a new function.CREATE OR REPLACE FUNCTION will either
create a new function, or replace an existing definition.

Parameters

name

The name of a function to create. The name need not be unique, because functions may be
overloaded, but functions with the same name must have different argument types.

argtype

The data type(s) of the function’s arguments, if any. The input types may be base or complex
types,opaque , or the same as the type of an existing column.Opaque indicates that the function
accepts arguments of a non-SQL type such aschar * . The type of a column is indicated using
tablename .columnname %TYPE; using this can sometimes help make a function independent
from changes to the definition of a table.

rettype

The return data type. The output type may be specified as a base type, complex type,setof

type,opaque , or the same as the type of an existing column. Thesetof modifier indicates that
the function will return a set of items, rather than a single item. Functions with a declared return
type of opaque do not return a value. These cannot be called directly; trigger functions make
use of this feature.

definition

A string defining the function; the meaning depends on the language. It may be an internal
function name, the path to an object file, an SQL query, or text in a procedural language.

obj_file , link_symbol

This form of theAS clause is used for dynamically linked C language functions when the func-
tion name in the C language source code is not the same as the name of the SQL function.

38

CREATE FUNCTION

The stringobj_file is the name of the file containing the dynamically loadable object, and
link_symbol is the object’s link symbol, that is, the name of the function in the C language
source code.

langname

May beSQL, C, internal , or plname , whereplname is the name of a created procedural
language. SeeCREATE LANGUAGEfor details. For backward compatibility, the name may be
enclosed by single quotes.

attribute

An optional piece of information about the function, used for optimization. See below for details.

The user that creates the function becomes the owner of the function.

The following attributes may appear in the WITH clause:

iscachable

Iscachable indicates that the function always returns the same result when given the same
argument values (i.e., it does not do database lookups or otherwise use information not directly
present in its parameter list). The optimizer usesiscachable to know whether it is safe to
pre-evaluate a call of the function.

isstrict

isstrict indicates that the function always returns NULL whenever any of its arguments are
NULL. If this attribute is specified, the function is not executed when there are NULL arguments;
instead a NULL result is assumed automatically. Whenisstrict is not specified, the function
will be called for NULL inputs. It is then the function author’s responsibility to check for NULLs
if necessary and respond appropriately.

Notes

Refer to the chapter in thePostgreSQL Programmer’s Guideon the topic of extending PostgreSQL
via functions for further information on writing external functions.

The full SQL type syntax is allowed for input arguments and return value. However, some details
of the type specification (e.g., the precision field fornumeric types) are the responsibility of the
underlying function implementation and are silently swallowed (i.e., not recognized or enforced) by
theCREATE FUNCTION command.

PostgreSQL allows functionoverloading; that is, the same name can be used for several different
functions so long as they have distinct argument types. This facility must be used with caution for
internal and C-language functions, however.

Two internal functions cannot have the same C name without causing errors at link time. To get
around that, give them different C names (for example, use the argument types as part of the C names),
then specify those names in the AS clause ofCREATE FUNCTION . If the AS clause is left empty,
thenCREATE FUNCTION assumes the C name of the function is the same as the SQL name.

Similarly, when overloading SQL function names with multiple C-language functions, give each C-
language instance of the function a distinct name, then use the alternative form of theAS clause
in the CREATE FUNCTION syntax to select the appropriate C-language implementation of each
overloaded SQL function.

39

CREATE FUNCTION

When repeatedCREATE FUNCTION calls refer to the same object file, the file is only loaded once.
To unload and reload the file (perhaps during development), use theLOADcommand.

UseDROP FUNCTION to remove user-defined functions.

To update the definition of an existing function, useCREATE OR REPLACE FUNCTION . Note
that it is not possible to change the name or argument types of a function this way (if you tried,
you’d just be creating a new, distinct function). Also,CREATE OR REPLACE FUNCTION will
not let you change the return type of an existing function. To do that, you must drop and re-create the
function.

If you drop and then re-create a function, the new function is not the same entity as the old; you
will break existing rules, views, triggers, etc that referred to the old function. UseCREATE OR
REPLACE FUNCTION to change a function definition without breaking objects that refer to the
function.

Examples

To create a simple SQL function:

CREATE FUNCTION one() RETURNS integer
AS ’SELECT 1 AS RESULT;’
LANGUAGE SQL;

SELECT one() AS answer;
answer

1

The next example creates a C function by calling a routine from a user-created shared library named
funcs.so (the extension may vary across platforms). The shared library file is sought in the server’s
dynamic library search path. This particular routine calculates a check digit and returns TRUE if the
check digit in the function parameters is correct. It is intended for use in a CHECK constraint.

CREATE FUNCTION ean_checkdigit(char, char) RETURNS boolean
AS ’funcs’ LANGUAGE C;

CREATE TABLE product (
id char(8) PRIMARY KEY,
eanprefix char(8) CHECK (eanprefix ~ ’[0-9]{2}-[0-9]{5}’)

REFERENCES brandname(ean_prefix),
eancode char(6) CHECK (eancode ~ ’[0-9]{6}’),
CONSTRAINT ean CHECK (ean_checkdigit(eanprefix, eancode))

);

This example creates a function that does type conversion between the user-defined type complex, and
the internal type point. The function is implemented by a dynamically loaded object that was compiled
from C source (we illustrate the now-deprecated alternative of specifying the exact pathname to the
shared object file). For PostgreSQL to find a type conversion function automatically, the SQL function
has to have the same name as the return type, and so overloading is unavoidable. The function name
is overloaded by using the second form of theAS clause in the SQL definition:

CREATE FUNCTION point(complex) RETURNS point

40

CREATE FUNCTION

AS ’/home/bernie/pgsql/lib/complex.so’, ’complex_to_point’
LANGUAGE C;

The C declaration of the function could be:

Point * complex_to_point (Complex *z)
{

Point *p;

p = (Point *) palloc(sizeof(Point));
p->x = z->x;
p->y = z->y;

return p;
}

Compatibility

A CREATE FUNCTION command is defined in SQL99. The PostgreSQL version is similar but not
compatible. The attributes are not portable, neither are the different available languages.

See Also

DROP FUNCTION, LOAD, PostgreSQL Programmer’s Guide

41

CREATE GROUP

Name
CREATE GROUP— define a new user group

Synopsis

CREATE GROUPname [[WITH] option [...]]

where option can be:

SYSID gid
| USER username [, ...]

Inputs

name

The name of the group.

gid

The SYSID clause can be used to choose the PostgreSQL group id of the new group. It is not
necessary to do so, however.

If this is not specified, the highest assigned group id plus one, starting at 1, will be used as default.

username

A list of users to include in the group. The users must already exist.

Outputs

CREATE GROUP

Message returned if the command completes successfully.

Description

CREATE GROUP will create a new group in the database installation. Refer to theAdministrator’s
Guidefor information about using groups for authentication. You must be a database superuser to use
this command.

UseALTER GROUPto change a group’s membership, andDROP GROUPto remove a group.

42

CREATE GROUP

Usage

Create an empty group:

CREATE GROUP staff;

Create a group with members:

CREATE GROUP marketing WITH USER jonathan, david;

Compatibility

SQL92

There is noCREATE GROUP statement in SQL92. Roles are similar in concept to groups.

43

CREATE INDEX

Name
CREATE INDEX — define a new index

Synopsis

CREATE [UNIQUE] INDEX index_name ON table
[USING acc_method] (column [ops_name] [, ...])
[WHERE predicate]

CREATE [UNIQUE] INDEX index_name ON table
[USING acc_method] (func_name (column [, ...]) [ops_name])
[WHERE predicate]

Inputs

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to insert or update data which would result
in duplicate entries will generate an error.

index_name

The name of the index to be created.

table

The name of the table to be indexed.

acc_method

The name of the access method to be used for the index. The default access method isBTREE.
PostgreSQL provides four access methods for indexes:

BTREE

an implementation of Lehman-Yao high-concurrency B-trees.

RTREE

implements standard R-trees using Guttman’s quadratic split algorithm.

HASH

an implementation of Litwin’s linear hashing.

GIST

Generalized Index Search Trees.

column

The name of a column of the table.

ops_name

An associated operator class. See below for details.

44

CREATE INDEX

func_name

A function, which returns a value that can be indexed.

predicate

Defines the constraint expression for a partial index.

Outputs

CREATE

The message returned if the index is successfully created.

ERROR: Cannot create index: ’index_name’ already exists.

This error occurs if it is impossible to create the index.

Description
CREATE INDEX constructs an indexindex_name on the specifiedtable .

Tip: Indexes are primarily used to enhance database performance. But inappropriate use will
result in slower performance.

In the first syntax shown above, the key field(s) for the index are specified as column names. Multiple
fields can be specified if the index access method supports multicolumn indexes.

In the second syntax shown above, an index is defined on the result of a user-specified function
func_name applied to one or more columns of a single table. Thesefunctional indexescan be used
to obtain fast access to data based on operators that would normally require some transformation to
apply them to the base data.

PostgreSQL provides B-tree, R-tree, hash, and GiST access methods for indexes. The B-tree access
method is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree access method
implements standard R-trees using Guttman’s quadratic split algorithm. The hash access method is
an implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that
all of these access methods are fully dynamic and do not have to be optimized periodically (as is the
case with, for example, static hash access methods).

When theWHERE clause is present, apartial index is created. A partial index is an index that
contains entries for only a portion of a table, usually a portion that is somehow more interesting than
the rest of the table. For example, if you have a table that contains both billed and unbilled orders
where the unbilled orders take up a small fraction of the total table and yet that is an often used
section, you can improve performance by creating an index on just that portion. Another possible
application is to useWHERE with UNIQUE to enforce uniqueness over a subset of a table.

The expression used in theWHERE clause may refer only to columns of the underlying table (but
it can use all columns, not only the one(s) being indexed). Presently, sub-SELECTs and aggregate
expressions are also forbidden inWHERE .

45

CREATE INDEX

All functions and operators used in an index definition must becachable, that is, their results must
depend only on their input arguments and never on any outside influence (such as the contents of
another table or the current time). This restriction ensures that the behavior of the index is well-
defined. To use a user-defined function in an index, remember to mark the function cachable when
you create it.

UseDROP INDEXto remove an index.

Notes

The PostgreSQL query optimizer will consider using a B-tree index whenever an indexed attribute is
involved in a comparison using one of:<,<=, =,>=,>

The PostgreSQL query optimizer will consider using an R-tree index whenever an indexed attribute
is involved in a comparison using one of:<<, &<, &>,>>, @, ~=, &&

The PostgreSQL query optimizer will consider using a hash index whenever an indexed attribute is
involved in a comparison using the= operator.

Currently, only the B-tree and gist access methods support multi-column indexes. Up to 16 keys may
be specified by default (this limit can be altered when building PostgreSQL). Only B-tree currently
supports unique indexes.

An operator classcan be specified for each column of an index. The operator class identifies the
operators to be used by the index for that column. For example, a B-tree index on four-byte integers
would use theint4_ops class; this operator class includes comparison functions for four-byte in-
tegers. In practice the default operator class for the field’s data type is usually sufficient. The main
point of having operator classes is that for some data types, there could be more than one meaningful
ordering. For example, we might want to sort a complex-number data type either by absolute value or
by real part. We could do this by defining two operator classes for the data type and then selecting the
proper class when making an index. There are also some operator classes with special purposes:

• The operator classesbox_ops andbigbox_ops both support R-tree indexes on thebox data type.
The difference between them is thatbigbox_ops scales box coordinates down, to avoid floating-
point exceptions from doing multiplication, addition, and subtraction on very large floating-point
coordinates. (Note: this was true some time ago, but currently the two operator classes both use
floating point and are effectively identical.)

The following query shows all defined operator classes:

SELECT am.amname AS acc_method,
opc.opcname AS ops_name,
opr.oprname AS ops_comp

FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND

amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid

ORDER BY acc_method, ops_name, ops_comp;

46

CREATE INDEX

Usage

To create a B-tree index on the fieldtitle in the tablefilms :

CREATE UNIQUE INDEX title_idx
ON films (title);

Compatibility

SQL92

CREATE INDEX is a PostgreSQL language extension.

There is noCREATE INDEX command in SQL92.

47

CREATE LANGUAGE

Name
CREATE LANGUAGE— define a new procedural language

Synopsis

CREATE [TRUSTED] [PROCEDURAL] LANGUAGElangname
HANDLERcall_handler

Description

Using CREATE LANGUAGE , a PostgreSQL user can register a new procedural language with a
PostgreSQL database. Subsequently, functions and trigger procedures can be defined in this new lan-
guage. The user must have the PostgreSQL superuser privilege to register a new language.

CREATE LANGUAGE effectively associates the language name with a call handler that is respon-
sible for executing functions written in the language. Refer to theProgrammer’s Guidefor more
information about language call handlers.

Note that procedural languages are local to individual databases. To make a language available in all
databases by default, it should be installed into thetemplate1 database.

Parameters

TRUSTED

TRUSTEDspecifies that the call handler for the language is safe, that is, it does not offer an un-
privileged user any functionality to bypass access restrictions. If this keyword is omitted when
registering the language, only users with the PostgreSQL superuser privilege can use this lan-
guage to create new functions.

PROCEDURAL

This is a noise word.

langname

The name of the new procedural language. The language name is case insensitive. A procedural
language cannot override one of the built-in languages of PostgreSQL.

For backward compatibility, the name may be enclosed by single quotes.

HANDLERcall_handler

call_handler is the name of a previously registered function that will be called to execute
the procedural language functions. The call handler for a procedural language must be written in
a compiled language such as C with version 1 call convention and registered with PostgreSQL
as a function taking no arguments and returning theopaque type, a placeholder for unspecified
or undefined types.

48

CREATE LANGUAGE

Diagnostics

CREATE

This message is returned if the language is successfully created.

ERROR: PL handler function funcname () doesn’t exist

This error is returned if the functionfuncname () is not found.

Notes

This command normally should not be executed directly by users. For the procedural languages sup-
plied in the PostgreSQL distribution, thecreatelangscript should be used, which will also install the
correct call handler. (createlangwill call CREATE LANGUAGE internally.)

Use theCREATE FUNCTIONcommand to create a new function.

UseDROP LANGUAGE, or better yet thedroplangscript, to drop procedural languages.

The system catalogpg_language records information about the currently installed procedural lan-
guages.

Table "pg_language"
Attribute | Type | Modifier

---------------+---------+----------
lanname | name |
lanispl | boolean |
lanpltrusted | boolean |
lanplcallfoid | oid |
lancompiler | text |

lanname | lanispl | lanpltrusted | lanplcallfoid | lancompiler
-------------+---------+--------------+---------------+-------------

internal | f | f | 0 | n/a
C | f | f | 0 | /bin/cc
sql | f | f | 0 | postgres

At present, the definition of a procedural language cannot be changed once it has been created.

49

CREATE LANGUAGE

Examples

The following two commands executed in sequence will register a new procedural language and the
associated call handler.

CREATE FUNCTION plsample_call_handler () RETURNS opaque
AS ’$libdir/plsample’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

Compatibility

CREATE LANGUAGE is a PostgreSQL extension.

History

TheCREATE LANGUAGE command first appeared in PostgreSQL 6.3.

See Also

createlang, CREATE FUNCTION, droplang, DROP LANGUAGE, PostgreSQL Programmer’s Guide

50

CREATE OPERATOR

Name
CREATE OPERATOR— define a new operator

Synopsis

CREATE OPERATORname (PROCEDURE =func_name
[, LEFTARG = lefttype
] [, RIGHTARG = righttype]
[, COMMUTATOR =com_op] [, NEGATOR = neg_op]
[, RESTRICT = res_proc] [, JOIN = join_proc]
[, HASHES] [, SORT1 = left_sort_op] [, SORT2 = right_sort_op])

Inputs

name

The operator to be defined. See below for allowable characters.

func_name

The function used to implement this operator.

lefttype

The type of the left-hand argument of the operator, if any. This option would be omitted for a
left-unary operator.

righttype

The type of the right-hand argument of the operator, if any. This option would be omitted for a
right-unary operator.

com_op

The commutator of this operator.

neg_op

The negator of this operator.

res_proc

The restriction selectivity estimator function for this operator.

join_proc

The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

left_sort_op

If this operator can support a merge join, the operator that sorts the left-hand data type of this
operator.

51

CREATE OPERATOR

right_sort_op

If this operator can support a merge join, the operator that sorts the right-hand data type of this
operator.

Outputs

CREATE

Message returned if the operator is successfully created.

Description

CREATE OPERATOR defines a new operator,name. The user who defines an operator becomes
its owner.

The operatorname is a sequence of up toNAMEDATALEN-1 (31 by default) characters from the fol-
lowing list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ? $

There are a few restrictions on your choice of name:

• $ cannot be defined as a single-character operator, although it can be part of a multicharacter oper-
ator name.

• -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multicharacter operator name cannot end in+ or - , unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ‘ ? $

For example,@- is an allowed operator name, but*- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

Note: When working with non-SQL-standard operator names, you will usually need to separate
adjacent operators with spaces to avoid ambiguity. For example, if you have defined a left-unary
operator named @, you cannot write X*@Y; you must write X* @Yto ensure that PostgreSQL reads
it as two operator names not one.

The operator!= is mapped to<> on input, so these two names are always equivalent.

52

CREATE OPERATOR

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both should be
defined. For right unary operators, only LEFTARG should be defined, while for left unary operators
only RIGHTARG should be defined.

The func_name procedure must have been previously defined usingCREATE FUNCTION and
must be defined to accept the correct number of arguments (either one or two) of the indicated types.

The commutator operator should be identified if one exists, so that PostgreSQL can reverse the order
of the operands if it wishes. For example, the operator area-less-than,<<<, would probably have a
commutator operator, area-greater-than,>>>. Hence, the query optimizer could freely convert:

box ’((0,0), (1,1))’ >>> MYBOXES.description

to

MYBOXES.description <<< box ’((0,0), (1,1))’

This allows the execution code to always use the latter representation and simplifies the query opti-
mizer somewhat.

Similarly, if there is a negator operator then it should be identified. Suppose that an operator, area-
equal, ===, exists, as well as an area not equal, !==. The negator link allows the query optimizer to
simplify

NOT MYBOXES.description === box ’((0,0), (1,1))’

to

MYBOXES.description !== box ’((0,0), (1,1))’

If a commutator operator name is supplied, PostgreSQL searches for it in the catalog. If it is found
and it does not yet have a commutator itself, then the commutator’s entry is updated to have the newly
created operator as its commutator. This applies to the negator, as well. This is to allow the definition
of two operators that are the commutators or the negators of each other. The first operator should be
defined without a commutator or negator (as appropriate). When the second operator is defined, name
the first as the commutator or negator. The first will be updated as a side effect. (As of PostgreSQL
6.5 , it also works to just have both operators refer to each other.)

The HASHES, SORT1, and SORT2 options are present to support the query optimizer in performing
joins. PostgreSQL can always evaluate a join (i.e., processing a clause with two tuple variables sepa-
rated by an operator that returns aboolean) by iterative substitution [WONG76]. In addition, Post-
greSQL can use a hash-join algorithm along the lines of [SHAP86]; however, it must know whether
this strategy is applicable. The current hash-join algorithm is only correct for operators that represent
equality tests; furthermore, equality of the data type must mean bitwise equality of the representation
of the type. (For example, a data type that contains unused bits that don’t matter for equality tests
could not be hashjoined.) The HASHES flag indicates to the query optimizer that a hash join may
safely be used with this operator.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a usable join
strategy and which operators should be used to sort the two operand classes. Sort operators should

53

CREATE OPERATOR

only be provided for an equality operator, and they should refer to less-than operators for the left and
right side data types respectively.

If other join strategies are found to be practical, PostgreSQL will change the optimizer and run-time
system to use them and will require additional specification when an operator is defined. Fortunately,
the research community invents new join strategies infrequently, and the added generality of user-
defined join strategies was not felt to be worth the complexity involved.

The RESTRICT and JOIN options assist the query optimizer in estimating result sizes. If a clause of
the form:

MYBOXES.description <<< box ’((0,0), (1,1))’

is present in the qualification, then PostgreSQL may have to estimate the fraction of the instances in
MYBOXES that satisfy the clause. The functionres_proc must be a registered function (meaning
it is already defined usingCREATE FUNCTION) which accepts arguments of the correct data types
and returns a floating-point number. The query optimizer simply calls this function, passing the pa-
rameter((0,0), (1,1)) and multiplies the result by the relation size to get the expected number
of instances.

Similarly, when the operands of the operator both contain instance variables, the query optimizer must
estimate the size of the resulting join. The function join_proc will return another floating-point number
which will be multiplied by the cardinalities of the two tables involved to compute the expected result
size.

The difference between the function

my_procedure_1 (MYBOXES.description, box ’((0,0), (1,1))’)

and the operator

MYBOXES.description === box ’((0,0), (1,1))’

is that PostgreSQL attempts to optimize operators and can decide to use an index to restrict the search
space when operators are involved. However, there is no attempt to optimize functions, and they are
performed by brute force. Moreover, functions can have any number of arguments while operators are
restricted to one or two.

Notes

Refer to the chapter on operators in thePostgreSQL User’s Guidefor further information. Refer to
DROP OPERATOR to delete user-defined operators from a database.

Usage

The following command defines a new operator, area-equality, for the BOX data type:

CREATE OPERATOR === (
LEFTARG = box,
RIGHTARG = box,
PROCEDURE = area_equal_procedure,
COMMUTATOR = ===,
NEGATOR = !==,

54

CREATE OPERATOR

RESTRICT = area_restriction_procedure,
JOIN = area_join_procedure,
HASHES,
SORT1 = <<<,
SORT2 = <<<

);

Compatibility

SQL92

CREATE OPERATOR is a PostgreSQL extension. There is noCREATE OPERATOR statement
in SQL92.

55

CREATE RULE

Name
CREATE RULE— define a new rewrite rule

Synopsis

CREATE RULEname AS ON event
TO object [WHERE condition]
DO [INSTEAD] action

where action can be:

NOTHING
|
query
|
(query ; query ...)
|
[query ; query ...]

Inputs

name

The name of a rule to create.

event

Event is one ofSELECT, UPDATE, DELETEor INSERT.

object

Object is eithertable or table .column . (Currently, only thetable form is actually imple-
mented.)

condition

Any SQL boolean-condition expression. The condition expression may not refer to any tables
exceptnew andold .

query

The query or queries making up theaction can be any SQLSELECT, INSERT, UPDATE,
DELETE, or NOTIFY statement.

Within thecondition andaction , the special table namesnew andold may be used to refer to
values in the referenced table (theobject). new is valid in ON INSERT and ON UPDATE rules to
refer to the new row being inserted or updated.old is valid in ON UPDATE and ON DELETE rules
to refer to the existing row being updated or deleted.

56

CREATE RULE

Outputs

CREATE

Message returned if the rule is successfully created.

Description

The PostgreSQLrule systemallows one to define an alternate action to be performed on inserts,
updates, or deletions from database tables. Rules are used to implement table views as well.

The semantics of a rule is that at the time an individual instance (row) is accessed, inserted, updated,
or deleted, there is an old instance (for selects, updates and deletes) and a new instance (for inserts
and updates). All the rules for the given event type and the given target object (table) are examined,
in an unspecified order. If thecondition specified in the WHERE clause (if any) is true, theac-
tion part of the rule is executed. Theaction is done instead of the original query if INSTEAD is
specified; otherwise it is done after the original query in the case of ON INSERT, or before the origi-
nal query in the case of ON UPDATE or ON DELETE. Within both thecondition andaction ,
values from fields in the old instance and/or the new instance are substituted forold. attribute-
name andnew. attribute-name .

Theaction part of the rule can consist of one or more queries. To write multiple queries, surround
them with either parentheses or square brackets. Such queries will be performed in the specified
order (whereas there are no guarantees about the execution order of multiple rules for an object).
The action can also be NOTHING indicating no action. Thus, a DO INSTEAD NOTHING rule
suppresses the original query from executing (when its condition is true); a DO NOTHING rule is
useless.

Theaction part of the rule executes with the same command and transaction identifier as the user
command that caused activation.

Rules and Views

Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that
consist of a single SELECT query. Thus, an ON SELECT rule effectively turns the object table into a
view, whose visible contents are the rows returned by the rule’s SELECT query rather than whatever
had been stored in the table (if anything). It is considered better style to write a CREATE VIEW
command than to create a real table and define an ON SELECT rule for it.

CREATE VIEW creates a dummy table (with no underlying storage) and associates an ON SELECT
rule with it. The system will not allow updates to the view, since it knows there is no real table there.
You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON
DELETE rules (or any subset of those that’s sufficient for your purposes) to replace update actions on
the view with appropriate updates on other tables.

There is a catch if you try to use conditional rules for view updates: theremustbe an unconditional
INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not
INSTEAD, then the system will still reject attempts to perform the update action, because it thinks it
might end up trying to perform the action on the dummy table in some cases. If you want to handle
all the useful cases in conditional rules, you can; just add an unconditional DO INSTEAD NOTHING
rule to ensure that the system understands it will never be called on to update the dummy table.
Then make the conditional rules non-INSTEAD; in the cases where they fire, they add to the default
INSTEAD NOTHING action.

57

CREATE RULE

Notes

You must have rule definition access to a table in order to define a rule on it. UseGRANT and
REVOKE to change permissions.

It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by PostgreSQL, the select command will cause PostgreSQL to report an
error because the query cycled too many times:

CREATE RULE "_RETemp" AS
ON SELECT TO emp
DO INSTEAD

SELECT * FROM toyemp;

CREATE RULE "_RETtoyemp" AS
ON SELECT TO toyemp
DO INSTEAD

SELECT * FROM emp;

This attempt to select from EMP will cause PostgreSQL to issue an error because the queries cycled
too many times:

SELECT * FROM emp;

Presently, if a rule contains a NOTIFY query, the NOTIFY will be executed unconditionally --- that is,
the NOTIFY will be issued even if there are not any rows that the rule should apply to. For example,
in

CREATE RULE notify_me AS ON UPDATE TO mytable DO NOTIFY mytable;

UPDATE mytable SET name = ’foo’ WHERE id = 42;

one NOTIFY event will be sent during the UPDATE, whether or not there are any rows with id = 42.
This is an implementation restriction that may be fixed in future releases.

Compatibility

SQL92

CREATE RULE statement is a PostgreSQL language extension. There is noCREATE RULE state-
ment in SQL92.

58

CREATE SEQUENCE

Name
CREATE SEQUENCE— define a new sequence generator

Synopsis

CREATE [TEMPORARY | TEMP] SEQUENCEseqname [INCREMENT increment]
[MINVALUE minvalue] [MAXVALUE maxvalue]
[START start] [CACHE cache] [CYCLE]

Inputs

TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session)
while the temporary sequence exists.

seqname

The name of a sequence to be created.

increment

The INCREMENTincrement clause is optional. A positive value will make an ascending se-
quence, a negative one a descending sequence. The default value is one (1).

minvalue

The optional clauseMINVALUE minvalue determines the minimum value a sequence can gen-
erate. The defaults are 1 and -2^63-1 for ascending and descending sequences, respectively.

maxvalue

The optional clauseMAXVALUEmaxvalue determines the maximum value for the sequence.
The defaults are 2^63-1 and -1 for ascending and descending sequences, respectively.

start

The optionalSTART start clause enables the sequence to begin anywhere. The default start-
ing value isminvalue for ascending sequences andmaxvalue for descending ones.

cache

TheCACHEcache option enables sequence numbers to be preallocated and stored in memory
for faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no
cache) and this is also the default.

CYCLE

The optional CYCLE keyword may be used to enable the sequence to wrap around when the
maxvalue or minvalue has been reached by an ascending or descending sequence respec-
tively. If the limit is reached, the next number generated will be theminvalue or maxvalue ,
respectively. Without CYCLE, after the limit is reachednextval calls will return an error.

59

CREATE SEQUENCE

Outputs

CREATE

Message returned if the command is successful.

ERROR: Relation ’ seqname ’ already exists

If the sequence specified already exists.

ERROR: DefineSequence: MINVALUE (start) can’t be >= MAXVALUE (max)

If the specified starting value is out of range.

ERROR: DefineSequence: START value (start) can’t be < MINVALUE (min)

If the specified starting value is out of range.

ERROR: DefineSequence: MINVALUE (min) can’t be >= MAXVALUE (max)

If the minimum and maximum values are inconsistent.

Description

CREATE SEQUENCE will enter a new sequence number generator into the current database. This
involves creating and initializing a new single-row table with the nameseqname . The generator will
be owned by the user issuing the command.

After a sequence is created, you use the functionsnextval , currval andsetval to operate on the
sequence. These functions are documented in theUser’s Guide.

Although you cannot update a sequence directly, you can use a query like

SELECT * FROMseqname ;

to examine the parameters and current state of a sequence. In particular, thelast_value field of
the sequence shows the last value allocated by any backend process. (Of course, this value may be
obsolete by the time it’s printed, if other processes are actively doingnextval calls.)

60

CREATE SEQUENCE

Caution
Unexpected results may be obtained if a cache setting greater than one is
used for a sequence object that will be used concurrently by multiple backends.
Each backend will allocate and cache successive sequence values during one
access to the sequence object and increase the sequence object’s last_value

accordingly. Then, the next cache -1 uses of nextval within that backend sim-
ply return the preallocated values without touching the shared object. So, any
numbers allocated but not used within a session will be lost when that session
ends. Furthermore, although multiple backends are guaranteed to allocate dis-
tinct sequence values, the values may be generated out of sequence when all
the backends are considered. (For example, with a cache setting of 10, back-
end A might reserve values 1..10 and return nextval =1, then backend B might
reserve values 11..20 and return nextval =11 before backend A has generated
nextval=2.) Thus, with a cache setting of one it is safe to assume that nextval

values are generated sequentially; with a cache setting greater than one you
should only assume that the nextval values are all distinct, not that they are
generated purely sequentially. Also, last_value will reflect the latest value re-
served by any backend, whether or not it has yet been returned by nextval .
Another consideration is that a setval executed on such a sequence will not
be noticed by other backends until they have used up any preallocated values
they have cached.

Notes

UseDROP SEQUENCEto remove a sequence.

Sequences are based onbigint arithmetic, so the range cannot exceed the range of an eight-byte
integer (-9223372036854775808 to 9223372036854775807). On some older platforms, there may be
no compiler support for eight-byte integers, in which case sequences use regularinteger arithmetic
(range -2147483648 to +2147483647).

Whencache is greater than one, each backend uses its own cache to store preallocated numbers.
Numbers that are cached but not used in the current session will be lost, resulting in “holes” in the
sequence.

Usage

Create an ascending sequence calledserial , starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval(’serial’);

nextval

114

Use this sequence in an INSERT:

61

CREATE SEQUENCE

INSERT INTO distributors VALUES (nextval(’serial’), ’nothing’);

Update the sequence value after a COPY FROM:

BEGIN;
COPY distributors FROM ’input_file’;
SELECT setval(’serial’, max(id)) FROM distributors;

END;

Compatibility

SQL92

CREATE SEQUENCE is a PostgreSQL language extension. There is noCREATE SEQUENCE
statement in SQL92.

62

CREATE TABLE

Name
CREATE TABLE— define a new table

Synopsis

CREATE [[LOCAL] { TEMPORARY | TEMP }] TABLE table_name (
{ column_name data_type [DEFAULT default_expr] [column_constraint [, ...]]
| table_constraint } [, ...]

)
[INHERITS (parent_table [, ...])]
[WITH OIDS | WITHOUT OIDS]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | UNIQUE | PRIMARY KEY |

CHECK (expression) |
REFERENCESreftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL]

[ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...]) |

PRIMARY KEY (column_name [, ...]) |
CHECK (expression) |
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]

[MATCH FULL | MATCH PARTIAL] [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

CREATE TABLE will create a new, initially empty table in the current database. The table will be
owned by the user issuing the command.

CREATE TABLE also automatically creates a data type that represents the tuple type (structure type)
corresponding to one row of the table. Therefore, tables cannot have the same name as any existing
data type.

A table cannot have more than 1600 columns. (In practice, the effective limit is lower because of
tuple-length constraints). A table cannot have the same name as a system catalog table.

The optional constraint clauses specify constraints (or tests) that new or updated rows must satisfy
for an insert or update operation to succeed. A constraint is a named rule: an SQL object which
helps define valid sets of values by putting limits on the results of insert, update, or delete operations
performed on a table.

There are two ways to define constraints: table constraints and column constraints. A column con-
straint is defined as part of a column definition. A table constraint definition is not tied to a particular
column, and it can encompass more than one column. Every column constraint can also be written as

63

CREATE TABLE

a table constraint; a column constraint is only a notational convenience if the constraint only affects
one column.

Parameters

[LOCAL] TEMPORARYor [LOCAL] TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session. Existing persistent tables with the same name are not visible to the
current session while the temporary table exists. Any indexes created on a temporary table are
automatically temporary as well.

TheLOCALword is optional. But see underCompatibility.

table_name

The name of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This may include array specifiers. Refer to theUser’s Guidefor
further information about data types and arrays.

DEFAULT default_expr

The DEFAULTclause assigns a default data value for the column whose column definition it
appears within. The value is any variable-free expression (subselects and cross-references to
other columns in the current table are not allowed). The data type of the default expression must
match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is NULL.

INHERITS (parent_table [, ...])

The optionalINHERITS clause specifies a list of tables from which the new table automatically
inherits all columns. If the same column name exists in more than one parent table, an error
is reported unless the data types of the columns match in each of the parent tables. If there is
no conflict, then the duplicate columns are merged to form a single column in the new table.
If the column name list of the new table contains a column that is also inherited, the data type
must likewise match the inherited column(s), and the column definitions are merged into one.
However, inherited and new column declarations of the same name need not specify identical
constraints: all constraints provided from any declaration are merged together and all are applied
to the new table. If the new table explicitly specifies a default value for the column, this default
overrides any defaults from inherited declarations of the column. Otherwise, any parents that
specify default values for the column must all specify the same default, or an error will be
reported.

WITH OIDSor WITHOUT OIDS

This optional clause specifies whether rows of the new table should have OIDs (object identifiers)
assigned to them. The default is to have OIDs. (If the new table inherits from any tables that have
OIDs, thenWITH OIDS is forced even if the command saysWITHOUT OIDS.)

SpecifyingWITHOUT OIDSallows the user to suppress generation of OIDs for rows of a table.
This may be worthwhile for large tables, since it will reduce OID consumption and thereby

64

CREATE TABLE

postpone wraparound of the 32-bit OID counter. Once the counter wraps around, uniqueness of
OIDs can no longer be assumed, which considerably reduces their usefulness.

CONSTRAINTconstraint_name

An optional name for a column or table constraint. If not specified, the system generates a name.

NOT NULL

The column is not allowed to contain NULL values. This is equivalent to the column constraint
CHECK (column NOT NULL).

NULL

The column is allowed to contain NULL values. This is the default.

This clause is only available for compatibility with non-standard SQL databases. Its use is dis-
couraged in new applications.

UNIQUE(column constraint)
UNIQUE (column_name [, ...]) (table constraint)

The UNIQUEconstraint specifies a rule that a group of one or more distinct columns of a table
may contain only unique values. The behavior of the unique table constraint is the same as that
for column constraints, with the additional capability to span multiple columns.

For the purpose of a unique constraint, NULL values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would
just be the same constraint listed twice.)

PRIMARY KEY(column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

The primary key constraint specifies that a column or columns of a table may contain only
unique (non-duplicate), non-NULL values. Technically,PRIMARY KEYis merely a combination
of UNIQUEandNOT NULL, but identifying a set of columns as primary key also provides meta-
data about the design of the schema, as a primary key implies that other tables may rely on this
set of columns as a unique identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint or a table
constraint.

The primary key constraint should name a set of columns that is different from other sets of
columns named by any unique constraint defined for the same table.

CHECK (expression)

CHECKclauses specify integrity constraints or tests which new or updated rows must satisfy for
an insert or update operation to succeed. Each constraint must be an expression producing a
Boolean result. A condition appearing within a column definition should reference that column’s
value only, while a condition appearing as a table constraint may reference multiple columns.

Currently,CHECKexpressions cannot contain subselects nor refer to variables other than columns
of the current row.

REFERENCESreftable [(refcolumn)] [MATCH matchtype] [ON DELETE

action] [ON UPDATE action] (column constraint)
FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...

])] [MATCH matchtype] [ON DELETE action] [ON UPDATE action] (table

65

CREATE TABLE

constraint)

TheREFERENCEScolumn constraint specifies that a group of one or more columns of the new
table must only contain values which match against values in the referenced column(s)ref-
column of the referenced tablereftable . If refcolumn is omitted, the primary key of the
reftable is used. The referenced columns must be the columns of a unique or primary key
constraint in the referenced table.

A value added to these columns is matched against the values of the referenced table and refer-
enced columns using the given match type. There are three match types:MATCH FULL, MATCH

PARTIAL, and a default match type if none is specified.MATCH FULLwill not allow one column
of a multicolumn foreign key to be NULL unless all foreign key columns are NULL. The default
match type allows some foreign key columns to be NULL while other parts of the foreign key
are not NULL.MATCH PARTIALis not yet implemented.

In addition, when the data in the referenced columns is changed, certain actions are performed
on the data in this table’s columns. TheON DELETEclause specifies the action to do when a
referenced row in the referenced table is being deleted. Likewise, theON UPDATEclause specifies
the action to perform when a referenced column in the referenced table is being updated to a new
value. If the row is updated, but the referenced column is not actually changed, no action is done.
There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the default action.

RESTRICT

Same asNO ACTION.

CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing column
to the new value of the referenced column, respectively.

SET NULL

Set the referencing column values to NULL.

SET DEFAULT

Set the referencing column values to their default value.

If primary key column is updated frequently, it may be wise to add an index to theREFERENCES

column so thatNO ACTIONandCASCADEactions associated with theREFERENCEScolumn can
be more efficiently performed.

DEFERRABLEor NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will
be checked immediately after every command. Checking of constraints that are deferrable may
be postponed until the end of the transaction (using theSET CONSTRAINTScommand).NOT

DEFERRABLEis the default. Only foreign key constraints currently accept this clause. All other
constraint types are not deferrable.

INITIALLY IMMEDIATE or INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint isINITIALLY IMMEDIATE , it is checked after each statement. This is the default. If

66

CREATE TABLE

the constraint isINITIALLY DEFERRED, it is checked only at the end of the transaction. The
constraint check time can be altered with theSET CONSTRAINTScommand.

Diagnostics

CREATE

Message returned if table is successfully created.

ERROR

Message returned if table creation failed. This is usually accompanied by some descriptive text,
such as:ERROR: Relation ’ table ’ already exists , which occurs at runtime if the table
specified already exists in the database.

Notes

• Whenever an application makes use of OIDs to identify specific rows of a table, it is recommended
to create a unique constraint on theoid column of that table, to ensure that OIDs in the table will
indeed uniquely identify rows even after counter wraparound. Avoid assuming that OIDs are unique
across tables; if you need a database-wide unique identifier, use the combination oftableoid and
row OID for the purpose. (It is likely that future PostgreSQL releases will use a separate OID
counter for each table, so that it will benecessary, not optional, to includetableoid to have a
unique identifier database-wide.)

Tip: The use of WITHOUT OIDSis not recommended for tables with no primary key, since without
either an OID or a unique data key, it is difficult to identify specific rows.

• PostgreSQL automatically creates an index for each unique constraint and primary key constraint
to enforce the uniqueness. Thus, it is not necessary to create an explicit index for primary key
columns. (SeeCREATE INDEXfor more information.)

• The SQL92 standard says thatCHECKcolumn constraints may only refer to the column they apply
to; only CHECKtable constraints may refer to multiple columns. PostgreSQL does not enforce this
restriction; it treats column and table check constraints alike.

• Unique constraints and primary keys are not inherited in the current implementation. This makes
the combination of inheritance and unique constraints rather dysfunctional.

67

CREATE TABLE

Examples

Create tablefilms and tabledistributors :

CREATE TABLE films (
code CHARACTER(5) CONSTRAINT firstkey PRIMARY KEY,
title CHARACTER VARYING(40) NOT NULL,
did DECIMAL(3) NOT NULL,
date_prod DATE,
kind CHAR(10),
len INTERVAL HOUR TO MINUTE

);

CREATE TABLE distributors (
did DECIMAL(3) PRIMARY KEY DEFAULT NEXTVAL(’serial’),
name VARCHAR(40) NOT NULL CHECK (name<> ”)

);

Create a table with a 2-dimensional array:

CREATE TABLE array (
vector INT[][]

);

Define a unique table constraint for the table films. Unique table constraints can be defined on one or
more columns of the table:

CREATE TABLE films (
code CHAR(5),
title VARCHAR(40),
did DECIMAL(3),
date_prod DATE,
kind VARCHAR(10),
len INTERVAL HOUR TO MINUTE,
CONSTRAINT production UNIQUE(date_prod)

);

Define a check column constraint:

CREATE TABLE distributors (
did DECIMAL(3) CHECK (did > 100),
name VARCHAR(40)

);

Define a check table constraint:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40)
CONSTRAINT con1 CHECK (did > 100 AND name <> ”)

);

68

CREATE TABLE

Define a primary key table constraint for the tablefilms . Primary key table constraints can be defined
on one or more columns of the table.

CREATE TABLE films (
code CHAR(5),
title VARCHAR(40),
did DECIMAL(3),
date_prod DATE,
kind VARCHAR(10),
len INTERVAL HOUR TO MINUTE,
CONSTRAINT code_title PRIMARY KEY(code,title)

);

Define a primary key constraint for tabledistributors . The following two examples are equivalent,
the first using the table constraint syntax, the second the column constraint notation.

CREATE TABLE distributors (
did DECIMAL(3),
name CHAR VARYING(40),
PRIMARY KEY(did)

);

CREATE TABLE distributors (
did DECIMAL(3) PRIMARY KEY,
name VARCHAR(40)

);

This assigns a literal constant default value for the columnname, and arranges for the default value
of columndid to be generated by selecting the next value of a sequence object. The default value of
modtime will be the time at which the row is inserted.

CREATE TABLE distributors (
name VARCHAR(40) DEFAULT ’luso films’,
did INTEGER DEFAULT NEXTVAL(’distributors_serial’),
modtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP

);

Define twoNOT NULLcolumn constraints on the tabledistributors , one of which is explicitly
given a name:

CREATE TABLE distributors (
did DECIMAL(3) CONSTRAINT no_null NOT NULL,
name VARCHAR(40) NOT NULL

);

Define a unique constraint for thename column:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40) UNIQUE

69

CREATE TABLE

);

The above is equivalent to the following specified as a table constraint:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40),
UNIQUE(name)

);

Compatibility

TheCREATE TABLE conforms to SQL92 Intermediate and to a subset of SQL99, with exceptions
listed below and in the descriptions above.

Temporary Tables

In addition to the local temporary table, SQL92 also defines aCREATE GLOBAL TEMPORARY TABLE

statement. Global temporary tables are also visible to other sessions.

For temporary tables, there is an optionalON COMMITclause:

CREATE { GLOBAL | LOCAL } TEMPORARY TABLEtable (...) [ON COMMIT { DELETE | PRE-
SERVE } ROWS]

TheON COMMITclause specifies whether or not the temporary table should be emptied of rows when-
everCOMMIT is executed. If theON COMMITclause is omitted, SQL92 specifies that the default is
ON COMMIT DELETE ROWS. However, the behavior of PostgreSQL is always likeON COMMIT PRE-

SERVE ROWS.

NULL “Constraint”

The NULL “constraint” (actually a non-constraint) is a PostgreSQL extension to SQL92 that is in-
cluded for compatibility with some other RDBMS (and for symmetry with theNOT NULLconstraint).
Since it is the default for any column, its presence is simply noise.

Assertions

An assertion is a special type of integrity constraint and shares the same namespace as other con-
straints. However, an assertion is not necessarily dependent on one particular table as constraints
are, so SQL92 provides theCREATE ASSERTION statement as an alternate method for defining a
constraint:

CREATE ASSERTIONname CHECK (condition)

PostgreSQL does not implement assertions at present.

70

CREATE TABLE

Inheritance

Multiple inheritance via theINHERITS clause is a PostgreSQL language extension. SQL99 (but not
SQL92) defines single inheritance using a different syntax and different semantics. SQL99-style in-
heritance is not yet supported by PostgreSQL.

Object IDs

The PostgreSQL concept of OIDs is not standard.

See Also

ALTER TABLE , DROP TABLE

71

CREATE TABLE AS

Name
CREATE TABLE AS— create a new table from the results of a query

Synopsis

CREATE [[LOCAL] { TEMPORARY | TEMP }] TABLE table_name [(column_name [, ...])]
AS query

Description

CREATE TABLE AS creates a table and fills it with data computed by aSELECT command. The
table columns have the names and data types associated with the output columns of theSELECT
(except that you can override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it
creates a new table and evaluates the query just once to fill the new table initially. The new table will
not track subsequent changes to the source tables of the query. In contrast, a view re-evaluates the
underlyingSELECT statements whenever it is queried.

Parameters

[LOCAL] TEMPORARYor [LOCAL] TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session. Existing persistent tables with the same name are not visible to the
current session while the temporary table exists. Any indexes created on a temporary table are
automatically temporary as well.

TheLOCALword is optional.

table_name

The name of the new table to be created. This table must not already exist. However, a temporary
table can be created that has the same name as an existing permanent table.

column_name

The name of a column in the new table. Multiple column names can be specified using a comma-
delimited list of column names. If column names are not provided, they are taken from the output
column names of the query.

query

A query statement (that is, aSELECT command). Refer toSELECTfor a description of the
allowed syntax.

72

CREATE TABLE AS

Diagnostics

Refer toCREATE TABLEandSELECTfor a summary of possible output messages.

Notes

This command is functionally equivalent toSELECT INTO, but it is preferred since it is less likely
to be confused with other uses of theSELECT ... INTO syntax.

Compatibility

This command is modeled after an Oracle feature. There is no command with equivalent functionality
in SQL92 or SQL99. However, a combination ofCREATE TABLEand INSERT ... SELECT can
accomplish the same thing with little more effort.

History

TheCREATE TABLE AS command has been available since PostgreSQL 6.3.

See Also

CREATE TABLE, CREATE VIEW, SELECT, SELECT INTO

73

CREATE TRIGGER

Name
CREATE TRIGGER— define a new trigger

Synopsis

CREATE TRIGGERname { BEFORE | AFTER } { event [OR ...] }
ON table FOR EACH { ROW | STATEMENT }
EXECUTE PROCEDUREfunc (arguments)

Inputs

name

The name to give the new trigger.

table

The name of an existing table.

event

One of INSERT, DELETE or UPDATE.

func

A user-supplied function.

Outputs

CREATE

This message is returned if the trigger is successfully created.

Description

CREATE TRIGGER will enter a new trigger into the current data base. The trigger will be associated
with the relationtable and will execute the specified functionfunc .

The trigger can be specified to fire either before BEFORE the operation is attempted on a tuple
(before constraints are checked and theINSERT, UPDATE or DELETE is attempted) or AFTER
the operation has been attempted (e.g., after constraints are checked and theINSERT, UPDATE or
DELETE has completed). If the trigger fires before the event, the trigger may skip the operation for
the current tuple, or change the tuple being inserted (forINSERT andUPDATE operations only).
If the trigger fires after the event, all changes, including the last insertion, update, or deletion, are
“visible” to the trigger.

74

CREATE TRIGGER

SELECT does not modify any rows so you can not createSELECT triggers. Rules and views are
more appropriate in such cases.

Refer to the chapters on SPI and Triggers in thePostgreSQL Programmer’s Guidefor more informa-
tion.

Notes

To create a trigger on a table, the user must have theTRIGGERprivilege on the table.

As of the current release,STATEMENTtriggers are not implemented.

Refer to theDROP TRIGGERcommand for information on how to remove triggers.

Examples

Check if the specified distributor code exists in the distributors table before appending or updating a
row in the table films:

CREATE TRIGGER if_dist_exists
BEFORE INSERT OR UPDATE ON films FOR EACH ROW
EXECUTE PROCEDURE check_primary_key (’did’, ’distributors’, ’did’);

Before cancelling a distributor or updating its code, remove every reference to the table films:

CREATE TRIGGER if_film_exists
BEFORE DELETE OR UPDATE ON distributors FOR EACH ROW
EXECUTE PROCEDURE check_foreign_key (1, ’CASCADE’, ’did’, ’films’, ’did’);

The second example can also be done by using a foreign key, constraint as in:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40),
CONSTRAINT if_film_exists
FOREIGN KEY(did) REFERENCES films
ON UPDATE CASCADE ON DELETE CASCADE

);

Compatibility

SQL92

There is noCREATE TRIGGER statement in SQL92.

SQL99

TheCREATE TRIGGER statement in PostgreSQL implements a subset of the SQL99 standard.
The following functionality is missing:

• SQL99 allows triggers to fire on updates to specific columns (e.g.,AFTER UPDATE OF

col1, col2).

75

CREATE TRIGGER

• SQL99 allows you to define aliases for the “old” and “new” rows or tables for use in the defi-
nition of the triggered action (e.g.,CREATE TRIGGER ... ON tablename REFERENCING

OLD ROW AS somename NEW ROW AS othername ...). Since PostgreSQL allows trig-
ger procedures to be written in any number of user-defined languages, access to the data is
handled in a language-specific way.

• PostgreSQL only has row-level triggers, no statement-level triggers.

• PostgreSQL only allows the execution of a stored procedure for the triggered action. SQL99
allows the execution of a number of other SQL commands, such asCREATE TABLE as
triggered action. This limitation is not hard to work around by creating a stored procedure that
executes these commands.

See Also

CREATE FUNCTION, DROP TRIGGER, PostgreSQL Programmer’s Guide

76

CREATE TYPE

Name
CREATE TYPE — define a new data type

Synopsis

CREATE TYPEtypename (INPUT = input_function , OUTPUT = output_function
, INTERNALLENGTH = { internallength | VARIABLE }

[, EXTERNALLENGTH = { externallength | VARIABLE }]
[, DEFAULT = default]
[, ELEMENT = element] [, DELIMITER = delimiter]
[, SEND = send_function] [, RECEIVE = receive_function]
[, PASSEDBYVALUE]
[, ALIGNMENT = alignment]
[, STORAGE = storage]

)

Inputs

typename

The name of a type to be created.

internallength

A literal value, which specifies the internal length of the new type.

externallength

A literal value, which specifies the external (displayed) length of the new type.

input_function

The name of a function, created byCREATE FUNCTION , which converts data from its external
form to the type’s internal form.

output_function

The name of a function, created byCREATE FUNCTION , which converts data from its internal
form to a form suitable for display.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

default

The default value for the data type. Usually this is omitted, so that the default is NULL.

send_function

The name of a function, created byCREATE FUNCTION , which converts data of this type into
a form suitable for transmission to another machine.

77

CREATE TYPE

receive_function

The name of a function, created byCREATE FUNCTION , which converts data of this type
from a form suitable for transmission from another machine to internal form.

alignment

Storage alignment requirement of the data type. If specified, must bechar , int2 , int4 , or
double ; the default isint4 .

storage

Storage technique for the data type. If specified, must beplain , external , extended , or
main ; the default isplain .

Outputs

CREATE

Message returned if the type is successfully created.

Description

CREATE TYPE allows the user to register a new user data type with PostgreSQL for use in the
current data base. The user who defines a type becomes its owner.typename is the name of the new
type and must be unique within the types defined for this database.

CREATE TYPE requires the registration of two functions (using CREATE FUNCTION) before
defining the type. The representation of a new base type is determined byinput_function , which
converts the type’s external representation to an internal representation usable by the operators and
functions defined for the type. Naturally,output_function performs the reverse transformation.
The input function may be declared as taking one argument of typeopaque , or as taking three ar-
guments of typesopaque , OID, int4 . (The first argument is the input text as a C string, the second
argument is the element type in case this is an array type, and the third is the typmod of the destination
column, if known.) The output function may be declared as taking one argument of typeopaque , or
as taking two arguments of typesopaque , OID. (The first argument is actually of the data type itself,
but since the output function must be declared first, it’s easier to declare it as accepting typeopaque .
The second argument is again the array element type for array types.)

New base data types can be fixed length, in which caseinternallength is a positive integer, or
variable length, indicated by settinginternallength to VARIABLE. (Internally, this is represented
by setting typlen to -1.) The internal representation of all variable-length types must start with an
integer giving the total length of this value of the type.

The external representation length is similarly specified using theexternallength keyword.
(This value is not presently used, and is typically omitted, letting it default toVARIABLE.)

To indicate that a type is an array, specify the type of the array elements using theELEMENTkeyword.
For example, to define an array of 4-byte integers ("int4"), specify

ELEMENT = int4

More details about array types appear below.

78

CREATE TYPE

To indicate the delimiter to be used between values in the external representation of arrays of this
type,delimiter can be set to a specific character. The default delimiter is the comma (’, ’). Note
that the delimiter is associated with the array element type, not the array type itself.

A default value may be specified, in case a user wants columns of the data type to default to something
other than NULL. Specify the default with theDEFAULTkeyword. (Such a default may be overridden
by an explicitDEFAULTclause attached to a particular column.)

The optional argumentssend_function andreceive_function are not currently used, and
are usually omitted (allowing them to default to theoutput_function andinput_function
respectively). These functions may someday be resurrected for use in specifying machine-independent
binary representations.

The optional flag,PASSEDBYVALUE, indicates that values of this data type are passed by value rather
than by reference. Note that you may not pass by value types whose internal representation is longer
than the width of theDatum type (four bytes on most machines, eight bytes on a few).

The alignment keyword specifies the storage alignment required for the data type. The allowed
values equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have
an alignment of at least 4, since they necessarily contain anint4 as their first component.

The storage keyword allows selection of storage strategies for variable-length data types (only
plain is allowed for fixed-length types).plain disables TOAST for the data type: it will always be
stored in-line and not compressed.extended gives full TOAST capability: the system will first try
to compress a long data value, and will move the value out of the main table row if it’s still too long.
external allows the value to be moved out of the main table, but the system will not try to compress
it. main allows compression, but discourages moving the value out of the main table. (Data items
with this storage method may still be moved out of the main table if there is no other way to make a
row fit, but they will be kept in the main table preferentially overextended andexternal items.)

Array Types

Whenever a user-defined data type is created, PostgreSQL automatically creates an associated array
type, whose name consists of the base type’s name prepended with an underscore. The parser under-
stands this naming convention, and translates requests for columns of typefoo[] into requests for
type_foo . The implicitly-created array type is variable length and uses the built-in input and output
functionsarray_in andarray_out .

You might reasonably ask “why is there anELEMENToption, if the system makes the correct array
type automatically?” The only case where it’s useful to useELEMENTis when you are making a
fixed-length type that happens to be internally an array of N identical things, and you want to allow
the N things to be accessed directly by subscripting, in addition to whatever operations you plan to
provide for the type as a whole. For example, typename allows its constituentchar s to be accessed
this way. A 2-Dpoint type could allow its two component floats to be accessed likepoint[0] and
point[1] . Note that this facility only works for fixed-length types whose internal form is exactly a
sequence of N identical fields. A subscriptable variable-length type must have the generalized internal
representation used byarray_in andarray_out . For historical reasons (i.e., this is clearly wrong
but it’s far too late to change it), subscripting of fixed-length array types starts from zero, rather than
from one as for variable-length arrays.

Notes

User-defined type names cannot begin with the underscore character (“_”) and can only be 30 char-
acters long (or in generalNAMEDATALEN-2, rather than theNAMEDATALEN-1characters allowed for

79

CREATE TYPE

other names). Type names beginning with underscore are reserved for internally-created array type
names.

Examples

This example creates thebox data type and then uses the type in a table definition:

CREATE TYPE box (INTERNALLENGTH = 16,
INPUT = my_procedure_1, OUTPUT = my_procedure_2);

CREATE TABLE myboxes (id INT4, description box);

If box ’s internal structure were an array of fourfloat4 s, we might instead say

CREATE TYPE box (INTERNALLENGTH = 16,
INPUT = my_procedure_1, OUTPUT = my_procedure_2,
ELEMENT = float4);

which would allow a box value’s component floats to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (INPUT = lo_filein, OUTPUT = lo_fileout,
INTERNALLENGTH = VARIABLE);

CREATE TABLE big_objs (id int4, obj bigobj);

Compatibility

This CREATE TYPE command is a PostgreSQL extension. There is aCREATE TYPE statement
in SQL99 that is rather different in detail.

See Also

CREATE FUNCTION, DROP TYPE, PostgreSQL Programmer’s Guide

80

CREATE USER

Name
CREATE USER— define a new database user account

Synopsis

CREATE USERusername [[WITH] option [...]]

where option can be:

SYSID uid
| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password ’
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| IN GROUP groupname [, ...]
| VALID UNTIL ’ abstime ’

Inputs

username

The name of the user.

uid

TheSYSID clause can be used to choose the PostgreSQL user id of the user that is being created.
It is not at all necessary that those match the UNIX user ids, but some people choose to keep the
numbers the same.

If this is not specified, the highest assigned user id plus one (with a minimum of 100) will be
used as default.

password

Sets the user’s password. If you do not plan to use password authentication you can omit this
option, but the user won’t be able to connect to a password-authenticated server. The password
can be set or changed later, usingALTER USER.

ENCRYPTED
UNENCRYPTED

These keywords control whether the password is stored encrypted inpg_shadow . (If neither is
specified, the default behavior is determined by thePASSWORD_ENCRYPTIONserver parameter.)
If the presented string is already in MD5-encrypted format, then it is stored as-is, regardless
of whether ENCRYPTED or UNENCRYPTED is specified. This allows reloading of encrypted
passwords during dump/restore.

See the chapter on client authentication in theAdministrator’s Guidefor details on how to set up
authentication mechanisms. Note that older clients may lack support for the MD5 authentication
mechanism that’s needed to work with passwords that are stored encrypted.

81

CREATE USER

CREATEDB
NOCREATEDB

These clauses define a user’s ability to create databases. If CREATEDB is specified, the user
being defined will be allowed to create his own databases. Using NOCREATEDB will deny a
user the ability to create databases. If this clause is omitted, NOCREATEDB is used by default.

CREATEUSER
NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions. Omitting this clause
will set the user’s value of this attribute to be NOCREATEUSER.

groupname

A name of a group into which to insert the user as a new member. Multiple group names may be
listed.

abstime

The VALID UNTIL clause sets an absolute time after which the user’s password is no longer
valid. If this clause is omitted the login will be valid for all time.

Outputs

CREATE USER

Message returned if the command completes successfully.

Description

CREATE USER will add a new user to an instance of PostgreSQL. Refer to the administrator’s guide
for information about managing users and authentication. You must be a database superuser to use
this command.

UseALTER USERto change a user’s password and privileges, andDROP USERto remove a user.
UseALTER GROUPto add or remove the user from other groups. PostgreSQL comes with a script
createuserwhich has the same functionality as this command (in fact, it calls this command) but can
be run from the command shell.

Usage

Create a user with no password:

CREATE USER jonathan

Create a user with a password:

CREATE USER davide WITH PASSWORD ’jw8s0F4’;

82

CREATE USER

Create a user with a password, whose account is valid until the end of 2001. Note that after one second
has ticked in 2002, the account is not valid:

CREATE USER miriam WITH PASSWORD ’jw8s0F4’ VALID UNTIL ’Jan 1 2002’;

Create an account where the user can create databases:

CREATE USER manuel WITH PASSWORD ’jw8s0F4’ CREATEDB;

Compatibility

SQL92

There is noCREATE USER statement in SQL92.

83

CREATE VIEW

Name
CREATE VIEW — define a new view

Synopsis

CREATE VIEWview [(column name list)] AS SELECT query

Inputs

view

The name of a view to be created.

column name list

An optional list of names to be used for columns of the view. If given, these names override the
column names that would be deduced from the SQL query.

query

An SQL query which will provide the columns and rows of the view.

Refer to the SELECT statement for more information about valid arguments.

Outputs

CREATE

The message returned if the view is successfully created.

ERROR: Relation ’ view ’ already exists

This error occurs if the view specified already exists in the database.

NOTICE: Attribute ’ column ’ has an unknown type

The view will be created having a column with an unknown type if you do not specify it. For
example, the following command gives a warning:

CREATE VIEW vista AS SELECT ’Hello World’

whereas this command does not:

CREATE VIEW vista AS SELECT text ’Hello World’

84

CREATE VIEW

Description

CREATE VIEW will define a view of a table. The view is not physically materialized. Instead, a
query rewrite retrieve rule is automatically generated to support retrieve operations on views.

Notes

Currently, views are read only: the system will not allow an insert, update, or delete on a view. You
can get the effect of an updatable view by creating rules that rewrite inserts, etc. on the view into
appropriate actions on other tables. For more information seeCREATE RULE.

Use theDROP VIEW statement to drop views.

Usage

Create a view consisting of all Comedy films:

CREATE VIEW kinds AS
SELECT *
FROM films
WHERE kind = ’Comedy’;

SELECT * FROM kinds;

code | title | did | date_prod | kind | len
-------+---------------------------+-----+------------+--------+-------

UA502 | Bananas | 105 | 1971-07-13 | Comedy | 01:22
C_701 | There’s a Girl in my Soup | 107 | 1970-06-11 | Comedy | 01:36

(2 rows)

Compatibility

SQL92

SQL92 specifies some additional capabilities for theCREATE VIEW statement:

CREATE VIEWview [column [, ...]]
AS SELECT expression [AS colname] [, ...]
FROMtable [WHERE condition]
[WITH [CASCADE | LOCAL] CHECK OPTION]

The optional clauses for the full SQL92 command are:

CHECK OPTION

This option is to do with updatable views. All INSERTs and UPDATEs on the view will be
checked to ensure data satisfy the view-defining condition. If they do not, the update will be
rejected.

85

CREATE VIEW

LOCAL

Check for integrity on this view.

CASCADE

Check for integrity on this view and on any dependent view. CASCADE is assumed if neither
CASCADE nor LOCAL is specified.

86

DECLARE

Name
DECLARE — define a cursor

Synopsis

DECLAREcursorname [BINARY] [INSENSITIVE] [SCROLL]
CURSOR FORquery
[FOR { READ ONLY | UPDATE [OF column [, ...]]]

Inputs

cursorname

The name of the cursor to be used in subsequent FETCH operations.

BINARY

Causes the cursor to fetch data in binary rather than in text format.

INSENSITIVE

SQL92 keyword indicating that data retrieved from the cursor should be unaffected by updates
from other processes or cursors. Since cursor operations occur within transactions in PostgreSQL
this is always the case. This keyword has no effect.

SCROLL

SQL92 keyword indicating that data may be retrieved in multiple rows per FETCH operation.
Since this is allowed at all times by PostgreSQL this keyword has no effect.

query

An SQL query which will provide the rows to be governed by the cursor. Refer to the SELECT
statement for further information about valid arguments.

READ ONLY

SQL92 keyword indicating that the cursor will be used in a read only mode. Since this is the only
cursor access mode available in PostgreSQL this keyword has no effect.

UPDATE

SQL92 keyword indicating that the cursor will be used to update tables. Since cursor updates are
not currently supported in PostgreSQL this keyword provokes an informational error message.

column

Column(s) to be updated. Since cursor updates are not currently supported in PostgreSQL the
UPDATE clause provokes an informational error message.

87

DECLARE

Outputs

SELECT

The message returned if the SELECT is run successfully.

NOTICE: Closing pre-existing portal " cursorname "

This message is reported if the same cursor name was already declared in the current transaction
block. The previous definition is discarded.

ERROR: DECLARE CURSOR may only be used in begin/end transaction blocks

This error occurs if the cursor is not declared within a transaction block.

Description

DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at
a time out of a larger query. Cursors can return data either in text or in binary format usingFETCH.

Normal cursors return data in text format, either ASCII or another encoding scheme depending on
how the PostgreSQL backend was built. Since data is stored natively in binary format, the system
must do a conversion to produce the text format. In addition, text formats are often larger in size than
the corresponding binary format. Once the information comes back in text form, the client application
may need to convert it to a binary format to manipulate it. BINARY cursors give you back the data in
the native binary representation.

As an example, if a query returns a value of one from an integer column, you would get a string of1

with a default cursor whereas with a binary cursor you would get a 4-byte value equal to control-A
(^A).

BINARY cursors should be used carefully. User applications such as psql are not aware of binary
cursors and expect data to come back in a text format.

String representation is architecture-neutral whereas binary representation can differ between differ-
ent machine architectures.PostgreSQL does not resolve byte ordering or representation issues for
binary cursors. Therefore, if your client machine and server machine use different representations
(e.g., “big-endian” versus “little-endian”), you will probably not want your data returned in binary
format. However, binary cursors may be a little more efficient since there is less conversion overhead
in the server to client data transfer.

Tip: If you intend to display the data in ASCII, getting it back in ASCII will save you some effort
on the client side.

Notes

Cursors are only available in transactions. Use toBEGIN, COMMIT and ROLLBACK to define a
transaction block.

In SQL92 cursors are only available in embedded SQL (ESQL) applications. The PostgreSQL back-
end does not implement an explicitOPEN cursor statement; a cursor is considered to be open when
it is declared. However, ecpg, the embedded SQL preprocessor for PostgreSQL, supports the SQL92
cursor conventions, including those involving DECLARE and OPEN statements.

88

DECLARE

Usage

To declare a cursor:

DECLARE liahona CURSOR
FOR SELECT * FROM films;

Compatibility

SQL92

SQL92 allows cursors only in embedded SQL and in modules. PostgreSQL permits cursors to be
used interactively. SQL92 allows embedded or modular cursors to update database information. All
PostgreSQL cursors are read only. The BINARY keyword is a PostgreSQL extension.

89

DELETE

Name
DELETE — delete rows of a table

Synopsis

DELETE FROM [ONLY] table [WHERE condition]

Inputs

table

The name of an existing table.

condition

This is an SQL selection query which returns the rows which are to be deleted.

Refer to the SELECT statement for further description of the WHERE clause.

Outputs

DELETE count

Message returned if items are successfully deleted. Thecount is the number of rows deleted.

If count is 0, no rows were deleted.

Description

DELETE removes rows which satisfy the WHERE clause from the specified table.

If the condition(WHERE clause) is absent, the effect is to delete all rows in the table. The result is a
valid, but empty table.

Tip: TRUNCATE is a PostgreSQL extension which provides a faster mechanism to remove all
rows from a table.

By default DELETE will delete tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

You must have write access to the table in order to modify it, as well as read access to any table whose
values are read in thecondition .

90

DELETE

Usage

Remove all films but musicals:

DELETE FROM films WHERE kind <> ’Musical’;
SELECT * FROM films;

code | title | did | date_prod | kind | len

-------+---------------------------+-----+------------+---------+-------

UA501 | West Side Story | 105 | 1961-01-03 | Musical | 02:32

TC901 | The King and I | 109 | 1956-08-11 | Musical | 02:13

WD101 | Bed Knobs and Broomsticks | 111 | | Musical | 01:57

(3 rows)

Clear the tablefilms :

DELETE FROM films;
SELECT * FROM films;

code | title | did | date_prod | kind | len

------+-------+-----+-----------+------+-----

(0 rows)

Compatibility

SQL92

SQL92 allows a positioned DELETE statement:

DELETE FROMtable WHERE
CURRENT OFcursor

wherecursor identifies an open cursor. Interactive cursors in PostgreSQL are read-only.

91

DROP AGGREGATE

Name
DROP AGGREGATE— remove a user-defined aggregate function

Synopsis

DROP AGGREGATEname (type)

Inputs

name

The name of an existing aggregate function.

type

The input data type of an existing aggregate function, or* if the function accepts any input type.
(Refer to thePostgreSQL User’s Guidefor further information about data types.)

Outputs

DROP

Message returned if the command is successful.

ERROR: RemoveAggregate: aggregate ’ name’ for type type does not exist

This message occurs if the aggregate function specified does not exist in the database.

Description

DROP AGGREGATE will remove all references to an existing aggregate definition. To execute this
command the current user must be the owner of the aggregate.

Notes

UseCREATE AGGREGATEto create aggregate functions.

Usage

To remove themyavg aggregate for typeint4 :

DROP AGGREGATE myavg(int4);

92

DROP AGGREGATE

Compatibility

SQL92

There is noDROP AGGREGATE statement in SQL92; the statement is a PostgreSQL language
extension.

93

DROP DATABASE

Name
DROP DATABASE— remove a database

Synopsis

DROP DATABASEname

Inputs

name

The name of an existing database to remove.

Outputs

DROP DATABASE

This message is returned if the command is successful.

DROP DATABASE: cannot be executed on the currently open database

You cannot be connected to the database you are about to remove. Instead, connect totem-

plate1 or any other database and run this command again.

DROP DATABASE: may not be called in a transaction block

You must finish the transaction in progress before you can call this command.

Description

DROP DATABASE removes the catalog entries for an existing database and deletes the directory
containing the data. It can only be executed by the database owner (usually the user that created it).

DROP DATABASE cannot be undone. Use it with care!

Notes

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the shell scriptdropdb, which is a wrapper around this command, instead.

Refer toCREATE DATABASEfor information on how to create a database.

94

DROP DATABASE

Compatibility

SQL92

DROP DATABASE statement is a PostgreSQL language extension; there is no such command in
SQL92.

95

DROP FUNCTION

Name
DROP FUNCTION— remove a user-defined function

Synopsis

DROP FUNCTIONname ([type [, ...]])

Inputs

name

The name of an existing function.

type

The type of the function’s parameters.

Outputs

DROP

Message returned if the command completes successfully.

NOTICE RemoveFunction: Function " name" (" types ") does not exist

This message is given if the function specified does not exist in the current database.

Description

DROP FUNCTION will remove the definition of an existing function. To execute this command the
user must be the owner of the function. The input argument types to the function must be specified,
since several different functions may exist with the same name and different argument lists.

Notes

Refer toCREATE FUNCTIONfor information on creating functions.

No checks are made to ensure that types, operators, access methods, or triggers that rely on the func-
tion have been removed first.

96

DROP FUNCTION

Examples

This command removes the square root function:

DROP FUNCTION sqrt(integer);

Compatibility

A DROP FUNCTION statement is defined in SQL99. One of its syntax forms is:

DROP FUNCTIONname (arg , ...) { RESTRICT | CASCADE }

whereCASCADEspecifies dropping all objects that depend on the function andRESTRICTrefuses to
drop the function if dependent objects exist.

See Also

CREATE FUNCTION

97

DROP GROUP

Name
DROP GROUP— remove a user group

Synopsis

DROP GROUPname

Inputs

name

The name of an existing group.

Outputs

DROP GROUP

The message returned if the group is successfully deleted.

Description

DROP GROUP removes the specified group from the database. The users in the group are not
deleted.

UseCREATE GROUPto add new groups, andALTER GROUPto change a group’s membership.

Usage

To drop a group:

DROP GROUP staff;

Compatibility

SQL92

There is noDROP GROUP in SQL92.

98

DROP INDEX

Name
DROP INDEX — remove an index

Synopsis

DROP INDEXindex_name [, ...]

Inputs

index_name

The name of an index to remove.

Outputs

DROP

The message returned if the command completes successfully.

ERROR: index " index_name " does not exist

This message occurs ifindex_name is not an index in the database.

Description

DROP INDEX drops an existing index from the database system. To execute this command you must
be the owner of the index.

Notes

DROP INDEX is a PostgreSQL language extension.

Refer toCREATE INDEXfor information on how to create indexes.

Usage

This command will remove thetitle_idx index:

DROP INDEX title_idx;

99

DROP INDEX

Compatibility

SQL92

SQL92 defines commands by which to access a generic relational database. Indexes are an
implementation-dependent feature and hence there are no index-specific commands or definitions in
the SQL92 language.

100

DROP LANGUAGE

Name
DROP LANGUAGE— remove a user-defined procedural language

Synopsis

DROP [PROCEDURAL] LANGUAGEname

Inputs

name

The name of an existing procedural language. For backward compatibility, the name may be
enclosed by single quotes.

Outputs

DROP

This message is returned if the language is successfully dropped.

ERROR: Language " name" doesn’t exist

This message occurs if a language calledname is not found in the database.

Description

DROP PROCEDURAL LANGUAGE will remove the definition of the previously registered proce-
dural language calledname.

Notes

TheDROP PROCEDURAL LANGUAGE statement is a PostgreSQL language extension.

Refer toCREATE LANGUAGEfor information on how to create procedural languages.

No checks are made if functions or trigger procedures registered in this language still exist. To re-
enable them without having to drop and recreate all the functions, the pg_proc’s prolang attribute of
the functions must be adjusted to the new object ID of the recreated pg_language entry for the PL.

Usage

This command removes the PL/Sample language:

DROP LANGUAGE plsample;

101

DROP LANGUAGE

Compatibility

SQL92

There is noDROP PROCEDURAL LANGUAGE in SQL92.

102

DROP OPERATOR

Name
DROP OPERATOR— remove a user-defined operator

Synopsis

DROP OPERATORid (lefttype | NONE , righttype | NONE)

Inputs

id

The identifier of an existing operator.

lefttype

The type of the operator’s left argument; writeNONEif the operator has no left argument.

righttype

The type of the operator’s right argument; writeNONEif the operator has no right argument.

Outputs

DROP

The message returned if the command is successful.

ERROR: RemoveOperator: binary operator ’ oper ’ taking ’ lefttype ’ and

’ righttype ’ does not exist

This message occurs if the specified binary operator does not exist.

ERROR: RemoveOperator: left unary operator ’ oper ’ taking ’ lefttype ’ does

not exist

This message occurs if the left unary operator specified does not exist.

ERROR: RemoveOperator: right unary operator ’ oper ’ taking ’ righttype ’ does

not exist

This message occurs if the right unary operator specified does not exist.

Description

DROP OPERATOR drops an existing operator from the database. To execute this command you
must be the owner of the operator.

The left or right type of a left or right unary operator, respectively, must be specified asNONE.

103

DROP OPERATOR

Notes

TheDROP OPERATOR statement is a PostgreSQL language extension.

Refer toCREATE OPERATORfor information on how to create operators.

It is the user’s responsibility to remove any access methods and operator classes that rely on the
deleted operator.

Usage

Remove power operatora^n for int4 :

DROP OPERATOR ^ (int4, int4);

Remove left unary negation operator (! b) for boolean :

DROP OPERATOR ! (none, bool);

Remove right unary factorial operator (i !) for int4 :

DROP OPERATOR ! (int4, none);

Compatibility

SQL92

There is noDROP OPERATOR in SQL92.

104

DROP RULE

Name
DROP RULE— remove a rewrite rule

Synopsis

DROP RULEname [, ...]

Inputs

name

The name of an existing rule to drop.

Outputs

DROP

Message returned if successful.

ERROR: Rule or view " name" not found

This message occurs if the specified rule does not exist.

Description

DROP RULE drops a rule from the specified PostgreSQL rule system. PostgreSQL will immediately
cease enforcing it and will purge its definition from the system catalogs.

Notes

TheDROP RULE statement is a PostgreSQL language extension.

Refer toCREATE RULE for information on how to create rules.

Once a rule is dropped, access to historical information the rule has written may disappear.

Usage

To drop the rewrite rulenewrule :

DROP RULE newrule;

105

DROP RULE

Compatibility

SQL92

There is noDROP RULE in SQL92.

106

DROP SEQUENCE

Name
DROP SEQUENCE— remove a sequence

Synopsis

DROP SEQUENCEname [, ...]

Inputs

name

The name of a sequence.

Outputs

DROP

The message returned if the sequence is successfully dropped.

ERROR: sequence " name" does not exist

This message occurs if the specified sequence does not exist.

Description

DROP SEQUENCE removes sequence number generators from the data base. With the current im-
plementation of sequences as special tables it works just like theDROP TABLE statement.

Notes

TheDROP SEQUENCEstatement is a PostgreSQL language extension.

Refer to theCREATE SEQUENCE statement for information on how to create a sequence.

Usage

To remove sequenceserial from database:

DROP SEQUENCE serial;

107

DROP SEQUENCE

Compatibility

SQL92

There is noDROP SEQUENCE in SQL92.

108

DROP TABLE

Name
DROP TABLE — remove a table

Synopsis

DROP TABLEname [, ...]

Inputs

name

The name of an existing table to drop.

Outputs

DROP

The message returned if the command completes successfully.

ERROR: table " name" does not exist

If the specified table does not exist in the database.

Description

DROP TABLE removes tables from the database. Only its owner may destroy a table. A table may
be emptied of rows, but not destroyed, by usingDELETE .

If a table being destroyed has secondary indexes on it, they will be removed first. The removal of just
a secondary index will not affect the contents of the underlying table.

Notes

Refer toCREATE TABLE andALTER TABLE for information on how to create or modify tables.

Usage

To destroy two tables,films anddistributors :

DROP TABLE films, distributors;

109

DROP TABLE

Compatibility

SQL92

SQL92 specifies some additional capabilities for DROP TABLE:

DROP TABLEtable { RESTRICT | CASCADE }

RESTRICT

Ensures that only a table with no dependent views or integrity constraints can be destroyed.

CASCADE

Any referencing views or integrity constraints will also be dropped.

Tip: At present, to remove a referenced view you must drop it explicitly.

110

DROP TRIGGER

Name
DROP TRIGGER— remove a trigger

Synopsis

DROP TRIGGERname ON table

Inputs

name

The name of an existing trigger.

table

The name of a table.

Outputs

DROP

The message returned if the trigger is successfully dropped.

ERROR: DropTrigger: there is no trigger name on relation " table "

This message occurs if the trigger specified does not exist.

Description

DROP TRIGGER will remove all references to an existing trigger definition. To execute this com-
mand the current user must be the owner of the table for which the trigger is defined.

Examples

Destroy theif_dist_exists trigger on tablefilms :

DROP TRIGGER if_dist_exists ON films;

111

DROP TRIGGER

Compatibility

SQL92

There is noDROP TRIGGER statement in SQL92.

SQL99

TheDROP TRIGGER statement in PostgreSQL is incompatible with SQL99. In SQL99, trigger
names are not local to tables, so the command is simplyDROP TRIGGERname.

See Also

CREATE TRIGGER

112

DROP TYPE

Name
DROP TYPE — remove a user-defined data type

Synopsis

DROP TYPEtypename [, ...]

Inputs

typename

The name of an existing type.

Outputs

DROP

The message returned if the command is successful.

ERROR: RemoveType: type ’ typename ’ does not exist

This message occurs if the specified type is not found.

Description

DROP TYPE will remove a user type from the system catalogs.

Only the owner of a type can remove it.

Notes

• It is the user’s responsibility to remove any operators, functions, aggregates, access methods, sub-
types, and tables that use a deleted type. However, the associated array data type (which was auto-
matically created byCREATE TYPE) will be removed automatically.

• If a built-in type is removed, the behavior of the server is unpredictable.

Examples

To remove thebox type:

DROP TYPE box;

113

DROP TYPE

Compatibility

A DROP TYPE statement exists in SQL99. As with most other “drop” commands,DROP TYPE in
SQL99 requires a “drop behavior” clause to select between dropping all dependent objects or refusing
to drop if dependent objects exist:

DROP TYPEname { CASCADE | RESTRICT }

PostgreSQL currently ignores dependencies altogether.

Note that theCREATE TYPE command and the data type extension mechanisms in PostgreSQL
differ from SQL99.

See Also

CREATE TYPE

114

DROP USER

Name
DROP USER— remove a database user account

Synopsis

DROP USERname

Inputs

name

The name of an existing user.

Outputs

DROP USER

The message returned if the user is successfully deleted.

ERROR: DROP USER: user "name" does not exist

This message occurs if the user name is not found.

DROP USER: user " name" owns database " name", cannot be removed

You must drop the database first or change its ownership.

Description

DROP USERremoves the specified user from the database. It does not remove tables, views, or other
objects owned by the user. If the user owns any database you get an error.

UseCREATE USERto add new users, andALTER USERto change a user’s properties. PostgreSQL
comes with a scriptdropuserwhich has the same functionality as this command (in fact, it calls this
command) but can be run from the command shell.

Usage

To drop a user account:

DROP USER jonathan;

115

DROP USER

Compatibility

SQL92

There is noDROP USER in SQL92.

116

DROP VIEW

Name
DROP VIEW — remove a view

Synopsis

DROP VIEWname [, ...]

Inputs

name

The name of an existing view.

Outputs

DROP

The message returned if the command is successful.

ERROR: view name does not exist

This message occurs if the specified view does not exist in the database.

Description

DROP VIEW drops an existing view from the database. To execute this command you must be the
owner of the view.

Notes

Refer toCREATE VIEW for information on how to create views.

Usage

This command will remove the view calledkinds :

DROP VIEW kinds;

117

DROP VIEW

Compatibility

SQL92

SQL92 specifies some additional capabilities forDROP VIEW :

DROP VIEWview { RESTRICT | CASCADE }

Inputs

RESTRICT

Ensures that only a view with no dependent views or integrity constraints can be destroyed.

CASCADE

Any referencing views and integrity constraints will be dropped as well.

Notes

At present, to remove a referenced view from a PostgreSQL database, you must drop it explicitly.

118

END

Name
END — commit the current transaction

Synopsis

END [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

COMMIT

Message returned if the transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

If there is no transaction in progress.

Description

END is a PostgreSQL extension, and is a synonym for the SQL92-compatibleCOMMIT.

Notes

The keywords WORK and TRANSACTION are noise and can be omitted.

UseROLLBACKto abort a transaction.

Usage

To make all changes permanent:

END WORK;

119

END

Compatibility

SQL92

END is a PostgreSQL extension which provides functionality equivalent toCOMMIT.

120

EXPLAIN

Name
EXPLAIN — show the execution plan of a statement

Synopsis

EXPLAIN [ANALYZE] [VERBOSE] query

Inputs

ANALYZE

Flag to carry out the query and show actual runtimes.

VERBOSE

Flag to show detailed query plan.

query

Any query .

Outputs

NOTICE: QUERY PLAN: plan

Explicit query plan from the PostgreSQL backend.

EXPLAIN

Flag sent after query plan is shown.

Description

This command displays the execution plan that the PostgreSQL planner generates for the supplied
query. The execution plan shows how the table(s) referenced by the query will be scanned---by plain
sequential scan, index scan, etc.---and if multiple tables are referenced, what join algorithms will be
used to bring together the required tuples from each input table.

The most critical part of the display is the estimated query execution cost, which is the planner’s
guess at how long it will take to run the query (measured in units of disk page fetches). Actually two
numbers are shown: the start-up time before the first tuple can be returned, and the total time to return
all the tuples. For most queries the total time is what matters, but in contexts such as an EXISTS sub-
query the planner will choose the smallest start-up time instead of the smallest total time (since the
executor will stop after getting one tuple, anyway). Also, if you limit the number of tuples to return
with a LIMIT clause, the planner makes an appropriate interpolation between the endpoint costs to
estimate which plan is really the cheapest.

121

EXPLAIN

The ANALYZE option causes the query to be actually executed, not only planned. The total elapsed
time expended within each plan node (in milliseconds) and total number of rows it actually returned
are added to the display. This is useful for seeing whether the planner’s estimates are close to reality.

The VERBOSE option emits the full internal representation of the plan tree, rather than just a sum-
mary (and sends it to the postmaster log file, too). Usually this option is only useful for debugging
PostgreSQL.

Caution
Keep in mind that the query is actually executed when ANALYZE is used. Al-
though EXPLAIN will discard any output that a SELECT would return, other
side-effects of the query will happen as usual. If you wish to use EXPLAIN AN-
ALYZE on an INSERT, UPDATE, or DELETE query without letting the query
affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;

Notes

There is only sparse documentation on the optimizer’s use of cost information in PostgreSQL. Refer
to theUser’s GuideandProgrammer’s Guidefor more information.

Usage

To show a query plan for a simple query on a table with a singleint4 column and 128 rows:

EXPLAIN SELECT * FROM foo;
NOTICE: QUERY PLAN:

Seq Scan on foo (cost=0.00..2.28 rows=128 width=4)

EXPLAIN

For the same table with an index to support anequijoincondition on the query,EXPLAIN will show
a different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;
NOTICE: QUERY PLAN:

Index Scan using fi on foo (cost=0.00..0.42 rows=1 width=4)

EXPLAIN

122

EXPLAIN

And finally, for the same table with an index to support anequijoincondition on the query,EXPLAIN
will show the following for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i = 4;
NOTICE: QUERY PLAN:

Aggregate (cost=0.42..0.42 rows=1 width=4)

-> Index Scan using fi on foo (cost=0.00..0.42 rows=1 width=4)

Note that the specific numbers shown, and even the selected query strategy, may vary between Post-
greSQL releases due to planner improvements.

Compatibility

SQL92

There is noEXPLAIN statement defined in SQL92.

123

FETCH

Name
FETCH — retrieve rows from a table using a cursor

Synopsis

FETCH [direction] [count] { IN | FROM } cursor
FETCH [FORWARD | BACKWARD | RELATIVE] [# | ALL | NEXT | PRIOR] { IN | FROM } cur-
sor

Inputs

direction

selector defines the fetch direction. It can be one of the following:

FORWARD

fetch next row(s). This is the default ifselector is omitted.

BACKWARD

fetch previous row(s).

RELATIVE

Noise word for SQL92 compatibility.

count

count determines how many rows to fetch. It can be one of the following:

#

A signed integer that specifies how many rows to fetch. Note that a negative integer is
equivalent to changing the sense of FORWARD and BACKWARD.

ALL

Retrieve all remaining rows.

NEXT

Equivalent to specifying a count of1.

PRIOR

Equivalent to specifying a count of-1.

cursor

An open cursor’s name.

124

FETCH

Outputs

FETCH returns the results of the query defined by the specified cursor. The following messages will
be returned if the query fails:

NOTICE: PerformPortalFetch: portal " cursor " not found

If cursor is not previously declared. The cursor must be declared within a transaction block.

NOTICE: FETCH/ABSOLUTE not supported, using RELATIVE

PostgreSQL does not support absolute positioning of cursors.

ERROR: FETCH/RELATIVE at current position is not supported

SQL92 allows one to repetitively retrieve the cursor at its “current position” using the syntax

FETCH RELATIVE 0 FROMcursor .

PostgreSQL does not currently support this notion; in fact the value zero is reserved to indicate
that all rows should be retrieved and is equivalent to specifying the ALL keyword. If the RELA-
TIVE keyword has been used, PostgreSQL assumes that the user intended SQL92 behavior and
returns this error message.

Description
FETCH allows a user to retrieve rows using a cursor. The number of rows retrieved is specified by
#. If the number of rows remaining in the cursor is less than#, then only those available are fetched.
Substituting the keyword ALL in place of a number will cause all remaining rows in the cursor to
be retrieved. Instances may be fetched in both FORWARD and BACKWARD directions. The default
direction is FORWARD.

Tip: Negative numbers are allowed to be specified for the row count. A negative number is equiv-
alent to reversing the sense of the FORWARD and BACKWARD keywords. For example, FOR-
WARD -1 is the same as BACKWARD 1 .

Notes

Note that the FORWARD and BACKWARD keywords are PostgreSQL extensions. The SQL92 syn-
tax is also supported, specified in the second form of the command. See below for details on compat-
ibility issues.

Updating data in a cursor is not supported by PostgreSQL, because mapping cursor updates back to
base tables is not generally possible, as is also the case with VIEW updates. Consequently, users must
issue explicit UPDATE commands to replace data.

Cursors may only be used inside of transactions because the data that they store spans multiple user
queries.

UseMOVE to change cursor position.DECLAREwill define a cursor. Refer toBEGIN, COMMIT,
andROLLBACKfor further information about transactions.

125

FETCH

Usage

The following examples traverses a table using a cursor.

-- Set up and use a cursor:

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Fetch first 5 rows in the cursor liahona:
FETCH FORWARD 5 IN liahona;

code | title | did | date_prod | kind | len

-------+-------------------------+-----+------------+----------+-------

BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44

BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43

JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25

P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch previous row:
FETCH BACKWARD 1 IN liahona;

code | title | did | date_prod | kind | len

-------+---------+-----+------------+--------+-------

P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- close the cursor and commit work:

CLOSE liahona;
COMMIT WORK;

Compatibility

SQL92

Note: The non-embedded use of cursors is a PostgreSQL extension. The syntax and usage of
cursors is being compared against the embedded form of cursors defined in SQL92.

SQL92 allows absolute positioning of the cursor for FETCH, and allows placing the results into
explicit variables:

FETCH ABSOLUTE#
FROMcursor
INTO : variable [, ...]

126

FETCH

ABSOLUTE

The cursor should be positioned to the specified absolute row number. All row numbers in Post-
greSQL are relative numbers so this capability is not supported.

:variable

Target host variable(s).

127

GRANT

Name
GRANT— define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER } [,...] | ALL [PRIV-
ILEGES] }

ON [TABLE] objectname [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...]

Description

TheGRANT command gives specific permissions on an object (table, view, sequence) to one or more
users or groups of users. These permissions are added to those already granted, if any.

The key wordPUBLIC indicates that the privileges are to be granted to all users, including those that
may be created later.PUBLIC may be thought of as an implicitly defined group that always includes all
users. Note that any particular user will have the sum of privileges granted directly to him, privileges
granted to any group he is presently a member of, and privileges granted toPUBLIC.

Users other than the creator of an object do not have any access privileges to the object unless the
creator grants permissions. There is no need to grant privileges to the creator of an object, as the
creator automatically holds all privileges. (The creator could, however, choose to revoke some of his
own privileges for safety. Note that the ability to grant and revoke privileges is inherent in the creator
and cannot be lost. The right to drop the object is likewise inherent in the creator, and cannot be
granted or revoked.)

The possible privileges are:

SELECT

Allows SELECTfrom any column of the specified table, view, or sequence. Also allows the use
of COPYFROM.

INSERT

Allows INSERTof a new row into the specified table. Also allowsCOPYTO.

UPDATE

Allows UPDATEof any column of the specified table.SELECT ... FOR UPDATE also requires
this privilege (besides theSELECTprivilege). For sequences, this privilege allows the use of
nextval , currval andsetval .

DELETE

Allows DELETEof a row from the specified table.

RULE

Allows the creation of a rule on the table/view. (SeeCREATE RULEstatement.)

REFERENCES

To create a table with a foreign key constraint, it is necessary to have this privilege on the table
with the referenced key.

128

GRANT

TRIGGER

Allows the creation of a trigger on the specified table. (SeeCREATE TRIGGERstatement.)

ALL PRIVILEGES

Grant all of the above privileges at once. ThePRIVILEGES key word is optional in PostgreSQL,
though it is required by strict SQL.

The privileges required by other commands are listed on the reference page of the respective com-
mand.

Notes

It should be noted that databasesuperuserscan access all objects regardless of object privilege set-
tings. This is comparable to the rights ofroot in a Unix system. As withroot , it’s unwise to operate
as a superuser except when absolutely necessary.

Currently, to grant privileges in PostgreSQL to only a few columns, you must create a view having
the desired columns and then grant privileges to that view.

Usepsql’s \z command to obtain information about privileges on existing objects:

Database = lusitania
+------------------+---+
| Relation | Grant/Revoke Permissions |
+------------------+---+
| mytable | {"=rw","miriam=arwdRxt","group todos=rw"} |
+------------------+---+
Legend:

uname=arwR -- privileges granted to a user
group gname=arwR -- privileges granted to a group

=arwR -- privileges granted to PUBLIC

r -- SELECT ("read")
w -- UPDATE ("write")
a -- INSERT ("append")
d -- DELETE
R -- RULE
x -- REFERENCES
t -- TRIGGER

arwdRxt -- ALL PRIVILEGES

TheREVOKEcommand is used to revoke access privileges.

Examples

Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;

Grant all privileges to usermanuel on viewkinds :

GRANT ALL PRIVILEGES ON kinds TO manuel;

129

GRANT

Compatibility

SQL92

ThePRIVILEGES key word inALL PRIVILEGES is required. SQL does not support setting the priv-
ileges on more than one table per command.

The SQL92 syntax for GRANT allows setting privileges for individual columns within a table, and
allows setting a privilege to grant the same privileges to others:

GRANTprivilege [, ...]
ON object [(column [, ...])] [, ...]
TO { PUBLIC | username [, ...] } [WITH GRANT OPTION]

SQL allows to grant the USAGE privilege on other kinds of objects: CHARACTER SET, COLLA-
TION, TRANSLATION, DOMAIN.

The TRIGGER privilege was introduced in SQL99. The RULE privilege is a PostgreSQL extension.

See Also

REVOKE

130

INSERT

Name
INSERT — create new rows in a table

Synopsis

INSERT INTO table [(column [, ...])]
{ DEFAULT VALUES | VALUES (expression [, ...]) | SELECT query }

Inputs

table

The name of an existing table.

column

The name of a column intable .

DEFAULT VALUES

All columns will be filled by NULLs or by values specified when the table was created using
DEFAULT clauses.

expression

A valid expression or value to assign tocolumn .

query

A valid query. Refer to the SELECT statement for a further description of valid arguments.

Outputs

INSERT oid 1

Message returned if only one row was inserted.oid is the numeric OID of the inserted row.

INSERT 0 #

Message returned if more than one rows were inserted.# is the number of rows inserted.

Description

INSERT allows one to insert new rows into a table. One can insert a single row at a time or several
rows as a result of a query. The columns in the target list may be listed in any order.

Each column not present in the target list will be inserted using a default value, either a declared
DEFAULT value or NULL. PostgreSQL will reject the new column if a NULL is inserted into a
column declared NOT NULL.

131

INSERT

If the expression for each column is not of the correct data type, automatic type coercion will be
attempted.

You must have insert privilege to a table in order to append to it, as well as select privilege on any
table specified in a WHERE clause.

Usage

Insert a single row into tablefilms :

INSERT INTO films VALUES
(’UA502’,’Bananas’,105,’1971-07-13’,’Comedy’,INTERVAL ’82 minute’);

In this second example the last columnlen is omitted and therefore it will have the default value of
NULL:

INSERT INTO films (code, title, did, date_prod, kind)
VALUES (’T_601’, ’Yojimbo’, 106, DATE ’1961-06-16’, ’Drama’);

Insert a single row into table distributors; note that only columnname is specified, so the omitted
columndid will be assigned its default value:

INSERT INTO distributors (name) VALUES (’British Lion’);

Insert several rows into table films from tabletmp :

INSERT INTO films SELECT * FROM tmp;

Insert into arrays (refer to thePostgreSQL User’s Guidefor further information about arrays):

-- Create an empty 3x3 gameboard for noughts-and-crosses
-- (all of these queries create the same board attribute)
INSERT INTO tictactoe (game, board[1:3][1:3])

VALUES (1,’{{"","",""},{},{"",""}}’);
INSERT INTO tictactoe (game, board[3][3])

VALUES (2,’{}’);
INSERT INTO tictactoe (game, board)

VALUES (3,’{{„},{„},{„}}’);

132

INSERT

Compatibility

SQL92

INSERT is fully compatible with SQL92. Possible limitations in features of thequery clause are
documented forSELECT.

133

LISTEN

Name
LISTEN — listen for a notification

Synopsis

LISTEN name

Inputs

name

Name of notify condition.

Outputs

LISTEN

Message returned upon successful completion of registration.

NOTICE Async_Listen: We are already listening on name

If this backend is already registered for that notify condition.

Description

LISTEN registers the current PostgreSQL backend as a listener on the notify conditionname.

Whenever the commandNOTIFY name is invoked, either by this backend or another one connected
to the same database, all the backends currently listening on that notify condition are notified, and
each will in turn notify its connected frontend application. See the discussion ofNOTIFY for more
information.

A backend can be unregistered for a given notify condition with theUNLISTEN command. Also, a
backend’s listen registrations are automatically cleared when the backend process exits.

The method a frontend application must use to detect notify events depends on which PostgreSQL
application programming interface it uses. With the basic libpq library, the application issuesLISTEN
as an ordinary SQL command, and then must periodically call the routinePQnotifies to find out
whether any notify events have been received. Other interfaces such as libpgtcl provide higher-level
methods for handling notify events; indeed, with libpgtcl the application programmer should not even
issueLISTEN or UNLISTEN directly. See the documentation for the library you are using for more
details.

NOTIFYcontains a more extensive discussion of the use ofLISTEN andNOTIFY .

134

LISTEN

Notes

name can be any string valid as a name; it need not correspond to the name of any actual table. If
notifyname is enclosed in double-quotes, it need not even be a syntactically valid name, but can
be any string up to 31 characters long.

In some previous releases of PostgreSQL,name had to be enclosed in double-quotes when it did
not correspond to any existing table name, even if syntactically valid as a name. That is no longer
required.

Usage

Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;

Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received.

Compatibility

SQL92

There is noLISTEN in SQL92.

135

LOAD

Name
LOAD— load or reload a shared library file

Synopsis

LOAD ’filename ’

Description

Loads a shared library file into the PostgreSQL backend’s address space. If the file had been loaded
previously, it is first unloaded. This command is primarily useful to unload and reload a shared li-
brary file that has been changed since the backend first loaded it. To make use of the shared library,
function(s) in it need to be declared using theCREATE FUNCTIONcommand.

The file name is specified in the same way as for shared library names inCREATE FUNCTION;
in particular, one may rely on a search path and automatic addition of the system’s standard shared
library file name extension. See theProgrammer’s Guidefor more detail.

Compatibility

LOAD is a PostgreSQL extension.

See Also

CREATE FUNCTION, PostgreSQL Programmer’s Guide

136

LOCK

Name
LOCK — explicitly lock a table

Synopsis

LOCK [TABLE] name [, ...]
LOCK [TABLE] name [, ...] IN lockmode MODE

where lockmode is one of:

ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE |
SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Inputs

name

The name of an existing table to lock.

ACCESS SHARE MODE

Note: This lock mode is acquired automatically over tables being queried.

This is the least restrictive lock mode. It conflicts only with ACCESS EXCLUSIVE mode. It is
used to protect a table from being modified by concurrentALTER TABLE , DROP TABLE and
VACUUM FULL commands.

ROW SHARE MODE

Note: Automatically acquired by SELECT ... FOR UPDATE .

Conflicts with EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

ROW EXCLUSIVE MODE

Note: Automatically acquired by UPDATE, DELETE, and INSERT statements.

Conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE
modes.

SHARE UPDATE EXCLUSIVE MODE

Note: Automatically acquired by VACUUM (without FULL).

137

LOCK

Conflicts with SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EX-
CLUSIVE and ACCESS EXCLUSIVE modes. This mode protects a table against concurrent
schema changes and VACUUMs.

SHARE MODE

Note: Automatically acquired by CREATE INDEX. Share-locks the entire table.

Conflicts with ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLU-
SIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes. This mode protects a table against
concurrent data updates.

SHARE ROW EXCLUSIVE MODE

Note: This is like EXCLUSIVE MODE, but allows ROW SHARE locks by others.

Conflicts with ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes.

EXCLUSIVE MODE

Note: This mode is yet more restrictive than SHARE ROW EXCLUSIVE. It blocks all con-
current ROW SHARE/SELECT...FOR UPDATE queries.

Conflicts with ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE,
SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes. This mode al-
lows only concurrent ACCESS SHARE, i.e., only reads from the table can proceed in parallel
with a transaction holding this lock mode.

ACCESS EXCLUSIVE MODE

Note: Automatically acquired by ALTER TABLE , DROP TABLE , VACUUM FULL state-
ments. This is the most restrictive lock mode which protects a locked table from any con-
current operations.

Note: This lock mode is also acquired by an unqualified LOCK TABLE (i.e., the command
without an explicit lock mode option).

Conflicts with all lock modes.

Outputs

LOCK TABLE

The lock was successfully acquired.

138

LOCK

ERRORname: Table does not exist.

Message returned ifname does not exist.

Description

LOCK TABLE controls concurrent access to a table for the duration of a transaction. PostgreSQL
always uses the least restrictive lock mode whenever possible.LOCK TABLE provides for cases
when you might need more restrictive locking.

RDBMS locking uses the following terminology:

EXCLUSIVE

An exclusive lock prevents other locks of the same type from being granted. (Note: ROW EX-
CLUSIVE mode does not follow this naming convention perfectly, since it is shared at the level
of the table; it is exclusive only with respect to specific rows that are being updated.)

SHARE

A shared lock allows others to also hold the same type of lock, but prevents the corresponding
EXCLUSIVE lock from being granted.

ACCESS

Locks table schema.

ROW

Locks individual rows.

For example, suppose an application runs a transaction at READ COMMITTED isolation level and
needs to ensure the existence of data in a table for the duration of the transaction. To achieve this
you could obtain SHARE lock mode over the table before querying. This will prevent concurrent data
changes and ensure further read operations over the table see data in their actual current state, because
SHARE lock mode conflicts with any ROW EXCLUSIVE lock acquired by writers, and yourLOCK
TABLE name IN SHARE MODE statement will wait until any concurrent write operations commit
or rollback. Thus, once you obtain the lock, there are no uncommitted writes outstanding.

Note: To read data in their actual current state when running a transaction at the SERIALIZ-
ABLE isolation level, you have to execute the LOCK TABLE statement before executing any DML
statement. A serializable transaction’s view of data will be frozen when its first DML statement
begins.

In addition to the requirements above, if a transaction is going to change data in a table, then SHARE
ROW EXCLUSIVE lock mode should be acquired to prevent deadlock conditions when two concur-
rent transactions attempt to lock the table in SHARE mode and then try to change data in this table,
both (implicitly) acquiring ROW EXCLUSIVE lock mode that conflicts with a concurrent SHARE
lock.

To continue with the deadlock (when two transactions wait for one another) issue raised above, you
should follow two general rules to prevent deadlock conditions:

139

LOCK

• Transactions have to acquire locks on the same objects in the same order.

For example, if one application updates row R1 and than updates row R2 (in the same transaction)
then the second application shouldn’t update row R2 if it’s going to update row R1 later (in a single
transaction). Instead, it should update rows R1 and R2 in the same order as the first application.

• Transactions should acquire two conflicting lock modes only if one of them is self-conflicting
(i.e., may be held by only one transaction at a time). If multiple lock modes are involved, then
transactions should always acquire the most restrictive mode first.

An example for this rule was given previously when discussing the use of SHARE ROW EXCLU-
SIVE mode rather than SHARE mode.

Note: PostgreSQL does detect deadlocks and will rollback at least one waiting transaction to
resolve the deadlock.

When locking multiple tables, the command LOCK a, b; is equivalent to LOCK a; LOCK b;. The
tables are locked one-by-one in the order specified in theLOCK command.

Notes

LOCK ... IN ACCESS SHARE MODErequiresSELECTprivileges on the target table. All other forms
of LOCK requireUPDATEand/orDELETEprivileges.

LOCK is useful only inside a transaction block (BEGIN ...COMMIT), since the lock is dropped as
soon as the transaction ends. ALOCK command appearing outside any transaction block forms a
self-contained transaction, so the lock will be dropped as soon as it is obtained.

Usage

Illustrate a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films

WHERE name = ’Star Wars: Episode I - The Phantom Menace’;
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES

(_id_, ’GREAT! I was waiting for it for so long!’);
COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete
operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN

(SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;

140

LOCK

COMMIT WORK;

Compatibility

SQL92

There is noLOCK TABLE in SQL92, which instead usesSET TRANSACTION to specify concur-
rency levels on transactions. We support that too; seeSET TRANSACTIONfor details.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock
modes, the PostgreSQL lock modes and theLOCK TABLE syntax are compatible with those present
in Oracle(TM).

141

MOVE

Name
MOVE — position a cursor on a specified row of a table

Synopsis

MOVE [direction] [count]
{ IN | FROM } cursor

Description

MOVE allows a user to move cursor position a specified number of rows.MOVE works like the
FETCH command, but only positions the cursor and does not return rows.

Refer toFETCH for details on syntax and usage.

Notes

MOVE is a PostgreSQL language extension.

Refer toFETCH for a description of valid arguments. Refer toDECLAREto define a cursor. Refer to
BEGIN, COMMIT, andROLLBACKfor further information about transactions.

Usage

Set up and use a cursor:

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;
-- Skip first 5 rows:
MOVE FORWARD 5 IN liahona;
MOVE

-- Fetch 6th row in the cursor liahona:
FETCH 1 IN liahona;
FETCH

code | title | did | date_prod | kind | len

-------+--------+-----+-----------+--------+-------

P_303 | 48 Hrs | 103 | 1982-10-22| Action | 01:37

(1 row)

-- close the cursor liahona and commit work:
CLOSE liahona;
COMMIT WORK;

142

MOVE

Compatibility

SQL92

There is no SQL92MOVE statement. Instead, SQL92 allows one toFETCH rows from an absolute
cursor position, implicitly moving the cursor to the correct position.

143

NOTIFY

Name
NOTIFY — generate a notification

Synopsis

NOTIFY name

Inputs

notifyname

Notify condition to be signaled.

Outputs

NOTIFY

Acknowledgement that notify command has executed.

Notify events

Events are delivered to listening frontends; whether and how each frontend application reacts
depends on its programming.

Description

TheNOTIFY command sends a notify event to each frontend application that has previously executed
LISTEN notifyname for the specified notify condition in the current database.

The information passed to the frontend for a notify event includes the notify condition name and the
notifying backend process’s PID. It is up to the database designer to define the condition names that
will be used in a given database and what each one means.

Commonly, the notify condition name is the same as the name of some table in the database, and the
notify event essentially means “I changed this table, take a look at it to see what’s new”. But no such
association is enforced by theNOTIFY andLISTEN commands. For example, a database designer
could use several different condition names to signal different sorts of changes to a single table.

NOTIFY provides a simple form of signal or IPC (interprocess communication) mechanism for a
collection of processes accessing the same PostgreSQL database. Higher-level mechanisms can be
built by using tables in the database to pass additional data (beyond a mere condition name) from
notifier to listener(s).

WhenNOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put theNOTIFY in a rule that is triggered by table updates. In this way, notification

144

NOTIFY

happens automatically when the table is changed, and the application programmer can’t accidentally
forget to do it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if aNOTIFY is executed
inside a transaction, the notify events are not delivered until and unless the transaction is committed.
This is appropriate, since if the transaction is aborted we would like all the commands within it to
have had no effect, includingNOTIFY . But it can be disconcerting if one is expecting the notify
events to be delivered immediately. Secondly, if a listening backend receives a notify signal while it is
within a transaction, the notify event will not be delivered to its connected frontend until just after the
transaction is completed (either committed or aborted). Again, the reasoning is that if a notify were
delivered within a transaction that was later aborted, one would want the notification to be undone
somehow---but the backend cannot “take back” a notify once it has sent it to the frontend. So notify
events are only delivered between transactions. The upshot of this is that applications usingNOTIFY
for real-time signaling should try to keep their transactions short.

NOTIFY behaves like Unix signals in one important respect: if the same condition name is signaled
multiple times in quick succession, recipients may get only one notify event for several executions
of NOTIFY . So it is a bad idea to depend on the number of notifies received. Instead, useNOTIFY
to wake up applications that need to pay attention to something, and use a database object (such as a
sequence) to keep track of what happened or how many times it happened.

It is common for a frontend that sendsNOTIFY to be listening on the same notify name itself. In
that case it will get back a notify event, just like all the other listening frontends. Depending on the
application logic, this could result in useless work---for example, re-reading a database table to find
the same updates that that frontend just wrote out. In PostgreSQL 6.4 and later, it is possible to avoid
such extra work by noticing whether the notifying backend process’s PID (supplied in the notify event
message) is the same as one’s own backend’s PID (available from libpq). When they are the same,
the notify event is one’s own work bouncing back, and can be ignored. (Despite what was said in the
preceding paragraph, this is a safe technique. PostgreSQL keeps self-notifies separate from notifies
arriving from other backends, so you cannot miss an outside notify by ignoring your own notifies.)

Notes

name can be any string valid as a name; it need not correspond to the name of any actual table. If
name is enclosed in double-quotes, it need not even be a syntactically valid name, but can be any
string up to 31 characters long.

In some previous releases of PostgreSQL,name had to be enclosed in double-quotes when it did
not correspond to any existing table name, even if syntactically valid as a name. That is no longer
required.

In PostgreSQL releases prior to 6.4, the backend PID delivered in a notify message was always the
PID of the frontend’s own backend. So it was not possible to distinguish one’s own notifies from other
clients’ notifies in those earlier releases.

Usage

Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received.

145

NOTIFY

Compatibility

SQL92

There is noNOTIFY statement in SQL92.

146

REINDEX

Name
REINDEX — rebuild corrupted indexes

Synopsis

REINDEX { TABLE | DATABASE | INDEX } name [FORCE]

Inputs

TABLE

Recreate all indexes of a specified table.

DATABASE

Recreate all system indexes of a specified database. (User-table indexes are not included.)

INDEX

Recreate a specified index.

name

The name of the specific table/database/index to be be reindexed.

FORCE

Force rebuild of system indexes. Without this keywordREINDEX skips system indexes that
are not marked invalid. FORCE is irrelevant forREINDEX INDEX , or when reindexing user
indexes.

Outputs

REINDEX

Message returned if the table is successfully reindexed.

Description

REINDEX is used to rebuild corrupted indexes. Although in theory this should never be necessary,
in practice indexes may become corrupted due to software bugs or hardware failures.REINDEX
provides a recovery method.

If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes
on the table, usingREINDEX INDEX or REINDEX TABLE .

Note: Another approach to dealing with a corrupted user-table index is just to drop and recreate
it. This may in fact be preferable if you would like to maintain some semblance of normal operation

147

REINDEX

on the table meanwhile. REINDEX acquires exclusive lock on the table, while CREATE INDEX
only locks out writes not reads of the table.

Things are more difficult if you need to recover from corruption of an index on a system table. In this
case it’s important for the backend doing the recovery to not have used any of the suspect indexes
itself. (Indeed, in this sort of scenario you may find that backends are crashing immediately at startup,
due to reliance on the corrupted indexes.) To recover safely, the postmaster must be shut down and
a stand-alone PostgreSQL backend must be started instead, giving it the command-line options -O
and -P (these options allow system table modifications and prevent use of system indexes, respec-
tively). Then issueREINDEX INDEX , REINDEX TABLE , or REINDEX DATABASE depending
on how much you want to reconstruct. If in doubt, useREINDEX DATABASE FORCE to force
reconstruction of all system indexes in the database. Then quit the standalone backend and restart the
postmaster.

Since this is likely the only situation when most people will ever use a standalone backend, some
usage notes might be in order:

• Start the backend with a command like

postgres -D $PGDATA -O -P my_database

Provide the correct path to the database area with-D , or make sure that the environment variable
PGDATAis set. Also specify the name of the particular database you want to work in.

• You can issue any SQL command, not onlyREINDEX .

• Be aware that the standalone backend treats newline as the command entry terminator; there is no
intelligence about semicolons, as there is in psql. To continue a command across multiple lines,
you must type backslash just before each newline except the last one. Also, you won’t have any of
the conveniences of readline processing (no command history, for example).

• To quit the backend, type EOF (control-D, usually).

See thepostgresreference page for more information.

Usage

Recreate the indexes on the tablemytable :

REINDEX TABLE mytable;

Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all system indexes (this will only work in a standalone backend):

REINDEX DATABASE my_database FORCE;

148

REINDEX

Compatibility

SQL92

There is noREINDEX in SQL92.

149

RESET

Name
RESET— restore the value of a run-time parameter to a default value

Synopsis

RESET variable

RESET ALL

Inputs

variable

The name of a run-time parameter. SeeSETfor a list.

ALL

Resets all run-time parameters to default values.

Description

RESET restores run-time parameters to their default values. Refer toSET for details.RESET is an
alternate form for

SET variable TO DEFAULT

Diagnostics

See under theSETcommand.

Examples

Set DateStyle to its default value:

RESET DateStyle;

Set Geqo to its default value:

RESET GEQO;

150

RESET

Compatibility

RESET is a PostgreSQL extension.

151

REVOKE

Name
REVOKE— remove access privileges

Synopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER } [,...] | ALL [PRIV-
ILEGES] }

ON [TABLE] object [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]

Description

REVOKE allows the creator of an object to revoke previously granted permissions from one or more
users or groups of users. The key wordPUBLIC refers to the implicitly defined group of all users.

Note that any particular user will have the sum of privileges granted directly to him, privileges granted
to any group he is presently a member of, and privileges granted toPUBLIC. Thus, for example,
revoking SELECT privilege fromPUBLIC does not necessarily mean that all users have lost SELECT
privilege on the object: those who have it granted directly or via a group will still have it.

See the description of theGRANTcommand for the meaning of the privilege types.

Notes

Usepsql’s \z command to display the privileges granted on existing objects. See alsoGRANT for
information about the format.

Examples

Revoke insert privilege for the public on tablefilms :

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from usermanuel on viewkinds :

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

152

REVOKE

Compatibility

SQL92

The compatibility notes of theGRANTcommand apply analogously toREVOKE . The syntax sum-
mary is:

REVOKE [GRANT OPTION FOR] { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
ON object [(column [, ...])]
FROM { PUBLIC | username [, ...] }
{ RESTRICT | CASCADE }

If user1 gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3 then user1
can revoke this privilege in cascade using the CASCADE keyword. If user1 gives a privilege WITH
GRANT OPTION to user2, and user2 gives it to user3, then if user1 tries to revoke this privilege it
fails if he specifies the RESTRICT keyword.

See Also

GRANT

153

ROLLBACK

Name
ROLLBACK — abort the current transaction

Synopsis

ROLLBACK [WORK | TRANSACTION]

Inputs

None.

Outputs

ABORT

Message returned if successful.

NOTICE: ROLLBACK: no transaction in progress

If there is not any transaction currently in progress.

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to
be discarded.

Notes

UseCOMMIT to successfully terminate a transaction.ABORTis a synonym forROLLBACK .

Usage

To abort all changes:

ROLLBACK WORK;

154

ROLLBACK

Compatibility

SQL92

SQL92 only specifies the two formsROLLBACKandROLLBACK WORK. Otherwise full compatibility.

155

SELECT

Name
SELECT — retrieve rows from a table or view

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
* | expression [AS output_name] [, ...]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BYexpression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[FOR UPDATE [OF tablename [, ...]]]
[LIMIT { count | ALL }]
[OFFSET start]

where from_item can be:

[ONLY] table_name [*]
[[AS] alias [(column_alias_list)]]

|
(select)

[AS] alias [(column_alias_list)]
|
from_item [NATURAL] join_type from_item

[ON join_condition | USING (join_column_list)]

Inputs

expression

The name of a table’s column or an expression.

output_name

Specifies another name for an output column using the AS clause. This name is primarily used
to label the column for display. It can also be used to refer to the column’s value in ORDER BY
and GROUP BY clauses. But theoutput_name cannot be used in the WHERE or HAVING
clauses; write out the expression instead.

from_item

A table reference, sub-SELECT, or JOIN clause. See below for details.

condition

A boolean expression giving a result of true or false. See the WHERE and HAVING clause
descriptions below.

156

SELECT

select

A select statement with all features except the ORDER BY, FOR UPDATE, and LIMIT clauses
(even those can be used when the select is parenthesized).

FROM items can contain:

table_name

The name of an existing table or view. If ONLY is specified, only that table is scanned. If ONLY
is not specified, the table and all its descendant tables (if any) are scanned. * can be appended
to the table name to indicate that descendant tables are to be scanned, but in the current version,
this is the default behavior. (In releases before 7.1, ONLY was the default behavior.)

alias

A substitute name for the precedingtable_name . An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). If an alias is written, a
column alias list can also be written to provide substitute names for one or more columns of the
table.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as
a temporary table for the duration of this single SELECT command. Note that the sub-SELECT
must be surrounded by parentheses, and an aliasmustbe provided for it.

join_type

One of [INNER] JOIN , LEFT [OUTER] JOIN , RIGHT [OUTER] JOIN , FULL [
OUTER] JOIN , or CROSS JOIN. For INNER and OUTER join types, exactly one of NATU-
RAL, ON join_condition , or USING (join_column_list) must appear. For CROSS
JOIN, none of these items may appear.

join_condition

A qualification condition. This is similar to the WHERE condition except that it only applies to
the two from_items being joined in this JOIN clause.

join_column_list

A USING column list (a, b, ...) is shorthand for the ON condition left_table.a = right_table.a
AND left_table.b = right_table.b ...

Outputs

Rows

The complete set of rows resulting from the query specification.

count

The count of rows returned by the query.

157

SELECT

Description

SELECT will return rows from one or more tables. Candidates for selection are rows which satisfy
the WHERE condition; if WHERE is omitted, all rows are candidates. (SeeWHERE Clause.)

Actually, the returned rows are not directly the rows produced by the FROM/WHERE/GROUP
BY/HAVING clauses; rather, the output rows are formed by computing the SELECT output
expressions for each selected row.* can be written in the output list as a shorthand for all the
columns of the selected rows. Also, one can writetable_name .* as a shorthand for the columns
coming from just that table.

DISTINCT will eliminate duplicate rows from the result.ALL (the default) will return all candidate
rows, including duplicates.

DISTINCT ON eliminates rows that match on all the specified expressions, keeping only the first row
of each set of duplicates. The DISTINCT ON expressions are interpreted using the same rules as for
ORDER BY items; see below. Note that the “first row” of each set is unpredictable unlessORDER
BY is used to ensure that the desired row appears first. For example,

SELECT DISTINCT ON (location) location, time, report
FROM weatherReports
ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we’d have gotten a report of unpredictable age for
each location.

The GROUP BY clause allows a user to divide a table into groups of rows that match on one or more
values. (SeeGROUP BY Clause.)

The HAVING clause allows selection of only those groups of rows meeting the specified condition.
(SeeHAVING Clause.)

The ORDER BY clause causes the returned rows to be sorted in a specified order. If ORDER BY is
not given, the rows are returned in whatever order the system finds cheapest to produce. (SeeORDER
BY Clause.)

SELECT queries can be combined using UNION, INTERSECT, and EXCEPT operators. Use paren-
theses if necessary to determine the ordering of these operators.

The UNION operator computes the collection of rows returned by the queries involved. Duplicate
rows are eliminated unless ALL is specified. (SeeUNION Clause.)

The INTERSECT operator computes the rows that are common to both queries. Duplicate rows are
eliminated unless ALL is specified. (SeeINTERSECT Clause.)

The EXCEPT operator computes the rows returned by the first query but not the second query. Dupli-
cate rows are eliminated unless ALL is specified. (SeeEXCEPT Clause.)

The FOR UPDATE clause allows the SELECT statement to perform exclusive locking of selected
rows.

The LIMIT clause allows a subset of the rows produced by the query to be returned to the user. (See
LIMIT Clause.)

You must have SELECT privilege to a table to read its values (See theGRANT /REVOKE state-
ments).

158

SELECT

FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources are spec-
ified, the result is conceptually the Cartesian product of all the rows in all the sources --- but usually
qualification conditions are added to restrict the returned rows to a small subset of the Cartesian
product.

When a FROM item is a simple table name, it implicitly includes rows from sub-tables (inheritance
children) of the table.ONLY will suppress rows from sub-tables of the table. Before PostgreSQL 7.1,
this was the default result, and adding sub-tables was done by appending* to the table name. This old
behaviour is available via the commandSET SQL_Inheritance TO OFF;

A FROM item can also be a parenthesized sub-SELECT (note that an alias clause is required for a
sub-SELECT!). This is an extremely handy feature since it’s the only way to get multiple levels of
grouping, aggregation, or sorting in a single query.

Finally, a FROM item can be a JOIN clause, which combines two simpler FROM items. (Use paren-
theses if necessary to determine the order of nesting.)

A CROSS JOIN or INNER JOIN is a simple Cartesian product, the same as you get from listing the
two items at the top level of FROM. CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that is,
no rows are removed by qualification. These join types are just a notational convenience, since they
do nothing you couldn’t do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that
pass its ON condition), plus one copy of each row in the left-hand table for which there was no right-
hand row that passed the ON condition. This left-hand row is extended to the full width of the joined
table by inserting NULLs for the right-hand columns. Note that only the JOIN’s own ON or USING
condition is considered while deciding which rows have matches. Outer ON or WHERE conditions
are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched
right-hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with
nulls on the left).

For all the JOIN types except CROSS JOIN, you must write exactly one of ONjoin_condition ,
USING (join_column_list), or NATURAL. ON is the most general case: you can write any
qualification expression involving the two tables to be joined. A USING column list (a, b, ...) is
shorthand for the ON condition left_table.a = right_table.a AND left_table.b = right_table.b ... Also,
USING implies that only one of each pair of equivalent columns will be included in the JOIN output,
not both. NATURAL is shorthand for a USING list that mentions all similarly-named columns in the
tables.

WHERE Clause

The optional WHERE condition has the general form:

WHEREboolean_expr

boolean_expr can consist of any expression which evaluates to a boolean value. In many cases,
this expression will be:

expr cond_op expr

159

SELECT

or

log_op expr

wherecond_op can be one of: =,<, <=, >, >= or <>, a conditional operator like ALL, ANY,
IN, LIKE, or a locally defined operator, andlog_op can be one of: AND, OR, NOT. SELECT will
ignore all rows for which the WHERE condition does not return TRUE.

GROUP BY Clause

GROUP BY specifies a grouped table derived by the application of this clause:

GROUP BYexpression [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the
grouped columns. Aggregate functions, if any, are computed across all rows making up each group,
producing a separate value for each group (whereas without GROUP BY, an aggregate produces a
single value computed across all the selected rows). When GROUP BY is present, it is not valid for
the SELECT output expression(s) to refer to ungrouped columns except within aggregate functions,
since there would be more than one possible value to return for an ungrouped column.

A GROUP BY item can be an input column name, or the name or ordinal number of an output column
(SELECT expression), or it can be an arbitrary expression formed from input-column values. In case
of ambiguity, a GROUP BY name will be interpreted as an input-column name rather than an output
column name.

HAVING Clause

The optional HAVING condition has the general form:

HAVING boolean_expr

whereboolean_expr is the same as specified for the WHERE clause.

HAVING specifies a grouped table derived by the elimination of group rows that do not satisfy the
boolean_expr . HAVING is different from WHERE: WHERE filters individual rows before appli-
cation of GROUP BY, while HAVING filters group rows created by GROUP BY.

Each column referenced inboolean_expr shall unambiguously reference a grouping column, un-
less the reference appears within an aggregate function.

ORDER BY Clause

ORDER BYexpression [ASC | DESC | USING operator] [, ...]

160

SELECT

An ORDER BY item can be the name or ordinal number of an output column (SELECT expres-
sion), or it can be an arbitrary expression formed from input-column values. In case of ambiguity, an
ORDER BY name will be interpreted as an output-column name.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature
makes it possible to define an ordering on the basis of a column that does not have a proper name.
This is never absolutely necessary because it is always possible to assign a name to a result column
using the AS clause, e.g.:

SELECT title, date_prod + 1 AS newlen FROM films ORDER BY newlen;

It is also possible to ORDER BY arbitrary expressions (an extension to SQL92), including fields that
do not appear in the SELECT result list. Thus the following statement is legal:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTER-
SECT, or EXCEPT query may only specify an output column name or number, not an expression.

Note that if an ORDER BY item is a simple name that matches both a result column name and an
input column name, ORDER BY will interpret it as the result column name. This is the opposite of
the choice that GROUP BY will make in the same situation. This inconsistency is mandated by the
SQL92 standard.

Optionally one may add the keyword DESC (descending) or ASC (ascending) after each column
name in the ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific
ordering operator name may be specified. ASC is equivalent to USING< and DESC is equivalent to
USING>.

The null value sorts higher than any other value in a domain. In other words, with ascending sort order
nulls sort at the end and with descending sort order nulls sort at the beginning.

UNION Clause

table_query UNION [ALL] table_query
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]

wheretable_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause. (ORDER BY and LIMIT can be attached to a sub-expression if it is enclosed in paren-
theses. Without parentheses, these clauses will be taken to apply to the result of the UNION, not to
its right-hand input expression.)

The UNION operator computes the collection (set union) of the rows returned by the queries involved.
The two SELECTs that represent the direct operands of the UNION must produce the same number
of columns, and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL
prevents elimination of duplicates.

161

SELECT

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for the inputs of a
UNION.

INTERSECT Clause

table_query INTERSECT [ALL] table_query
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]

wheretable_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause.

INTERSECT is similar to UNION, except that it produces only rows that appear in both query outputs,
rather than rows that appear in either.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified.
With ALL, a row that has m duplicates in L and n duplicates in R will appear min(m,n) times.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION --- that is, A UNION B
INTERSECT C will be read as A UNION (B INTERSECT C) unless otherwise specified by paren-
theses.

EXCEPT Clause

table_query EXCEPT [ALL] table_query
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]

wheretable_query specifies any select expression without an ORDER BY, FOR UPDATE, or
LIMIT clause.

EXCEPT is similar to UNION, except that it produces only rows that appear in the left query’s output
but not in the right query’s output.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in L and n duplicates in R will appear max(m-n,0) times.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless paren-
theses dictate otherwise. EXCEPT binds at the same level as UNION.

LIMIT Clause

LIMIT { count | ALL }
OFFSET start

162

SELECT

wherecount specifies the maximum number of rows to return, andstart specifies the number of
rows to skip before starting to return rows.

LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the query. If
a limit count is given, no more than that many rows will be returned. If an offset is given, that many
rows will be skipped before starting to return rows.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows
into a unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be
asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don’t
know what ordering unless you specify ORDER BY.

As of PostgreSQL 7.0, the query optimizer takes LIMIT into account when generating a query plan,
so you are very likely to get different plans (yielding different row orders) depending on what you
use for LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets
of a query resultwill give inconsistent resultsunless you enforce a predictable result ordering with
ORDER BY. This is not a bug; it is an inherent consequence of the fact that SQL does not promise to
deliver the results of a query in any particular order unless ORDER BY is used to constrain the order.

Usage

To join the tablefilms with the tabledistributors :

SELECT f.title, f.did, d.name, f.date_prod, f.kind
FROM distributors d, films f
WHERE f.did = d.did

title | did | name | date_prod | kind
---------------------------+-----+------------------+------------+---------
-

The Third Man | 101 | British Lion | 1949-12-23 | Drama
The African Queen | 101 | British Lion | 1951-08-11 | Romantic
Une Femme est une Femme | 102 | Jean Luc Godard | 1961-03-12 | Romantic
Vertigo | 103 | Paramount | 1958-11-14 | Action
Becket | 103 | Paramount | 1964-02-03 | Drama
48 Hrs | 103 | Paramount | 1982-10-22 | Action
War and Peace | 104 | Mosfilm | 1967-02-12 | Drama
West Side Story | 105 | United Artists | 1961-01-03 | Musical
Bananas | 105 | United Artists | 1971-07-13 | Comedy
Yojimbo | 106 | Toho | 1961-06-16 | Drama
There’s a Girl in my Soup | 107 | Columbia | 1970-06-11 | Comedy
Taxi Driver | 107 | Columbia | 1975-05-15 | Action
Absence of Malice | 107 | Columbia | 1981-11-15 | Action
Storia di una donna | 108 | Westward | 1970-08-15 | Romantic
The King and I | 109 | 20th Century Fox | 1956-08-11 | Musical
Das Boot | 110 | Bavaria Atelier | 1981-11-11 | Drama
Bed Knobs and Broomsticks | 111 | Walt Disney | | Musical

(17 rows)

To sum the columnlen of all films and group the results bykind :

SELECT kind, SUM(len) AS total FROM films GROUP BY kind;

kind | total

163

SELECT

----------+-------
Action | 07:34
Comedy | 02:58
Drama | 14:28
Musical | 06:42
Romantic | 04:38

(5 rows)

To sum the columnlen of all films, group the results bykind and show those group totals that are
less than 5 hours:

SELECT kind, SUM(len) AS total
FROM films
GROUP BY kind
HAVING SUM(len) < INTERVAL ’5 hour’;

kind | total
----------+-------

Comedy | 02:58
Romantic | 04:38

(2 rows)

The following two examples are identical ways of sorting the individual results according to the
contents of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

did | name
-----+------------------

109 | 20th Century Fox
110 | Bavaria Atelier
101 | British Lion
107 | Columbia
102 | Jean Luc Godard
113 | Luso films
104 | Mosfilm
103 | Paramount
106 | Toho
105 | United Artists
111 | Walt Disney
112 | Warner Bros.
108 | Westward

(13 rows)

This example shows how to obtain the union of the tablesdistributors andactors , restricting
the results to those that begin with letter W in each table. Only distinct rows are wanted, so the ALL
keyword is omitted:

distributors: actors:
did | name id | name

-----+-------------- ----+----------------
108 | Westward 1 | Woody Allen

164

SELECT

111 | Walt Disney 2 | Warren Beatty
112 | Warner Bros. 3 | Walter Matthau
... ...

SELECT distributors.name
FROM distributors
WHERE distributors.name LIKE ’W%’

UNION
SELECT actors.name

FROM actors
WHERE actors.name LIKE ’W%’;

name

Walt Disney
Walter Matthau
Warner Bros.
Warren Beatty
Westward
Woody Allen

Compatibility

Extensions

PostgreSQL allows one to omit theFROM clause from a query. This feature was retained from
the original PostQuel query language. It has a straightforward use to compute the results of simple
constant expressions:

SELECT 2+2;

?column?

4

Some other DBMSes cannot do this except by introducing a dummy one-row table to do the select
from. A less obvious use is to abbreviate a normal select from one or more tables:

SELECT distributors.* WHERE distributors.name = ’Westward’;

did | name
-----+----------

108 | Westward

This works because an implicit FROM item is added for each table that is referenced in the query but
not mentioned in FROM. While this is a convenient shorthand, it’s easy to misuse. For example, the
query

SELECT distributors.* FROM distributors d;

is probably a mistake; most likely the user meant

165

SELECT

SELECT d.* FROM distributors d;

rather than the unconstrained join

SELECT distributors.* FROM distributors d, distributors distributors;

that he will actually get. To help detect this sort of mistake, PostgreSQL 7.1 and later will warn if the
implicit-FROM feature is used in a query that also contains an explicit FROM clause.

SQL92

SELECT Clause

In the SQL92 standard, the optional keywordAS is just noise and can be omitted without affecting the
meaning. The PostgreSQL parser requires this keyword when renaming output columns because the
type extensibility features lead to parsing ambiguities in this context.AS is optional in FROM items,
however.

The DISTINCT ON phrase is not part of SQL92. Nor are LIMIT and OFFSET.

In SQL92, an ORDER BY clause may only use result column names or numbers, while a GROUP
BY clause may only use input column names. PostgreSQL extends each of these clauses to allow the
other choice as well (but it uses the standard’s interpretation if there is ambiguity). PostgreSQL also
allows both clauses to specify arbitrary expressions. Note that names appearing in an expression will
always be taken as input-column names, not as result-column names.

UNION/INTERSECT/EXCEPT Clause

The SQL92 syntax for UNION/INTERSECT/EXCEPT allows an additional CORRESPONDING BY
option:

table_query UNION [ALL]
[CORRESPONDING [BY (column [,...])]]
table_query

The CORRESPONDING BY clause is not supported by PostgreSQL.

166

SELECT INTO

Name
SELECT INTO — create a new table from the results of a query

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
* | expression [AS output_name] [, ...]
INTO [TEMPORARY | TEMP] [TABLE] new_table
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BYexpression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[FOR UPDATE [OF tablename [, ...]]]
[LIMIT [start ,] { count | ALL }]
[OFFSET start]

where from_item can be:

[ONLY] table_name [*]
[[AS] alias [(column_alias_list)]]

|
(select)

[AS] alias [(column_alias_list)]
|
from_item [NATURAL] join_type from_item

[ON join_condition | USING (join_column_list)]

Inputs

TEMPORARY
TEMP

If TEMPORARY or TEMP is specified, the output table is created only within this session, and
is automatically dropped on session exit. Existing permanent tables with the same name are not
visible (in this session) while the temporary table exists. Any indexes created on a temporary
table are automatically temporary as well.

new_table

The name of the new table to be created. This table must not already exist. However, a temporary
table can be created that has the same name as an existing permanent table.

All other inputs are described in detail forSELECT.

167

SELECT INTO

Outputs

Refer toCREATE TABLEandSELECTfor a summary of possible output messages.

Description
SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normalSELECT. The new table’s columns have the names and data types
associated with the output columns of theSELECT.

Note: CREATE TABLE AS is functionally equivalent to SELECT INTO. CREATE TABLE AS is the
recommended syntax, since SELECT INTO is not standard. In fact, this form of SELECT INTO is
not available in PL/pgSQL or ecpg , because they interpret the INTO clause differently.

Compatibility

SQL92 usesSELECT ... INTO to represent selecting values into scalar variables of a host program,
rather than creating a new table. This indeed is the usage found in PL/pgSQL andecpg. The Post-
greSQL usage ofSELECT INTO to represent table creation is historical. It’s best to useCREATE
TABLE AS for this purpose in new code. (CREATE TABLE AS isn’t standard either, but it’s less
likely to cause confusion.)

168

SET

Name
SET— change a run-time parameter

Synopsis

SET variable { TO | = } { value | ’ value ’ | DEFAULT }
SET TIME ZONE { ’ timezone ’ | LOCAL | DEFAULT }

Inputs

variable

A settable run-time parameter.

value

New value of parameter.DEFAULTcan be used to specify resetting the parameter to its default
value. Lists of strings are allowed, but more complex constructs may need to be single or double
quoted.

Description

The SET command changes run-time configuration parameters. The following parameters can be
altered:

CLIENT_ENCODING
NAMES

Sets the multibyte client encoding. The specified encoding must be supported by the backend.

This option is only available if PostgreSQL is build with multibyte support.

DATESTYLE

Choose the date/time representation style. Two separate settings are made: the default date/time
output and the interpretation of ambiguous input.

The following are date/time output styles:

ISO

Use ISO 8601-style dates and times (YYYY-MM-DD HH:MM:SS). This is the default.

SQL

Use Oracle/Ingres-style dates and times. Note that this style has nothing to do with SQL
(which mandates ISO 8601 style), the naming of this option is a historical accident.

PostgreSQL

Use traditional PostgreSQL format.

169

SET

German

Usedd.mm.yyyy for numeric date representations.

The following two options determine both a substyle of the “SQL” and “PostgreSQL” output
formats and the preferred interpretation of ambiguous date input.

European

Usedd/mm/yyyy for numeric date representations.

NonEuropean
US

Usemm/dd/yyyy for numeric date representations.

A value for SET DATESTYLE can be one from the first list (output styles), or one from the
second list (substyles), or one from each separated by a comma.

Date format initialization may be done by:

Setting thePGDATESTYLEenvironment variable. If PGDATESTYLE is set in the frontend
environment of a client based on libpq, libpq will automatically set DATESTYLE to the value
of PGDATESTYLE during connection start-up.
Running postmaster using the option-o -e to set dates to theEuropean convention.

TheDateStyle option is really only intended for porting applications. To format your date/time
values to choice, use theto_char family of functions.

SEED

Sets the internal seed for the random number generator.

value

The value for the seed to be used by therandom function. Allowed values are floating-point
numbers between 0 and 1, which are then multiplied by 231-1. This product will silently
overflow if a number outside the range is used.

The seed can also be set by invoking thesetseed SQL function:

SELECT setseed(value);

SERVER_ENCODING

Sets the multibyte server encoding.

This option is only available if PostgreSQL was built with multibyte support.

TIME ZONE
TIMEZONE

Sets the default time zone for your session. Arguments can be an SQL time interval constant, an
integer or double precision constant, or a string representing a time zone supported by the host
operating system.

170

SET

The possible values for time zone depends on your operating system. For example, on Linux
/usr/share/zoneinfo contains the database of time zones.

Here are some valid values for time zone:

’PST8PDT’

Set the time zone for California.

’Portugal’

Set the time zone for Portugal.

’Europe/Rome’

Set the time zone for Italy.

7

Set the time zone to 7 hours offset west from GMT (equivalent to PDT).

INTERVAL ’08:00’ HOUR TO MINUTE

Set the time zone to 8 hours offset west from GMT (equivalent to PST).

LOCAL
DEFAULT

Set the time zone to your local time zone (the one that your operating system defaults to).

If an invalid time zone is specified, the time zone becomes GMT (on most systems anyway).

If the PGTZenvironment variable is set in the frontend environment of a client based on libpq,
libpq will automatically set TIMEZONE to the value ofPGTZduring connection start-up.

An extended list of other run-time parameters can be found in theAdministrator’s Guide.

UseSHOWto show the current setting of a parameters.

Diagnostics

SET VARIABLE

Message returned if successful.

ERROR: not a valid option name: name

The parameter you tried to set does not exist.

ERROR: permission denied

You must be a superuser to have access to certain settings.

ERROR: name can only be set at start-up

Some parameters are fixed once the server is started.

171

SET

Examples

Set the style of date to traditional PostgreSQL with European conventions:

SET DATESTYLE TO PostgreSQL,European;

Set the time zone for Berkeley, California, using double quotes to preserve the uppercase attributes of
the time zone specifier (note that the date/time format is ISO here):

SET TIME ZONE "PST8PDT";
SELECT CURRENT_TIMESTAMP AS today;

today

1998-03-31 07:41:21-08

Set the time zone for Italy (note the required single or double quotes to handle the special characters):

SET TIME ZONE ’Europe/Rome’;
SELECT CURRENT_TIMESTAMP AS today;

today

1998-03-31 17:41:31+02

Compatibility

SQL92

The second syntax shown above (SET TIME ZONE) attempts to mimic SQL92. However, SQL allows
only numeric time zone offsets. All other parameter settings as well as the first syntax shown above
are a PostgreSQL extension.

172

SET CONSTRAINTS

Name
SET CONSTRAINTS— set the constraint mode of the current transaction

Synopsis

SET CONSTRAINTS { ALL | constraint [, ...] } { DEFERRED | IMMEDIATE }

Description

SET CONSTRAINTS sets the behavior of constraint evaluation in the current transaction. InIMME-

DIATE mode, constraints are checked at the end of each statement. InDEFERREDmode, constraints
are not checked until transaction commit.

Upon creation, a constraint is always give one of three characteristics:INITIALLY DEFERRED,
INITIALLY IMMEDIATE DEFERRABLE, or INITIALLY IMMEDIATE NOT DEFERRABLE. The third
class is not affected by theSET CONSTRAINTS command.

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are
always effectively initially immediate not deferrable.

Compatibility

SQL92, SQL99

SET CONSTRAINT is defined in SQL92 and SQL99.

173

SET SESSION AUTHORIZATION

Name
SET SESSION AUTHORIZATION— set the session user identifier and the current user identifier
of the current session

Synopsis

SET SESSION AUTHORIZATION ’username ’

Description

This command sets the session user identifier and the current user identifier of the current SQL-session
context to beusername .

The session user identifier is initially set to be the (possibly authenticated) user name provided by
the client. The current user identifier is normally equal to the session user identifier, but may change
temporarily in the context of “setuid” functions and similar mechanisms. The current user identifier
is relevant for permission checking.

Execution of this command is only permitted if the initial session user (theauthenticated user) had
the superuser privilege. This permission is kept for the duration of a connection; for example, it is
possible to temporarily become an unprivileged user and later switch back to become a superuser.

Examples

SELECT SESSION_USER, CURRENT_USER;
current_user | session_user

--------------+--------------
peter | peter

SET SESSION AUTHORIZATION ’paul’;

SELECT SESSION_USER, CURRENT_USER;
current_user | session_user

--------------+--------------
paul | paul

Compatibility

SQL99

SQL99 allows some other expressions to appear in place of the literalusername which are not
important in practice. PostgreSQL allows identifier syntax ("username"), which SQL does not. SQL
does not allow this command during a transaction; PostgreSQL does not make this restriction because
there is no reason to. The privileges necessary to execute this command are left implementation-
defined by the standard.

174

SET TRANSACTION

Name
SET TRANSACTION— set the characteristics of the current transaction

Synopsis

SET TRANSACTION ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL

{ READ COMMITTED | SERIALIZABLE }

Description

This command sets the transaction isolation level. TheSET TRANSACTION command sets the
characteristics for the current SQL-transaction. It has no effect on any subsequent transactions. This
command cannot be used after the first query or data-modification statement (SELECT, INSERT,
DELETE , UPDATE, FETCH , COPY) of a transaction has been executed.SET SESSION CHAR-
ACTERISTICS sets the default transaction isolation level for each transaction for a session.SET
TRANSACTION can override it for an individual transaction.

The isolation level of a transaction determines what data the transaction can see when other transac-
tions are running concurrently.

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

The current transaction can only see rows committed before first query or data-modification
statement was executed in this transaction.

Tip: Intuitively, serializable means that two concurrent transactions will leave the database
in the same state as if the two has been executed strictly after one another in either order.

Notes

The session default transaction isolation level can also be set with the command

SET default_transaction_isolation = ’ value ’

and in the configuration file. Consult theAdministrator’s Guidefor more information.

175

SET TRANSACTION

Compatibility

SQL92, SQL99

SERIALIZABLE is the default level in SQL. PostgreSQL does not provide the isolation levelsREAD

UNCOMMITTEDandREPEATABLE READ. Because of multiversion concurrency control, the serializ-
able level is not truly serializable. See theUser’s Guidefor details.

In SQL there are two other transaction characteristics that can be set with these commands: whether
the transaction is read-only and the size of the diagnostics area. Neither of these concepts are sup-
ported in PostgreSQL.

176

SHOW

Name
SHOW— show the value of a run-time parameter

Synopsis

SHOWname

SHOW ALL

Inputs

name

The name of a run-time parameter. SeeSETfor a list.

ALL

Show all current session parameters.

Description

SHOW will display the current setting of a run-time parameter. These variables can be set using the
SET statement or are determined at server start.

Diagnostics

ERROR: not a valid option name: name

Message returned ifvariable does not stand for an existing parameter.

ERROR: permission denied

You must be a superuser to be allowed to see certain settings.

NOTICE: Time zone is unknown

If the TZ or PGTZenvironment variable is not set.

Examples

Show the currentDateStyle setting:

SHOW DateStyle;
NOTICE: DateStyle is ISO with US (NonEuropean) conventions

177

SHOW

Show the current genetic optimizer (geqo) setting:

SHOW GEQO;
NOTICE: geqo is on

Compatibility

TheSHOW command is a PostgreSQL extension.

178

TRUNCATE

Name
TRUNCATE — empty a table

Synopsis

TRUNCATE [TABLE] name

Inputs

name

The name of the table to be truncated.

Outputs

TRUNCATE

Message returned if the table is successfully truncated.

Description

TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualifiedDELETE
but since it does not actually scan the table it is faster. This is most useful on large tables.

TRUNCATE cannot be executed inside a transaction block (BEGIN /COMMIT pair), because there
is no way to roll it back.

Usage

Truncate the tablebigtable :

TRUNCATE TABLE bigtable;

Compatibility

SQL92

There is noTRUNCATE in SQL92.

179

UNLISTEN

Name
UNLISTEN — stop listening for a notification

Synopsis

UNLISTEN { notifyname | * }

Inputs

notifyname

Name of previously registered notify condition.

*

All current listen registrations for this backend are cleared.

Outputs

UNLISTEN

Acknowledgment that statement has executed.

Description

UNLISTEN is used to remove an existingNOTIFY registration. UNLISTEN cancels any existing
registration of the current PostgreSQL session as a listener on the notify conditionnotifyname .
The special condition wildcard* cancels all listener registrations for the current session.

NOTIFYcontains a more extensive discussion of the use ofLISTEN andNOTIFY .

Notes

notifyname need not be a valid class name but can be any string valid as a name up to 32 characters
long.

The backend does not complain if you UNLISTEN something you were not listening for. Each back-
end will automatically executeUNLISTEN * when exiting.

Usage

To subscribe to an existing registration:

LISTEN virtual;

180

UNLISTEN

LISTEN
NOTIFY virtual;
NOTIFY
Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received

Once UNLISTEN has been executed, further NOTIFY commands will be ignored:

UNLISTEN virtual;
UNLISTEN
NOTIFY virtual;
NOTIFY
-- notice no NOTIFY event is received

Compatibility

SQL92

There is noUNLISTEN in SQL92.

181

UPDATE

Name
UPDATE — update rows of a table

Synopsis

UPDATE [ONLY] table SET col = expression [, ...]
[FROM fromlist]
[WHERE condition]

Inputs

table

The name of an existing table.

column

The name of a column intable .

expression

A valid expression or value to assign to column.

fromlist

A PostgreSQL non-standard extension to allow columns from other tables to appear in the
WHERE condition.

condition

Refer to the SELECT statement for a further description of the WHERE clause.

Outputs

UPDATE #

Message returned if successful. The# means the number of rows updated. If# is 0 no rows are
updated.

Description

UPDATE changes the values of the columns specified for all rows which satisfy condition. Only the
columns to be modified need appear as columns in the statement.

Array references use the same syntax found inSELECT. That is, either single array elements, a range
of array elements or the entire array may be replaced with a single query.

182

UPDATE

You must have write access to the table in order to modify it, as well as read access to any table whose
values are mentioned in the WHERE condition.

By default UPDATE will update tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

Usage

Change wordDrama with Dramatic on columnkind :

UPDATE films
SET kind = ’Dramatic’
WHERE kind = ’Drama’;
SELECT *
FROM films
WHERE kind = ’Dramatic’ OR kind = ’Drama’;

code | title | did | date_prod | kind | len
-------+---------------+-----+------------+----------+-------

BL101 | The Third Man | 101 | 1949-12-23 | Dramatic | 01:44
P_302 | Becket | 103 | 1964-02-03 | Dramatic | 02:28
M_401 | War and Peace | 104 | 1967-02-12 | Dramatic | 05:57
T_601 | Yojimbo | 106 | 1961-06-16 | Dramatic | 01:50
DA101 | Das Boot | 110 | 1981-11-11 | Dramatic | 02:29

Compatibility

SQL92

SQL92 defines a different syntax for the positioned UPDATE statement:

UPDATE table SET column = expression [, ...]
WHERE CURRENT OFcursor

wherecursor identifies an open cursor.

183

VACUUM

Name
VACUUM— garbage-collect and optionally analyze a database

Synopsis

VACUUM [FULL] [FREEZE] [VERBOSE] [table]
VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE [table [(column [, ...])]]

Inputs

FULL

Selects “full” vacuum, which may reclaim more space, but takes much longer and exclusively
locks the table.

FREEZE

Selects aggressive “freezing” of tuples.

VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the optimizer to determine the most efficient way to execute a query.

table

The name of a specific table to vacuum. Defaults to all tables in the current database.

column

The name of a specific column to analyze. Defaults to all columns.

Outputs

VACUUM

The command is complete.

NOTICE: --Relation table --

The report header fortable .

NOTICE: Pages 98: Changed 25, Reapped 74, Empty 0, New 0; Tup 1000: Vac

3000, Crash 0, UnUsed 0, MinLen 188, MaxLen 188; Re-using: Free/Avail.

Space 586952/586952; EndEmpty/Avail. Pages 0/74. Elapsed 0/0 sec.

The analysis fortable itself.

184

VACUUM

NOTICE: Index index : Pages 28; Tuples 1000: Deleted 3000. Elapsed 0/0 sec.

The analysis for an index on the target table.

Description

VACUUM reclaims storage occupied by deleted tuples. In normal PostgreSQL operation, tuples that
are DELETEd or obsoleted by UPDATE are not physically removed from their table; they remain
present until aVACUUM is done. Therefore it’s necessary to doVACUUM periodically, especially
on frequently-updated tables.

With no parameter,VACUUM processes every table in the current database. With a parameter,VAC-
UUM processes only that table.

VACUUM ANALYZE performs aVACUUM and then anANALYZE for each selected table. This
is a handy combination form for routine maintenance scripts. SeeANALYZEfor more details about
its processing.

PlainVACUUM (withoutFULL) simply reclaims space and makes it available for re-use. This form of
the command can operate in parallel with normal reading and writing of the table.VACUUM FULL
does more extensive processing, including moving of tuples across blocks to try to compact the table
to the minimum number of disk blocks. This form is much slower and requires an exclusive lock on
each table while it is being processed.

FREEZE is a special-purpose option that causes tuples to be marked “frozen” as soon as possible,
rather than waiting until they are quite old. If this is done when there are no other open transactions
in the same database, then it is guaranteed that all tuples in the database are “frozen” and will not be
subject to transaction ID wraparound problems, no matter how long the database is left un-vacuumed.
FREEZE is not recommended for routine use. Its only intended usage is in connection with prepara-
tion of user-defined template databases, or other databases that are completely read-only and will not
receive routine maintenanceVACUUM operations. See theAdministrator’s Guidefor details.

Notes

We recommend that active production databases beVACUUM -ed frequently (at least nightly), in
order to remove expired rows. After adding or deleting a large number of records, it may be a good
idea to issue aVACUUM ANALYZE command for the affected table. This will update the system
catalogs with the results of all recent changes, and allow the PostgreSQL query optimizer to make
better choices in planning user queries.

TheFULL option is not recommended for routine use, but may be useful in special cases. An example
is when you have deleted most of the rows in a table and would like the table to physically shrink to
occupy less disk space.VACUUM FULL will usually shrink the table more than a plainVACUUM
would.

Usage

The following is an example from runningVACUUM on a table in the regression database:

regression=> VACUUM VERBOSE ANALYZE onek;
NOTICE: --Relation onek--
NOTICE: Index onek_unique1: Pages 14; Tuples 1000: Deleted 3000.

185

VACUUM

CPU 0.00s/0.11u sec elapsed 0.12 sec.
NOTICE: Index onek_unique2: Pages 16; Tuples 1000: Deleted 3000.

CPU 0.00s/0.10u sec elapsed 0.10 sec.
NOTICE: Index onek_hundred: Pages 13; Tuples 1000: Deleted 3000.

CPU 0.00s/0.10u sec elapsed 0.10 sec.
NOTICE: Index onek_stringu1: Pages 31; Tuples 1000: Deleted 3000.

CPU 0.01s/0.09u sec elapsed 0.10 sec.
NOTICE: Removed 3000 tuples in 70 pages.

CPU 0.02s/0.04u sec elapsed 0.07 sec.
NOTICE: Pages 94: Changed 0, Empty 0; Tup 1000: Vac 3000, Keep 0, UnUsed 0.

Total CPU 0.05s/0.45u sec elapsed 0.59 sec.
NOTICE: Analyzing onek
VACUUM

Compatibility

SQL92

There is noVACUUM statement in SQL92.

186

II. PostgreSQL Client Applications
This part contains reference information for PostgreSQL client applications and utilities. Not all of
these commands are of general utility, some may require special privileges. The common feature
of these applications is that they can be run on any host, independent of where the database server
resides.

187

createdb

Name
createdb — create a new PostgreSQL database

Synopsis

createdb [options ...] [dbname] [description]

Inputs

-h, --hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --portport

Specifies the Internet TCP/IP port or the local Unix domain socket file extension on which the
server is listening for connections.

-U, --usernameusername

User name to connect as

-W, --password

Force password prompt.

-e, --echo

Echo the queries that createdb generates and sends to the server.

-q, --quiet

Do not display a response.

-D, --locationdatadir

Specifies the alternative location for the database. See alsoinitlocation.

-T, --templatetemplate

Specifies the template database from which to build this database.

-E, --encodingencoding

Specifies the character encoding scheme to be used in this database.

dbname

Specifies the name of the database to be created. The name must be unique among all Post-
greSQL databases in this installation. The default is to create a database with the same name as
the current system user.

188

createdb

description

This optionally specifies a comment to be associated with the newly created database.

The options-h , -p , -U , -W, and-e are passed on literally topsql. The options-D , -T , and-E are
converted into options for the underlying SQL commandCREATE DATABASE; see there for more
information about them.

Outputs

CREATE DATABASE

The database was successfully created.

createdb: Database creation failed.

(Says it all.)

createdb: Comment creation failed. (Database was created.)

The comment/description for the database could not be created. The database itself will have
been created already. You can use the SQL commandCOMMENT ON DATABASE to create
the comment later on.

If there is an error condition, the backend error message will be displayed. SeeCREATE DATABASE
andpsqlfor possibilities.

Description

createdb creates a new PostgreSQL database. The user who executes this command becomes the
database owner.

createdb is a shell script wrapper around the SQL commandCREATE DATABASEvia the PostgreSQL
interactive terminalpsql. Thus, there is nothing special about creating databases via this or other
methods. This means that the psql program must be found by the script and that a database server
must be running at the targeted port. Also, any default settings and environment variables available to
psql and the libpq front-end library will apply.

Usage

To create the databasedemo using the default database server:

$ createdb demo
CREATE DATABASE

The response is the same as you would have gotten from running theCREATE DATABASE SQL
command.

To create the databasedemo using the server on hosteden , port 5000, using theLATIN1 encoding
scheme with a look at the underlying query:

$ createdb -p 5000 -h eden -E LATIN1 -e demo
CREATE DATABASE "demo" WITH ENCODING = ’LATIN1’

CREATE DATABASE

189

createdb

190

createlang

Name
createlang — define a new PostgreSQL procedural language

Synopsis

createlang [connection-options ...] langname [dbname]
createlang [connection-options ...] --list | -l dbname

Inputs

createlang accepts the following command line arguments:

langname

Specifies the name of the procedural programming language to be defined.

-d, --dbnamedbname

Specifies to which database the language should be added. The default is to use the database with
the same name as the current system user.

-e, --echo

Displays SQL commands as they are executed.

-l, --list

Shows a list of already installed languages in the target database (which must be specified).

--L directory

Specifies the directory in which the language interpreter is to be found. The directory is normally
found automatically; this option is primarily for debugging purposes.

createlang also accepts the following command line arguments for connection parameters:

-h, --hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --portport

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U, --usernameusername

User name to connect as

-W, --password

Force password prompt.

191

createlang

Outputs

Most error messages are self-explanatory. If not, run createlang with the--echo option and see under
the respective SQL command for details. Check also underpsqlfor more possibilities.

Description

createlang is a utility for adding a new programming language to a PostgreSQL database. create-
lang can handle all the languages supplied in the default PostgreSQL distribution, but not languages
provided by other parties.

Although backend programming languages can be added directly using several SQL commands, it is
recommended to use createlang because it performs a number of checks and is much easier to use.
SeeCREATE LANGUAGEfor more.

Notes

Usedroplangto remove a language.

createlang is a shell script that invokes psql several times. If you have things arranged so that a
password prompt is required to connect, you will be prompted for a password several times.

Usage

To installpltcl into the databasetemplate1 :

$ createlang pltcl template1

192

createuser

Name
createuser — define a new PostgreSQL user account

Synopsis

createuser [options ...] [username]

Inputs

-h, --hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --portport

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-e, --echo

Echo the queries that createuser generates and sends to the server.

-q, --quiet

Do not display a response.

-d, --createdb

Allows the new user to create databases.

-D, --no-createdb

Forbids the new user to create databases.

-a, --adduser

Allows the new user to create other users.

-A, --no-adduser

Forbids the new user to create other users.

-P, --pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if
you do not plan on using password authentication.

-i, --sysiduid

Allows you to pick a non-default user id for the new user. This is not necessary, but some people
like it.

-E, --encrypted

Encrypts the user’s password stored in the database. If not specified, the default is used.

-N, --unencrypted

Does not encrypt the user’s password stored in the database. If not specified, the default is used.

193

createuser

username

Specifies the name of the PostgreSQL user to be created. This name must be unique among all
PostgreSQL users.

You will be prompted for a name and other missing information if it is not specified on the command
line.

The options-h , -p , and-e , are passed on literally topsql. The psql options-U and-W are available
as well, but their use can be confusing in this context.

Outputs

CREATE USER

All is well.

createuser: creation of user " username " failed

Something went wrong. The user was not created.

If there is an error condition, the backend error message will be displayed. SeeCREATE USERand
psqlfor possibilities.

Description

createuser creates a new PostgreSQL user. Only users withusesuper set in thepg_shadow table
can create new PostgreSQL users.

createuser is a shell script wrapper around the SQL commandCREATE USERvia the PostgreSQL
interactive terminalpsql. Thus, there is nothing special about creating users via this or other methods.
This means that the psql must be found by the script and that a database server is running at the
targeted host. Also, any default settings and environment variables available to psql and the libpq
front-end library do apply.

Usage

To create a userjoe on the default database server:

$ createuser joe
Is the new user allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

To create the same userjoe using the server on hosteden , port 5000, avoiding the prompts and taking
a look at the underlying query:

$ createuser -p 5000 -h eden -D -A -e joe
CREATE USER "joe" NOCREATEDB NOCREATEUSER

CREATE USER

194

dropdb

Name
dropdb — remove a PostgreSQL database

Synopsis

dropdb [options ...] dbname

Inputs

-h, --hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --portport

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U, --usernameusername

User name to connect as

-W, --password

Force password prompt.

-e, --echo

Echo the queries that dropdb generates and sends to the server.

-q, --quiet

Do not display a response.

-i, --interactive

Issues a verification prompt before doing anything destructive.

dbname

Specifies the name of the database to be removed. The database must be one of the existing
PostgreSQL databases in this installation.

The options-h , -p , -U , -W, and-e are passed on literally topsql.

Outputs

DROP DATABASE

The database was successfully removed.

dropdb: Database removal failed.

Something didn’t work out.

If there is an error condition, the backend error message will be displayed. SeeDROP DATABASE
andpsqlfor possibilities.

195

dropdb

Description

dropdb destroys an existing PostgreSQL database. The user who executes this command must be a
database superuser or the owner of the database.

dropdb is a shell script wrapper around the SQL commandDROP DATABASEvia the PostgreSQL
interactive terminalpsql. Thus, there is nothing special about dropping databases via this or other
methods. This means that the psql must be found by the script and that a database server is running at
the targeted host. Also, any default settings and environment variables available to psql and the libpq
front-end library do apply.

Usage

To destroy the databasedemo on the default database server:

$ dropdb demo
DROP DATABASE

To destroy the databasedemo using the server on hosteden , port 5000, with verification and a peek
at the underlying query:

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.

Are you sure? (y/n) y
DROP DATABASE "demo"

DROP DATABASE

196

droplang

Name
droplang — remove a PostgreSQL procedural language

Synopsis

droplang [connection-options ...] langname [dbname]
droplang [connection-options ...] --list | -l dbname

Inputs

droplang accepts the following command line arguments:

langname

Specifies the name of the backend programming language to be removed.

[-d, --dbname]dbname

Specifies from which database the language should be removed. The default is to use the database
with the same name as the current system user.

-e, --echo

Displays SQL commands as they are executed.

-l, --list

Shows a list of already installed languages in the target database (which must be specified).

droplang also accepts the following command line arguments for connection parameters:

-h, --hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --portport

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U, --usernameusername

User name to connect as

-W, --password

Force password prompt.

Outputs

Most error messages are self-explanatory. If not, run droplang with the--echo option and see under
the respective SQL command for details. Check also underpsqlfor more possibilities.

197

droplang

Description

droplang is a utility for removing an existing programming language from a PostgreSQL database.
droplang can drop any procedural language, even those not supplied by the PostgreSQL distribution.

Although backend programming languages can be removed directly using several SQL commands, it
is recommended to use droplang because it performs a number of checks and is much easier to use.
SeeDROP LANGUAGEfor more.

Notes

Usecreatelangto add a language.

Usage

To removepltcl :

$ droplang pltcl dbname

198

dropuser

Name
dropuser — remove a PostgreSQL user account

Synopsis

dropuser [options ...] [username]

Inputs

-h, --hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p, --portport

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-e, --echo

Echo the queries that createdb generates and sends to the server.

-q, --quiet

Do not display a response.

-i, --interactive

Prompt for confirmation before actually removing the user.

username

Specifies the name of the PostgreSQL user to be removed. This name must exist in the Post-
greSQL installation. You will be prompted for a name if none is specified on the command line.

The options-h , -p , and-e , are passed on literally topsql. The psql options-U and-W are available
as well, but they can be confusing in this context.

Outputs

DROP USER

All is well.

dropuser: deletion of user " username " failed

Something went wrong. The user was not removed.

If there is an error condition, the backend error message will be displayed. SeeDROP USERand
psqlfor possibilities.

199

dropuser

Description

dropuser removes an existing PostgreSQL userand the databases which that user owned. Only users
with usesuper set in thepg_shadow table can destroy PostgreSQL users.

dropuser is a shell script wrapper around the SQL commandDROP USERvia the PostgreSQL interac-
tive terminalpsql. Thus, there is nothing special about removing users via this or other methods. This
means that the psql must be found by the script and that a database server is running at the targeted
host. Also, any default settings and environment variables available to psql and the libpq front-end
library do apply.

Usage

To remove userjoe from the default database server:

$ dropuser joe
DROP USER

To remove userjoe using the postmaster on hosteden , port 5000, with verification and a peek at the
underlying query:

$ dropuser -p 5000 -h eden -i -e joe
User "joe" and any owned databases will be permanently deleted.

Are you sure? (y/n) y
DROP USER "joe"

DROP USER

200

ecpg

Name
ecpg — embedded SQL C preprocessor

Synopsis

ecpg [-v] [-t] [-I include-path] [-o outfile] file ...

Inputs

ecpg accepts the following command line arguments:

-v

Print version information.

-t

Turn on auto-commit of transactions. In this mode, each query is automatically committed unless
it is inside an explicit transaction block. In the default mode, queries are committed only when
exec sql commitis issued.

-I include-path

Specify an additional include path. Defaults are. (current directory),/usr/local/include ,
the PostgreSQL include path which is defined at compile time (default:
/usr/local/pgsql/include), and/usr/include .

-o outfile

Specifies that ecpg should write all its output tooutfile . If no such option is given the output
is written toname.c , assuming the input file was namedname.pgc . If the input file does have
the expected.pgc suffix, then the output file will have.pgc appended to the input file name.

file

The files to be processed.

Outputs

ecpg will create a file or write tostdout .

Return value

ecpg returns 0 to the shell on successful completion, non-zero for errors.

Description

ecpg is an embedded SQL preprocessor for the C language and the PostgreSQL. It enables develop-
ment of C programs with embedded SQL code.

201

ecpg

Linus Tolke (<linus@epact.se >) was the original author of ecpg (up to version 0.2). Michael
Meskes (<meskes@debian.org >) is the current author and maintainer of ecpg. Thomas Good
(<tomg@q8.nrnet.org >) is the author of the last revision of the ecpg man page, on which this
document is based.

Usage

Preprocessing for Compilation

An embedded SQL source file must be preprocessed before compilation:

ecpg [-d] [-o file] file .pgc

where the optional-d flag turns on debugging. The.pgc extension is an arbitrary means of denoting
ecpg source.

You may want to redirect the preprocessor output to a log file.

Compiling and Linking

Assuming the PostgreSQL binaries are in/usr/local/pgsql , you will need to compile and link
your preprocessed source file:

gcc -g -I /usr/local/pgsql/include [-o file] file .c -L /usr/local/pgsql/lib -
lecpg -lpq

Grammar

Libraries

The preprocessor will prepend two directives to the source:

#include <ecpgtype.h >

#include <ecpglib.h >

Variable Declaration

Variables declared within ecpg source code must be prepended with:

EXEC SQL BEGIN DECLARE SECTION;

Similarly, variable declaration sections must terminate with:

EXEC SQL END DECLARE SECTION;

202

ecpg

Note: Prior to version 2.1.0, each variable had to be declared on a separate line. As of version
2.1.0 multiple variables may be declared on a single line:

char foo[16], bar[16];

Error Handling

The SQL communication area is defined with:

EXEC SQL INCLUDE sqlca;

Note: The sqlca is in lowercase. While SQL convention may be followed, i.e., using uppercase to
separate embedded SQL from C statements, sqlca (which includes the sqlca.h header file) must
be lowercase. This is because the EXEC SQL prefix indicates that this inclusion will be parsed by
ecpg. ecpg observes case sensitivity (SQLCA.h will not be found). EXEC SQL INCLUDE can be
used to include other header files as long as case sensitivity is observed.

Thesqlprint command is used with theEXEC SQL WHENEVERstatement to turn on error handling
throughout the program:

EXEC SQL WHENEVER sqlerror sqlprint;

and

EXEC SQL WHENEVER not found sqlprint;

Note: This is not an exhaustive example of usage for the EXEC SQL WHENEVER statement.
Further examples of usage may be found in SQL manuals (e.g., The LAN TIMES Guide to SQL
by Groff and Weinberg).

Connecting to the Database Server

One connects to a database using the following:

EXEC SQL CONNECT TOdbname;

where the database name is not quoted. Prior to version 2.1.0, the database name was required to be
inside single quotes.

Specifying a server and port name in the connect statement is also possible. The syntax is:

dbname[@server][: port]

or

203

ecpg

<tcp|unix >:postgresql:// server [: port][/ dbname][? options]

Queries

In general, SQL queries acceptable to other applications such as psql can be embedded into your C
code. Here are some examples of how to do that.

Create Table:

EXEC SQL CREATE TABLE foo (number int4, ascii char(16));
EXEC SQL CREATE UNIQUE index num1 on foo(number);
EXEC SQL COMMIT;

Insert:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

Delete:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

Singleton Select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = ’doodad’;

Select using Cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
SELECT number, ascii FROM foo
ORDER BY ascii;

EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
SET ascii = ’foobar’
WHERE number = 9999;

EXEC SQL COMMIT;

204

ecpg

Notes

The complete structure definition MUST be listed inside the declare section.

See theTODOfile in the source for some more missing features.

205

pgaccess

Name
pgaccess — a graphical PostgreSQL client application

Synopsis

pgaccess[dbname]

Options

dbname

The name of an existing database to access.

Description

PgAccess provides a graphical interface for PostgreSQL wherein you can manage your tables, edit
them, define queries, sequences and functions.

PgAccess can:

• Open any database on a specified host at the specified port, user name, and password.
• ExecuteVACUUM.
• Save preferences in the~/.pgaccessrc file.

For tables, PgAccess can:

• Open multiple tables for viewing, with a configurable number of rows shown.
• Resize columns by dragging the vertical grid lines.
• Wrap text in cells.
• Dynamically adjust row height when editing.
• Save table layout for every table.
• Import/export to external files (SDF, CSV).
• Use filter capabilities; enter filters likeprice > 3.14 .
• Specify sort order; enter manually the sort field(s).
• Edit in place; double click the text you want to change.
• Delete records; point to the record, press theDeletekey.
• Add new records; save new row with right-button click.
• Create tables with an assistant.
• Rename and delete (drop) tables.
• Retrieve information on tables, including owner, field information, indexes.

For queries, PgAccess can:

• Define, edit and store user-defined queries.

206

pgaccess

• Save view layouts.
• Store queries as views.
• Execute with optional user input parameters, e.g.,

select * from invoices where year=[parameter "Year of selection"]

• View any select query result.
• Run action queries (insert, update, delete).
• Construct queries using a visual query builder with drag & drop support, table aliasing.

For sequences, PgAccess can:

• Define new instances.
• Inspect existing instances.
• Delete.

For views, PgAccess can:

• Define them by saving queries as views.
• View them, with filtering and sorting capabilities.
• Design new views.
• Delete (drop) existing views.

For functions, PgAccess can:

• Define.
• Inspect.
• Delete.

For reports, PgAccess can:

• Generate simple reports from a table (beta stage).
• Change font, size, and style of fields and labels.
• Load and save reports from the database.
• Preview tables, sample Postscript print.

For forms, PgAccess can:

• Open user-defined forms.
• Use a form design module.
• Access record sets using a query widget.

For scripts, PgAccess can:

• Define.
• Modify.
• Call user defined scripts.

207

pgaccess

Notes

PgAccess is written in Tcl/Tk. Your PostgreSQL installation needs to be built with Tcl support for
PgAccess to be available.

208

pg_config

Name
pg_config — retrieve information about the installed version of PostgreSQL

Synopsis

pg_config {--bindir | --includedir | --includedir-server | --libdir | --pkglibdir | --configure | --version...}

Description

The pg_config utility prints configuration parameters of the currently installed version of PostgreSQL.
It is intended, for example, to be used by software packages that want to interface to PostgreSQL to
facilitate finding the required header files and libraries.

Options

To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where thepg_config program resides.

--includedir

Print the location of C and C++ header files of the client interfaces.

--includedir-server

Print the location of C and C++ header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them.
(Other architecture-dependent data files may also be installed in this directory.)

--configure

Print the options that were given to theconfigure script when PostgreSQL was configured
for building. This can be used to reproduce the identical configuration, or to find out with what
options a binary package was built. (Note however that binary packages often contain vendor-
specific custom patches.)

--version

Print the version of PostgreSQL and exit.

If more than one option (except for--version) is given, the information is printed in that order,
one item per line.

209

pg_config

Notes

The option--includedir-server is new in PostgreSQL 7.2. In prior releases, the server include
files were installed in the same location as the client headers, which could be queried with the--

includedir . To make your package handle both cases, try the newer option first and test the exit
status to see whether it succeeded.

In releases prior to PostgreSQL 7.1, before thepg_configcame to be, a method for finding the equiv-
alent configuration information did not exist.

History

Thepg_configutility first appeared in PostgreSQL 7.1.

See Also

PostgreSQL Programmer’s Guide

210

pg_dump

Name
pg_dump — extract a PostgreSQL database into a script file or other archive file

Synopsis

pg_dump [-a | -s] [-b] [-c] [-C] [-d | -D] [-f file] [-F format] [-i] [-n | -N] [-o] [-O] [-R] [-S] [-t
table] [-v] [-x] [-X keyword] [-Z 0...9] [-h host] [-p port] [-U username] [-W] dbname

Description

pg_dump is a utility for saving a PostgreSQL database into a script or an archive file. The script
files are in plain-text format and contain the SQL commands required to reconstruct the database to
the state it was in at the time it was saved. They can be used to reconstruct the database even on
other machines and other architectures, with some modifications even on other RDBMS products.
Furthermore, there are alternative archive file formats that are meant to be used withpg_restoreto
rebuild the database, and they also allowpg_restoreto be selective about what is restored, or even
to reorder the items prior to being restored. The archive files are also designed to be portable across
architectures.

pg_dump will save the information necessary to re-generate all user-defined types, functions, tables,
indexes, aggregates, and operators. In addition, all the data is copied out in text format so that it can
be readily copied in again, as well as imported into tools for editing.

pg_dump is useful for dumping out the contents of a database to move from one PostgreSQL instal-
lation to another.

When used with one of the archive file formats and combined withpg_restore, pg_dump provides
a flexible archival and transfer mechanism.pg_dump can be used to backup an entire database, then
pg_restorecan be used to examine the archive and/or select which parts of the database are to be
restored. The most flexible output file format is the “custom” format (-Fc). It allows for selection
and reordering of all archived items, and is compressed by default. Thetar format (-Ft) is not
compressed and it is not possible to reorder data when loading, but it is otherwise quite flexible;
moreover, it can be manipulated with other tools such astar .

While runningpg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

pg_dump makes consistent backups even if the database is being used concurrently.pg_dump does
not block other users accessing the database (readers or writers).

Options

pg_dump accepts the following command line arguments. (Long option forms are only available on
some platforms.)

dbname

Specifies the name of the database to be dumped.

211

pg_dump

-a
--data-only

Dump only the data, not the schema (data definitions).

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you callpg_restore.

-b
--blobs

Include large objects in dump.

-c
--clean

Output commands to clean (drop) database objects prior to (the commands for) creating them.

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you callpg_restore.

-C
--create

Begin the output with a command to create the database itself and reconnect to the created
database. (With a script of this form, it doesn’t matter which database you connect to before
running the script.)

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you callpg_restore.

-d
--inserts

Dump data asINSERT commands (rather thanCOPY). This will make restoration very slow,
but it makes the archives more portable to other RDBMS packages.

-D
--column-inserts
--attribute-inserts

Dump data asINSERT commands with explicit column names (INSERT INTO table

(column , ...) VALUES ...). This will make restoration very slow, but it is necessary if
you desire to rearrange column ordering.

-f file
--file=file

Send output to the specified file. If this is omitted, the standard output is used.

-F format
--format=format

Selects the format of the output.format can be one of the following:

p

Output a plain-text SQL script file (default)

t

Output atar archive suitable for input intopg_restore. Using this archive format allows
reordering and/or exclusion of schema elements at the time the database is restored. It is
also possible to limit which data is reloaded at restore time.

212

pg_dump

c

Output a custom archive suitable for input intopg_restore. This is the most flexible format
in that it allows reordering of data load as well as schema elements. This format is also
compressed by default.

-i
--ignore-version

Ignore version mismatch betweenpg_dump and the database server. Sincepg_dump knows a
great deal about system catalogs, any given version ofpg_dump is only intended to work with
the corresponding release of the database server. Use this option if you need to override the
version check (and ifpg_dump then fails, don’t say you weren’t warned).

-n
--no-quotes

Suppress double quotes around identifiers unless absolutely necessary. This may cause trouble
loading this dumped data if there are reserved words used for identifiers. This was the default
behavior forpg_dumpprior to version 6.4.

-N
--quotes

Include double quotes around identifiers. This is the default.

-o
--oids

Dump object identifiers (OIDs) for every table. Use this option if your application references the
OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option should not
be used.

-O
--no-owner

Do not output commands to set the object ownership to match the original database. Typically,
pg_dump issues (psql-specific)\connectstatements to set ownership of schema elements. See
also under-R and-X use-set-session-authorization . Note that-O does not prevent all
reconnections to the database, only the ones that are exclusively used for ownership adjustments.

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you callpg_restore.

-R
--no-reconnect

Prohibit pg_dump from outputting a script that would require reconnections to the database
while being restored. An average restoration script usually has to reconnect several times as dif-
ferent users to set the original ownerships of the objects. This option is a rather blunt instrument
because it makespg_dump lose this ownership information,unlessyou use the-X use-set-

session-authorization option.

One possible reason why reconnections during restore might not be desired is if the access to the
database requires manual interaction (e.g., passwords).

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you callpg_restore.

213

pg_dump

-s
--schema-only

Dump only the schema (data definitions), no data.

-S username
--superuser=username

The scripts or archives created bypg_dumpneed to have superuser access in certain cases, such
as when disabling triggers or setting ownership of schema elements. This option specifies the
user name to use for those cases.

-t table
--table=table

Dump data fortable only.

-v
--verbose

Specifies verbose mode.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-X use-set-session-authorization
--use-set-session-authorization

Normally, if a (plain-text mode) script generated bypg_dump must alter the current database
user (e.g., to set correct object ownerships), it uses thepsql \connectcommand. This command
actually opens a new connection, which might require manual interaction (e.g., passwords). If
you use the-X use-set-session-authorization option, thenpg_dump will instead out-
put SET SESSION AUTHORIZATIONcommands. This has the same effect, but it requires that
the user restoring the database from the generated script be a database superuser. This option
effectively overrides the-R option.

SinceSET SESSION AUTHORIZATIONis a standard SQL command, whereas\connectonly
works inpsql, this option also enhances the theoretical portability of the output script.

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you callpg_restore.

-Z 0..9
--compress=0..9

Specify the compression level to use in archive formats that support compression (currently only
the custom archive format supports compression).

pg_dumpalso accepts the following command line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

214

pg_dump

-p port
--port=port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections. The port number defaults to 5432, or the value of thePGPORTenvi-
ronment variable (if set).

-U username

Connect as the given user.

-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

Diagnostics

Connection to database ’template1’ failed.

connectDBStart() -- connect() failed: No such file or directory

Is the postmaster running locally

and accepting connections on Unix socket ’/tmp/.s.PGSQL.5432’?

pg_dump could not attach to thepostmaster process on the specified host and port. If you
see this message, ensure that thepostmaster is running on the proper host and that you have
specified the proper port.

Note: pg_dump internally executes SELECT statements. If you have problems running
pg_dump , make sure you are able to select information from the database using, for example,
psql.

Notes

pg_dumphas a few limitations.

• When dumping a single table or as plain text,pg_dumpdoes not handle large objects. Large objects
must be dumped in their entirety using one of the binary archive formats.

• When doing a data only dump,pg_dump emits queries to disable triggers on user tables before
inserting the data and queries to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

215

pg_dump

Examples

To dump a database:

$ pg_dump mydb > db.out

To reload this database:

$ psql -d database -f db.out

To dump a database calledmydb that contains large objects to atar file:

$ pg_dump -Ft -b mydb > db.tar

To reload this database (with large objects) to an existing database callednewdb:

$ pg_restore -d newdb db.tar

History

The pg_dump utility first appeared in Postgres95 release0.02 . The non-plain-text output formats
were introduced in PostgreSQL release7.1 .

See Also

pg_dumpall, pg_restore, psql, PostgreSQL Administrator’s Guide

216

pg_dumpall

Name
pg_dumpall — extract all PostgreSQL databases into a script file

Synopsis

pg_dumpall [-c | --clean] [-g | --globals-only] [-hhost] [-p port] [-U username] [-W]

Description

pg_dumpall is a utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one
script file. The script file contains SQL commands that can be used as input topsql to restore the
databases. It does this by callingpg_dump for each database in a cluster. pg_dumpall also dumps
global objects that are common to all databases. (pg_dump does not save these objects.) This currently
includes the information about database users and groups.

Thus, pg_dumpall is an integrated solution for backing up your databases. But note a limitation: it
cannot dump “large objects”, since pg_dump cannot dump such objects into text files. If you have
databases containing large objects, they should be dumped using one of pg_dump’s non-text output
modes.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute
the saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard output. Shell operators should be used to redirect it into
a file.

Options

pg_dumpall accepts the following command line arguments:

-c, --clean

Include SQL commands to clean (drop) database objects before recreating them. (This option
is fairly useless, since the output script expects to create the databases themselves; they would
always be empty upon creation.)

-g, --globals-only

Only dump global objects (users and groups), no databases.

-h host

Specifies the host name of the machine on which the database server is running. If host begins
with a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOSTenvironment variable, if set, else a Unix domain socket connection is attempted.

-p port

The port number on which the server is listening. Defaults to thePGPORTenvironment variable,
if set, or a compiled-in default.

217

pg_dumpall

-U username

Connect as the given user.

-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

Any other command line parameters are passed to the underlyingpg_dump calls. This is useful to
control some aspects of the output format, but some options such as-f , -t , anddbname should be
avoided.

Examples

To dump all databases:

$ pg_dumpall > db.out

To reload this database use, for example:

$ psql -f db.out template1

(It is not important to which database you connect here since the script file created by pg_dumpall
will contain the appropriate commands to create and connect to the saved databases.)

See Also

pg_dump, psql. Check there for details on possible error conditions.

218

pg_restore

Name
pg_restore — restore a PostgreSQL database from an archive file created by pg_dump

Synopsis

pg_restore [-a] [-c] [-C] [-d dbname] [-f output-file] [-F format] [-i index] [-l] [
-L contents-file] [-N | -o | -r] [-O] [-P function-name] [-R] [-s] [-S] [-t table
] [-T trigger] [-v] [-x] [-X keyword] [-h host] [-p port] [-U username] [-W] [
archive-file]

Description

pg_restoreis a utility for restoring a PostgreSQL database from an archive created bypg_dump in
one of the non-plain-text formats. It will issue the commands necessary to re-generate all user-defined
types, functions, tables, indexes, aggregates, and operators, as well as the data in the tables.

The archive files contain information forpg_restoreto rebuild the database, but also allowpg_restore
to be selective about what is restored, or even to reorder the items prior to being restored. The archive
files are designed to be portable across architectures.

pg_restorecan operate in two modes: If a database name is specified, the archive is restored directly
into the database. Otherwise, a script containing the SQL commands necessary to rebuild the database
is created (and written to a file or standard output), similar to the ones created by thepg_dumpplain
text format. Some of the options controlling the script output are therefore analogous topg_dump
options.

Obviously,pg_restorecannot restore information that is not present in the archive file; for instance,
if the archive was made using the “dump data asINSERTs” option,pg_restorewill not be able to
load the data usingCOPY statements.

Options

pg_restoreaccepts the following command line arguments. (Long option forms are only available on
some platforms.)

archive-name

Specifies the location of the archive file to be restored. If not specified, the standard input is used.

-a
--data-only

Restore only the data, no schema (definitions).

-c
--clean

Clean (drop) database objects before recreating them.

219

pg_restore

-C
--create

Create the database before restoring into it. (When this switch appears, the database named with
-d is used only to issue the initial CREATE DATABASE command. All data is restored into the
database name that appears in the archive.)

-d dbname
--dbname=dbname

Connect to databasedbname and restore directly into the database. Large objects can only be
restored by using a direct database connection.

-f filename
--file=filename

Specify output file for generated script, or for the listing when used with-l . Default is the
standard output.

-F format
--format=format

Specify format of the archive. It is not necessary to specify the format, sincepg_restorewill
determine the format automatically. If specified, it can be one of the following:

t

Archive is atar archive. Using this archive format allows reordering and/or exclusion of
schema elements at the time the database is restored. It is also possible to limit which data
is reloaded at restore time.

c

Archive is in the custom format ofpg_dump. This is the most flexible format in that it
allows reordering of data load as well as schema elements. This format is also compressed
by default.

-i index
--index=index

Restore definition for namedindex only.

-l
--list

List the contents of the archive. The output of this command can be used with the-L option to
restrict and reorder the items that are restored.

-L list-file
--use-list=list-file

Restore elements inlist-file only, and in the order they appear in the file. Lines can be
moved and may also be commented out by placing a; at the start of the line.

-N
--orig-order

Restore items in the original dump order. By defaultpg_dump will dump items in an order
convenient topg_dump, then save the archive in a modified OID order. This option overrides
the OID ordering.

220

pg_restore

-o
--oid-order

Restore items in the OID order. By defaultpg_dump will dump items in an order convenient
to pg_dump, then save the archive in a modified OID order. This option enforces strict OID
ordering.

-O
--no-owner

Prevent any attempt to restore original object ownership. Objects will be owned by the user name
used to attach to the database.

-P function-name
--function=function-name

Specify a procedure or function to be restored.

-r
--rearrange

Restore items in modified OID order. By defaultpg_dump will dump items in an order conve-
nient topg_dump, then save the archive in a modified OID order. Most objects will be restored
in OID order, but some things (e.g., rules and indexes) will be restored at the end of the process
irrespective of their OIDs. This option is the default.

-R
--no-reconnect

While restoring an archive,pg_restoretypically has to reconnect to the database several times
with different user names to set the correct ownership of the created objects. If this is undesir-
able (e.g., because manual interaction (passwords) would be necessary for each reconnection),
this option preventspg_restorefrom issuing any reconnection requests. (A connection request
while in plain text mode, not connected to a database, is made by putting out apsql \connect
command.) However, this option is a rather blunt instrument because it makespg_restore lose
all object ownership information,unlessyou use the-X use-set-session-authorization

option.

-s
--schema-only

Restore the schema (definitions), no data. Sequence values will be reset.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers and/or setting ownership of
schema elements. By default,pg_restorewill use the current user name if it is a superuser.

-t table
--table=table

Restore schema/data fortable only.

-T trigger
--trigger=trigger

Restore definition oftrigger only.

-v
--verbose

Specifies verbose mode.

221

pg_restore

-x
--no-privileges
--no-acl

Prevent restoration of access privileges (grant/revoke commands).

-X use-set-session-authorization
--use-set-session-authorization

Normally, if restoring an archive requires altering the current database user (e.g., to set cor-
rect object ownerships), a new connection to the database must be opened, which might require
manual interaction (e.g., passwords). If you use the-X use-set-session-authorization

option, thenpg_restorewill instead use theSET SESSION AUTHORIZATIONcommand. This
has the same effect, but it requires that the user restoring the archive is a database superuser. This
option effectively overrides the-R option.

pg_restorealso accepts the following command line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections. The port number defaults to 5432, or the value of thePGPORTenvi-
ronment variable (if set).

-U username

Connect as the given user.

-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

Diagnostics

Connection to database ’template1’ failed.

connectDBStart() -- connect() failed: No such file or directory

Is the postmaster running locally

and accepting connections on Unix socket ’/tmp/.s.PGSQL.5432’?

pg_restorecould not attach to thepostmasterprocess on the specified host and port. If you see
this message, ensure that the server is running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

222

pg_restore

Note: When a direct database connection is specified using the -d option, pg_restore internally
executes SQL statements. If you have problems running pg_restore , make sure you are able to
select information from the database using, for example, psql .

Notes

The limitations ofpg_restoreare detailed below.

• When restoring data to a table,pg_restoreemits queries to disable triggers on user tables before
inserting the data then emits queries to re-enable them after the data has been inserted. If the restore
is stopped in the middle, the system catalogs may be left in the wrong state.

• pg_restorewill not restore large objects for a single table. If an archive contains large objects, then
all large objects will be restored.

See thepg_dumpdocumentation for details on limitation ofpg_dump.

Examples

To dump a database:

$ pg_dump mydb > db.out

To reload this database:

$ psql -d database -f db.out

To dump a database calledmydb that contains large objects to atar file:

$ pg_dump -Ft -b mydb > db.tar

To reload this database (with large objects) to an existing database callednewdb:

$ pg_restore -d newdb db.tar

To reorder database items, it is first necessary to dump the table of contents of the archive:

$ pg_restore -l archive.file > archive.list

The listing file consists of a header and one line for each item, e.g.,

;
; Archive created at Fri Jul 28 22:28:36 2000
; dbname: birds
; TOC Entries: 74
; Compression: 0

223

pg_restore

; Dump Version: 1.4-0
; Format: CUSTOM
;
;
; Selected TOC Entries:
;
2; 145344 TABLE species postgres
3; 145344 ACL species
4; 145359 TABLE nt_header postgres
5; 145359 ACL nt_header
6; 145402 TABLE species_records postgres
7; 145402 ACL species_records
8; 145416 TABLE ss_old postgres
9; 145416 ACL ss_old
10; 145433 TABLE map_resolutions postgres
11; 145433 ACL map_resolutions
12; 145443 TABLE hs_old postgres
13; 145443 ACL hs_old

Semi-colons are comment delimiters, and the numbers at the start of lines refer to the internal archive
ID assigned to each item.

Lines in the file can be commented out, deleted, and reordered. For example,

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input topg_restoreand would only restore items 10 and 6, in that order.

$ pg_restore -L archive.list archive.file

History

Thepg_restoreutility first appeared in PostgreSQL 7.1.

See Also

pg_dump, pg_dumpall, psql, PostgreSQL Administrator’s Guide

224

psql

Name
psql — PostgreSQL interactive terminal

Synopsis

psql [options] [dbname [user]]

Summary

psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue
them to PostgreSQL, and see the query results. Alternatively, input can be from a file. In addition, it
provides a number of meta-commands and various shell-like features to facilitate writing scripts and
automating a wide variety of tasks.

Description

Connecting To A Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know
the name of your target database, the hostname and port number of the server and what user name
you want to connect as. psql can be told about those parameters via command line options, namely
-d , -h , -p , and-U respectively. If an argument is found that does not belong to any option it will be
interpreted as the database name (or the user name, if the database name is also given). Not all these
options are required, defaults do apply. If you omit the host name psql will connect via a Unix domain
socket to a server on the local host. The default port number is compile-time determined. Since the
database server uses the same default, you will not have to specify the port in most cases. The default
user name is your Unix username, as is the default database name. Note that you can’t just connect
to any database under any username. Your database administrator should have informed you about
your access rights. To save you some typing you can also set the environment variablesPGDATABASE,
PGHOST, PGPORTandPGUSERto appropriate values.

If the connection could not be made for any reason (e.g., insufficient privileges, postmaster is not
running on the server, etc.), psql will return an error and terminate.

Entering Queries

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string=>. For example,

$ psql testdb
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

225

psql

testdb=>

At the prompt, the user may type in SQL queries. Ordinarily, input lines are sent to the backend when
a query-terminating semicolon is reached. An end of line does not terminate a query! Thus queries
can be spread over several lines for clarity. If the query was sent and without error, the query results
are displayed on the screen.

Whenever a query is executed, psql also polls for asynchronous notification events generated byLIS-
TEN andNOTIFY.

psql Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that
is processed by psql itself. These commands are what makes psql interesting for administration or
scripting. Meta-commands are more commonly called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you must quote it with a single quote. To include a sin-
gle quote into such an argument, precede it by a backslash. Anything contained in single quotes is
furthermore subject to C-like substitutions for\n (new line),\t (tab), \ digits , \0 digits , and
\0x digits (the character with the given decimal, octal, or hexadecimal code).

If an unquoted argument begins with a colon (:), it is taken as a variable and the value of the variable
is taken as the argument instead.

Arguments that are quoted in “backticks” (‘) are taken as a command line that is passed to the shell.
The output of the command (with a trailing newline removed) is taken as the argument value. The
above escape sequences also apply in backticks.

Some commands take the name of an SQL identifier (such as a table name) as argument. These
arguments follow the syntax rules of SQL regarding double quotes: an identifier without double quotes
is coerced to lower-case. For all other commands double quotes are not special and will become part
of the argument.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning
of a new meta-command. The special sequence\\ (two backslashes) marks the end of arguments and
continues parsing SQL queries, if any. That way SQL and psql commands can be freely mixed on a
line. But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, switch to aligned. If it is not unaligned, set it to
unaligned. This command is kept for backwards compatibility. See\psetfor a general solution.

\cd [directory]

Change the current working directory todirectory . Without argument, change to the current
user’s home directory.

Tip: To print your current working directory, use \!pwd .

226

psql

\C [title]

Set the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent to\pset title title . (The name of this command derives from
“caption”, as it was previously only used to set the caption in an HTML table.)

\connect (or \c) [dbname [username]]

Establishes a connection to a new database and/or under a user name. The previous connection
is closed. Ifdbname is - the current database name is assumed.

If username is omitted the current user name is assumed.

As a special rule,\connectwithout any arguments will connect to the default database as the
default user (as you would have gotten by starting psql without any arguments).

If the connection attempt failed (wrong username, access denied, etc.), the previous connection
will be kept if and only if psql is in interactive mode. When executing a non-interactive script,
processing will immediately stop with an error. This distinction was chosen as a user convenience
against typos on the one hand, and a safety mechanism that scripts are not accidentally acting on
the wrong database on the other hand.

\copy table [with oids] { from | to } filename | stdin | stdout [using delimiters

’characters ’] [with null as ’string ’]

Performs a frontend (client) copy. This is an operation that runs an SQLCOPYcommand, but
instead of the backend’s reading or writing the specified file, and consequently requiring backend
access and special user privilege, as well as being bound to the file system accessible by the
backend, psql reads or writes the file and routes the data between the backend and the local file
system.

The syntax of the command is similar to that of the SQLCOPY command (see its description
for the details). Note that, because of this, special parsing rules apply to the\copy command. In
particular, the variable substitution rules and backslash escapes do not apply.

Tip: This operation is not as efficient as the SQL COPY command because all data must
pass through the client/server IP or socket connection. For large amounts of data the other
technique may be preferable.

Note: Note the difference in interpretation of stdin and stdout between frontend and back-
end copies: in a frontend copy these always refer to psql’s input and output stream. On a
backend copy stdin comes from wherever the COPY itself came from (for example, a script
run with the -f option), and stdout refers to the query output stream (see \o meta-command
below).

\copyright

Shows the copyright and distribution terms of PostgreSQL.

\d relation

Shows all columns ofrelation (which could be a table, view, index, or sequence), their types,
and any special attributes such asNOT NULLor defaults, if any. If the relation is, in fact, a table,
any defined indices, primary keys, unique constraints and check constraints are also listed. If the
relation is a view, the view definition is also shown.

227

psql

The command form\d+ is identical, but any comments associated with the table columns are
shown as well.

Note: If \d is called without any arguments, it is equivalent to \dtvs which will show a list of
all tables, views, and sequences. This is purely a convenience measure.

\da [pattern]

Lists all available aggregate functions, together with the data type they operate on. Ifpattern
(a regular expression) is specified, only matching aggregates are shown.

\dd [object]

Shows the descriptions ofobject (which can be a regular expression), or of all objects if no
argument is given. (“Object” covers aggregates, functions, operators, types, relations (tables,
views, indexes, sequences, large objects), rules, and triggers.) For example:

=> \dd version
Object descriptions

Name | What | Description
---------+----------+---------------------------

version | function | PostgreSQL version string
(1 row)

Descriptions for objects can be generated with theCOMMENT ON SQL command.

Note: PostgreSQL stores the object descriptions in the pg_description system table.

\df [pattern]

Lists available functions, together with their argument and return types. Ifpattern (a regular
expression) is specified, only matching functions are shown. If the form\df+ is used, additional
information about each function, including language and description, is shown.

\distvS [pattern]

This is not the actual command name: The letters i, s, t, v, S stand for index, sequence, table,
view, and system table, respectively. You can specify any or all of them in any order to obtain a
listing of them, together with who the owner is.

If pattern is specified, it is a regular expression that restricts the listing to those objects whose
name matches. If one appends a “+” to the command name, each object is listed with its associ-
ated description, if any.

\dl

This is an alias for\lo_list, which shows a list of large objects.

\do [name]

Lists available operators with their operand and return types. Ifname is specified, only operators
with that name will be shown.

\dp [pattern]

This is an alias for\z which was included for its greater mnemonic value (“display permissions”).

228

psql

\dT [pattern]

Lists all data types or only those that matchpattern . The command form\dT+ shows extra
information.

\du [pattern]

Lists all configured users or only those that matchpattern .

\edit (or \e) [filename]

If filename is specified, the file is edited; after the editor exits, its content is copied back to
the query buffer. If no argument is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of psql, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this way. Use\i for that.) This
means also that if the query ends with (or rather contains) a semicolon, it is immediately exe-
cuted. In other cases it will merely wait in the query buffer.

Tip: psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, /bin/vi is run.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date‘
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted-n the the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you may wish to use \qecho
instead of this command.

\encoding [encoding]

Sets the client encoding, if you are using multibyte encodings. Without an argument, this com-
mand shows the current encoding.

\f [string]

Sets the field separator for unaligned query output. The default is pipe (|). See also\pset for a
generic way of setting output options.

\g [{ filename | | command}]

Sends the current query input buffer to the backend and optionally saves the output infile-
name or pipes the output into a separate Unix shell to executecommand. A bare\g is virtually
equivalent to a semicolon. A\g with argument is a “one-shot” alternative to the\o command.

\help (or \h) [command]

Give syntax help on the specified SQL command. Ifcommand is not specified, then psql will
list all the commands for which syntax help is available. Ifcommand is an asterisk (“*”), then
syntax help on all SQL commands is shown.

229

psql

Note: To simplify typing, commands that consists of several words do not have to be quoted.
Thus it is fine to type \help alter table .

\H

Turns on HTML query output format. If the HTML format is already on, it is switched back
to the default aligned text format. This command is for compatibility and convenience, but see
\psetabout setting other output options.

\i filename

Reads input from the filefilename and executes it as though it had been typed on the keyboard.

Note: If you want to see the lines on the screen as they are read you must set the variable
ECHOto all .

\l (or \list)

List all the databases in the server as well as their owners. Append a “+” to the command name
to see any descriptions for the databases as well. If your PostgreSQL installation was compiled
with multibyte encoding support, the encoding scheme of each database is shown as well.

\lo_export loid filename

Reads the large object with OIDloid from the database and writes it tofilename . Note that
this is subtly different from the server functionlo_export , which acts with the permissions of
the user that the database server runs as and on the server’s file system.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTIONvariable for important information con-
cerning all large object operations.

\lo_import filename [comment]

Stores the file into a PostgreSQL “large object”. Optionally, it associates the given comment with
the object. Example:

foo=> \lo_import ’/home/peter/pictures/photo.xcf’ ’a picture of me’
lo_import 152801

The response indicates that the large object received object id 152801 which one ought to re-
member if one wants to access the object ever again. For that reason it is recommended to always
associate a human-readable comment with every object. Those can then be seen with the\lo_list
command.

Note that this command is subtly different from the server-sidelo_import because it acts as
the local user on the local file system, rather than the server’s user and file system.

Note: See the description of the LO_TRANSACTIONvariable for important information con-
cerning all large object operations.

230

psql

\lo_list

Shows a list of all PostgreSQL “large objects” currently stored in the database, along with any
comments provided for them.

\lo_unlink loid

Deletes the large object with OIDloid from the database.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTIONvariable for important information con-
cerning all large object operations.

\o [{ filename | | command}]

Saves future query results to the filefilename or pipes future results into a separate Unix shell
to executecommand. If no arguments are specified, the query output will be reset tostdout .

“Query results” includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as\d), but
not error messages.

Tip: To intersperse text output in between query results, use \qecho .

\p

Print the current query buffer to the standard output.

\pset parameter [value]

This command sets options affecting the output of query result tables.parameter describes
which option is to be set. The semantics ofvalue depend thereon.

Adjustable printing options are:

format

Sets the output format to one ofunaligned , aligned , html , or latex . Unique abbrevia-
tions are allowed. (That would mean one letter is enough.)

“Unaligned” writes all fields of a tuple on a line, separated by the currently active field sepa-
rator. This is intended to create output that might be intended to be read in by other programs
(tab-separated, comma-separated). “Aligned” mode is the standard, human-readable, nicely
formatted text output that is default. The “HTML” and “LaTeX” modes put out tables that
are intended to be included in documents using the respective mark-up language. They are
not complete documents! (This might not be so dramatic in HTML, but in LaTeX you must
have a complete document wrapper.)

border

The second argument must be a number. In general, the higher the number the more borders
and lines the tables will have, but this depends on the particular format. In HTML mode,
this will translate directly into theborder=... attribute, in the others only values 0 (no
border), 1 (internal dividing lines), and 2 (table frame) make sense.

231

psql

expanded (or x)

Toggles between regular and expanded format. When expanded format is enabled, all output
has two columns with the field name on the left and the data on the right. This mode is useful
if the data wouldn’t fit on the screen in the normal “horizontal” mode.

Expanded mode is supported by all four output modes.

null

The second argument is a string that should be printed whenever a field is null. The default
is not to print anything, which can easily be mistaken for, say, an empty string. Thus, one
might choose to write\pset null ’(null)’ .

fieldsep

Specifies the field separator to be used in unaligned output mode. That way one can create,
for example, tab- or comma-separated output, which other programs might prefer. To set a
tab as field separator, type\pset fieldsep ’\t’ . The default field separator is’|’ (a
“pipe” symbol).

footer

Toggles the display of the default footer(x rows) .

recordsep

Specifies the record (line) separator to use in unaligned output mode. The default is a new-
line character.

tuples_only (or t)

Toggles between tuples only and full display. Full display may show extra information such
as column headers, titles, and various footers. In tuples only mode, only actual table data is
shown.

title [text]

Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no argument is given, the title is unset.

Note: This formerly only affected HTML mode. You can now set titles in any output
format.

tableattr (or T) [text]

Allows you to specify any attributes to be placed inside the HTMLtable tag. This could
for example becellpadding or bgcolor . Note that you probably don’t want to specify
border here, as that is already taken care of by\pset border .

pager

Toggles the list of a pager to do table output. If the environment variablePAGERis set, the
output is piped to the specified program. Otherwisemore is used.

In any case, psql only uses the pager if it seems appropriate. That means among other
things that the output is to a terminal and that the table would normally not fit on the screen.
Because of the modular nature of the printing routines it is not always possible to predict
the number of lines that will actually be printed. For that reason psql might not appear very
discriminating about when to use the pager and when not to.

Illustrations on how these different formats look can be seen in theExamplessection.

232

psql

Tip: There are various shortcut commands for \pset . See \a, \C, \H, \t, \T, and \x.

Note: It is an error to call \pset without arguments. In the future this call might show the
current status of all printing options.

\q

Quit the psql program.

\qecho text [...]

This command is identical to\echoexcept that all output will be written to the query output
channel, as set by\o.

\r

Resets (clears) the query buffer.

\s [filename]

Print or save the command line history tofilename . If filename is omitted, the history is
written to the standard output. This option is only available if psql is configured to use the GNU
history library.

Note: In the current version, it is no longer necessary to save the command history, since that
will be done automatically on program termination. The history is also loaded automatically
every time psql starts up.

\set [name [value [...]]]

Sets the internal variablename to value or, if more than one value is given, to the concatenation
of all of them. If no second argument is given, the variable is just set with no value. To unset a
variable, use the\unsetcommand.

Valid variable names can contain characters, digits, and underscores. See the section about psql
variables for details.

Although you are welcome to set any variable to anything you want, psql treats several variables
as special. They are documented in the section about variables.

Note: This command is totally separate from the SQL command SET .

\t

Toggles the display of output column name headings and row count footer. This command is
equivalent to\pset tuples_only and is provided for convenience.

\T table_options

Allows you to specify options to be placed within thetable tag in HTML tabular output mode.
This command is equivalent to\pset tableattr table_options .

\w { filename | |command }

Outputs the current query buffer to the filefilename or pipes it to the Unix commandcom-
mand.

233

psql

\x

Toggles extended row format mode. As such it is equivalent to\pset expanded .

\z [pattern]

Produces a list of all tables in the database with their appropriate access permissions listed. If an
argument is given it is taken as a regular expression which limits the listing to those tables which
match it.

test= > \z
Access permissions for database "test"

Relation | Access permissions
----------+-------------------------------------

my_table | {"=r","joe=arwR", "group staff=ar"}
(1 row)

Read this as follows:

• "=r" : PUBLIC has read (SELECT) permission on the table.

• "joe=arwR" : Userjoe has read, write (UPDATE, DELETE), “append” (INSERT) permis-
sions, and permission to create rules on the table.

• "group staff=ar" : Groupstaff hasSELECT andINSERT permission.

The commandsGRANT andREVOKEare used to set access permissions.

\! [command]

Escapes to a separate Unix shell or executes the Unix commandcommand. The arguments are
not further interpreted, the shell will see them as is.

\?

Get help information about the backslash (“\”) commands.

Command-line Options

If so configured, psql understands both standard Unix short options, and GNU-style long options. The
latter are not available on all systems.

-a, --echo-all

Print all the lines to the screen as they are read. This is more useful for script processing rather
than interactive mode. This is equivalent to setting the variableECHOto all .

-A, --no-align

Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c, --commandquery

Specifies that psql is to execute one query string,query , and then exit. This is useful in shell
scripts.

query must be either a query string that is completely parseable by the backend (i.e., it contains
no psql specific features), or it is a single backslash command. Thus you cannot mix SQL and

234

psql

psql meta-commands. To achieve that, you could pipe the string into psql, like this:echo "\x

\\ select * from foo;" | psql .

-d, --dbnamedbname

Specifies the name of the database to connect to. This is equivalent to specifyingdbname as the
first non-option argument on the command line.

-e, --echo-queries

Show all queries that are sent to the backend. This is equivalent to setting the variableECHOto
queries .

-E, --echo-hidden

Echoes the actual queries generated by \d and other backslash commands. You can use this if
you wish to include similar functionality into your own programs. This is equivalent to setting
the variableECHO_HIDDENfrom within psql.

-f, --file filename

Use the filefilename as the source of queries instead of reading queries interactively. After
the file is processed, psql terminates. This is in many ways equivalent to the internal command
\i.

If filename is - (hyphen), then standard input is read.

Using this option is subtly different from writingpsql < filename . In general, both will
do what you expect, but using-f enables some nice features such as error messages with line
numbers. There is also a slight chance that using this option will reduce the start-up overhead.
On the other hand, the variant using the shell’s input redirection is (in theory) guaranteed to yield
exactly the same output that you would have gotten had you entered everything by hand.

-F, --field-separatorseparator

Useseparator as the field separator. This is equivalent to\pset fieldsepor \f.

-h, --hosthostname

Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the unix domain socket.

-H, --html

Turns on HTML tabular output. This is equivalent to\pset format html or the\H command.

-l, --list

Lists all available databases, then exits. Other non-connection options are ignored. This is similar
to the internal command\list.

-o, --outputfilename

Put all query output into filefilename . This is equivalent to the command\o.

-p, --portport

Specifies the TCP/IP port or, by omission, the local Unix domain socket file extension on which
the postmaster is listening for connections. Defaults to the value of thePGPORTenvironment
variable or, if not set, to the port specified at compile time, usually 5432.

-P, --psetassignment

Allows you to specify printing options in the style of\pseton the command line. Note that here
you have to separate name and value with an equal sign instead of a space. Thus to set the output
format to LaTeX, you could write-P format=latex .

235

psql

-q

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the-c

option. Within psql you can also set theQUIET variable to achieve the same effect.

-R, --record-separatorseparator

Useseparator as the record separator. This is equivalent to the\pset recordsepcommand.

-s, --single-step

Run in single-step mode. That means the user is prompted before each query is sent to the
backend, with the option to cancel execution as well. Use this to debug scripts.

-S, --single-line

Runs in single-line mode where a newline terminates a query, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encour-
aged to use it. In particular, if you mix SQL and meta-commands on a line the order of
execution might not always be clear to the inexperienced user.

-t, --tuples-only

Turn off printing of column names and result row count footers, etc. It is completely equivalent
to the\t meta-command.

-T, --table-attrtable_options

Allows you to specify options to be placed within the HTMLtable tag. See\psetfor details.

-u

Makes psql prompt for the user name and password before connecting to the database.

This option is deprecated, as it is conceptually flawed. (Prompting for a non-default user name
and prompting for a password because the backend requires it are really two different things.)
You are encouraged to look at the-U and-W options instead.

-U, --usernameusername

Connects to the database as the userusername instead of the default. (You must have permis-
sion to do so, of course.)

-v, --variable, --setassignment

Performs a variable assignment, like the\set internal command. Note that you must separate
name and value, if any, by an equal sign on the command line. To unset a variable, leave off the
equal sign. To just set a variable without a value, use the equal sign but leave off the value. These
assignments are done during a very early stage of start-up, so variables reserved for internal
purposes might get overwritten later.

-V, --version

Shows the psql version.

-W, --password

Requests that psql should prompt for a password before connecting to a database. This will
remain set for the entire session, even if you change the database connection with the meta-
command\connect.

236

psql

In the current version, psql automatically issues a password prompt whenever the backend re-
quests password authentication. Because this is currently based on a hack, the automatic recog-
nition might mysteriously fail, hence this option to force a prompt. If no password prompt is
issued and the backend requires password authentication the connection attempt will fail.

-x, --expanded

Turns on extended row format mode. This is equivalent to the command\x.

-X, --no-psqlrc

Do not read the start-up file~/.psqlrc .

-?, --help

Shows help about psql command line arguments.

Advanced features

Variables

psql provides variable substitution features similar to common Unix command shells. This feature
is new and not very sophisticated, yet, but there are plans to expand it in the future. Variables are
simply name/value pairs, where the value can be any string of any length. To set variables, use the
psql meta-command\set:

testdb=> \set foo bar

sets the variable “foo” to the value “bar”. To retrieve the content of the variable, precede the name
with a colon and use it as the argument of any slash command:

testdb=> \echo :foo
bar

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo ’something’ and get “soft
links” or “variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?),
there is no way to do anything useful with these constructs. On the other hand, \set bar :foo

is a perfectly valid way to copy a variable.

If you call \setwithout a second argument, the variable is simply set, but has no value. To unset (or
delete) a variable, use the command\unset.

psql’s internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of regular variables are treated specially by psql. They indicate certain
option settings that can be changed at runtime by altering the value of the variable or represent some
state of the application. Although you can use these variables for any other purpose, this is not rec-
ommended, as the program behavior might grow really strange really quickly. By convention, all
specially treated variables consist of all upper-case letters (and possibly numbers and underscores).
To ensure maximum compatibility in the future, avoid such variables. A list of all specially treated
variables follows.

237

psql

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

ECHO

If set to “all ”, all lines entered or from a script are written to the standard output before they are
parsed or executed. To specify this on program start-up, use the switch-a . If set to “queries ”,
psql merely prints all queries as they are sent to the backend. The option for this is-e .

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the PostgreSQL internals and provide similar functionality in your own
programs. If you set the variable to the value “noexec”, the queries are just shown but are not
actually sent to the backend and executed.

ENCODING

The current client multibyte encoding. If you are not set up to use multibyte characters, this
variable will always contain “SQL_ASCII”.

HISTCONTROL

If this variable is set toignorespace , lines which begin with a space are not entered into the
history list. If set to a value ofignoredups , lines matching the previous history line are not
entered. A value ofignoreboth combines the two options. If unset, or if set to any other value
than those above, all lines read in interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from bash.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually Control-D) to an interactive session of psql will
terminate the application. If set to a numeric value, that many EOF characters are ignored before
the application terminates. If the variable is set but has no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from bash.

LASTOID

The value of the last affected oid, as returned from anINSERT or lo_insert command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

238

psql

LO_TRANSACTION

If you use the PostgreSQL large object interface to specially store data that does not fit into one
tuple, all the operations must be contained in a transaction block. (See the documentation of the
large object interface for more information.) Since psql has no way to tell if you already have
a transaction in progress when you call one of its internal commands (\lo_export, \lo_import ,
\lo_unlink) it must take some arbitrary action. This action could either be to roll back any trans-
action that might already be in progress, or to commit any such transaction, or to do nothing at
all. In the last case you must provide your ownBEGIN TRANSACTION /COMMIT block or
the results will be unpredictable (usually resulting in the desired action’s not being performed in
any case).

To choose what you want to do you set this variable to one of “rollback”, “commit”, or “nothing”.
The default is to roll back the transaction. If you just want to load one or a few objects this is
fine. However, if you intend to transfer many large objects, it might be advisable to provide one
explicit transaction block around all commands.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL query or
internal meta-command, processing continues. This has been the traditional behavior of psql but
it is sometimes not desirable. If this variable is set, script processing will immediately terminate.
If the script was called from another script it will terminate in the same fashion. If the outermost
script was not called from an interactive psql session but rather using the-f option, psql will
return error code 3, to distinguish this case from fatal error conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1, PROMPT2, PROMPT3

These specify what the prompt psql issues is supposed to look like. See “Prompting” below.

QUIET

This variable is equivalent to the command line option-q . It is probably not too useful in inter-
active mode.

SINGLELINE

This variable is set by the command line option-S . You can unset or reset it at run time.

SINGLESTEP

This variable is equivalent to the command line option-s .

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be unset.

SQL Interpolation

An additional useful feature of psql variables is that you can substitute (“interpolate”) them into
regular SQL statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set foo ’my_table’
testdb=> SELECT * FROM :foo;

239

psql

would then query the tablemy_table . The value of the variable is copied literally, so it can even
contain unbalanced quotes or backslash commands. You must make sure that it makes sense where
you put it. Variable interpolation will not be performed into quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent statements to
build a foreign key scenario. Another possible use of this mechanism is to copy the contents of a file
into a field. First load the file into a variable and then proceed as above.

testdb=> \set content ’\” ‘cat my_file.txt‘ ’\”
testdb=> INSERT INTO my_table VALUES (:content);

One possible problem with this approach is thatmy_file.txt might contain single quotes. These
need to be escaped so that they don’t cause a syntax error when the third line is processed. This could
be done with the program sed:

testdb=> \set content ’\” ‘sed -e "s/’/\\\\\\’/g" < my_file.txt‘ ’\”

Observe the correct number of backslashes (6)! You can resolve it this way: After psql has parsed this
line, it passessed -e "s/’/\\\’/g" < my_file.txt to the shell. The shell will do its own thing
inside the double quotes and executesed with the arguments-e ands/’/\\’/g . When sed parses
this it will replace the two backslashes with a single one and then do the substitution. Perhaps at one
point you thought it was great that all Unix commands use the same escape character. And this is
ignoring the fact that you might have to escape all backslashes as well because SQL text constants are
also subject to certain interpretations. In that case you might be better off preparing the file externally.

Since colons may legally appear in queries, the following rule applies: If the variable is not set, the
character sequence “colon+name” is not changed. In any case you can escape a colon with a backslash
to protect it from interpretation. (The colon syntax for variables is standard SQL for embedded query
languages, such as ecpg. The colon syntax for array slices and type casts are PostgreSQL extensions,
hence the conflict.)

Prompting

The prompts psql issues can be customized to your preference. The three variablesPROMPT1,
PROMPT2, andPROMPT3contain strings and special escape sequences that describe the appearance of
the prompt. Prompt 1 is the normal prompt that is issued when psql requests a new query. Prompt 2
is issued when more input is expected during query input because the query was not terminated with
a semicolon or a quote was not closed. Prompt 3 is issued when you run an SQLCOPY command
and you are expected to type in the tuples on the terminal.

The value of the respective prompt variable is printed literally, except where a percent sign (“%”)
is encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M

The full hostname (with domain name) of the database server, or[local] if the connection is
over a Unix domain socket, or[local: /dir/name] , if the Unix domain socket is not at the
compiled in default location.

%m

The hostname of the database server, truncated after the first dot, or[local] if the connection
is over a Unix domain socket.

%>

The port number at which the database server is listening.

240

psql

%n

The username you are connected as (not your local system user name).

%/

The name of the current database.

%~

Like %/, but the output is “~” (tilde) if the database is your default database.

%#

If the current user is a database superuser, then a “#”, otherwise a “>”.

%R

In prompt 1 normally “=”, but “^” if in single-line mode, and “!” if the session is disconnected
from the database (which can happen if\connect fails). In prompt 2 the sequence is replaced
by “-”, “*”, a single quote, or a double quote, depending on whether psql expects more input
because the query wasn’t terminated yet, because you are inside a/* ... */ comment, or
because you are inside a quote. In prompt 3 the sequence doesn’t resolve to anything.

%digits

If digits starts with0x the rest of the characters are interpreted as a hexadecimal digit and
the character with the corresponding code is substituted. If the first digit is0 the characters
are interpreted as on octal number and the corresponding character is substituted. Otherwise a
decimal number is assumed.

%:name:

The value of the psql, variablename. See the section “Variables” for details.

%‘command‘

The output ofcommand, similar to ordinary “back-tick” substitution.

To insert a percent sign into your prompt, write%%. The default prompts are equivalent to’%/%R%#

’ for prompts 1 and 2, and’ >> ’ for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Miscellaneous

psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not
found) occurs, 2 if the connection to the backend went bad and the session is not interactive, and 3 if
an error occurred in a script and the variableON_ERROR_STOPwas set.

Before starting up, psql attempts to read and execute commands from the file$HOME/.psqlrc . It
could be used to set up the client or the server to taste (using the\set andSET commands).

GNU readline

psql supports the readline and history libraries for convenient line editing and retrieval. The command
history is stored in a file named.psql_history in your home directory and is reloaded when psql
starts up. Tab-completion is also supported, although the completion logic makes no claim to be an
SQL parser. When available, psql is automatically built to use these features. If for some reason you

241

psql

do not like the tab completion, you can turn if off by putting this in a file named.inputrc in your
home directory:

$if psql
set disable-completion on
$endif

(This is not a psql but a readline feature. Read its documentation for further details.)

If you have the readline library installed but psql does not seem to use it, you must make sure that
PostgreSQL’s top-levelconfigure script finds it.configure needs to find both the libraryli-
breadline.a (or a shared library equivalent)and the header filesreadline.h andhistory.h

(or readline/readline.h andreadline/history.h) in appropriate directories. If you have the
library and header files installed in an obscure place you must tellconfigure about them, for exam-
ple:

$./configure --with-includes=/opt/gnu/include --with-libs=/opt/gnu/lib ...

Then you have to recompile psql (not necessarily the entire code tree).

The GNU readline library can be obtained from the GNU project’s FTP server at ftp://ftp.gnu.org.

Examples

Note: This section only shows a few examples specific to psql. If you want to learn SQL or get
familiar with PostgreSQL, you might wish to read the Tutorial that is included in the distribution.

The first example shows how to spread a query over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text
testdb->);
CREATE

Now look at the table definition again:

testdb=> \d my_table
Table "my_table"

Attribute | Type | Modifier
-----------+---------+--------------------

first | integer | not null default 0
second | text |

At this point you decide to change the prompt to something more interesting:

testdb=> \set PROMPT1 ’%n@%m %~%R%# ’
peter@localhost testdb=>

Let’s assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
first | second

-------+--------

242

psql

1 | one
2 | two
3 | three
4 | four

(4 rows)

You can make this table look differently by using the\psetcommand:

peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------

1 one
2 two
3 three
4 four

(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep ","
Field separator is ",".
peter@localhost testdb=> \pset tuples_only
Showing only tuples.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x
Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2

243

psql

second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

Appendix

Bugs and Issues

• In some earlier life psql allowed the first argument to start directly after the (single-letter) command.
For compatibility this is still supported to some extent but I am not going to explain the details here
as this use is discouraged. But if you get strange messages, keep this in mind. For example

testdb=> \foo
Field separator is "oo",

which is perhaps not what one would expect.

• psql only works smoothly with servers of the same version. That does not mean other combinations
will fail outright, but subtle and not-so-subtle problems might come up.

• Pressing Control-C during a “copy in” (data sent to the server) doesn’t show the most ideal of
behaviors. If you get a message such as “COPY state must be terminated first”, simply reset the
connection by entering\c - - .

244

pgtclsh

Name
pgtclsh — PostgreSQL Tcl shell client

Synopsis

pgtclsh [filename [arguments ...]]

Description

pgtclsh is a Tcl shell interface extended with PostgreSQL database access functions. (Essentially, it
is tclsh with libpgtcl loaded.) Like with the regular Tcl shell, the first command line argument is
a script file, any remaining arguments are passed to the script. If no script file is named, the shell is
interactive.

A Tcl shell with Tk and PostgreSQL functions is available aspgtksh.

See Also

pgtksh, PostgreSQL Programmer’s Guide(description oflibpgtcl) , tclsh

245

pgtksh

Name
pgtksh — PostgreSQL Tcl/Tk shell client

Synopsis

pgtksh [filename [arguments ...]]

Description

pgtksh is a Tcl/Tk shell interface extended with PostgreSQL database access functions. (Essentially,
it is wish with libpgtcl loaded.) Like withwish, the regular Tcl/Tk shell, the first command line
argument is a script file, any remaining arguments are passed to the script. Special options may be
processed by the X Window System libraries instead. If no script file is named, the shell is interactive.

A plain Tcl shell with PostgreSQL functions is available aspgtclsh.

See Also

pgtclsh, PostgreSQL Programmer’s Guide(description oflibpgtcl) , tclsh , wish

246

vacuumdb

Name
vacuumdb — garbage-collect and analyze a PostgreSQL database

Synopsis

vacuumdb [connection-options ...] [[-d] dbname] [--full | -f] [--verbose | -v] [--analyze |
-z] [--table ’table [(column [,...])]’]
vacuumdb [connection-options ...] [--all | -a] [--full | -f] [--verbose | -v] [--analyze | -z]

Inputs

vacuumdb accepts the following command line arguments:

-d dbname
--dbnamedbname

Specifies the name of the database to be cleaned or analyzed.

-a
--all

Vacuum all databases.

-f
--full

Perform “full” vacuuming.

-v
--verbose

Print detailed information during processing.

-z
--analyze

Calculate statistics for use by the optimizer.

-t table [(column [,...])]
--tabletable [(column [,...])]

Clean or analyzetable only. Column names may be specified only in conjunction with the
--analyze option.

Tip: If you specify columns to vacuum, you probably have to escape the parentheses from
the shell.

vacuumdb also accepts the following command line arguments for connection parameters:

247

vacuumdb

-h host
--hosthost

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--portport

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--usernameusername

User name to connect as

-W
--password

Force password prompt.

-e
--echo

Echo the commands that vacuumdb generates and sends to the server.

-q
--quiet

Do not display a response.

Outputs

VACUUM

Everything went well.

vacuumdb: Vacuum failed.

Something went wrong. vacuumdb is only a wrapper script. SeeVACUUMandpsqlfor a detailed
discussion of error messages and potential problems.

Description

vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statis-
tics used by the PostgreSQL query optimizer.

vacuumdb is a shell script wrapper around the backend commandVACUUM via the PostgreSQL
interactive terminalpsql. There is no effective difference between vacuuming databases via this or
other methods. psql must be found by the script and a database server must be running at the targeted
host. Also, any default settings and environment variables available to psql and the libpq front-end
library do apply.

248

vacuumdb

Usage

To clean the databasetest :

$ vacuumdb test

To clean and analyze for the optimizer a database namedbigdb :

$ vacuumdb --analyze bigdb

To clean a single tablefoo in a database namedxyzzy , and analyze a single columnbar of the table
for the optimizer:

$ vacuumdb --analyze --verbose --table ’foo(bar)’ xyzzy

249

III. PostgreSQL Server
Applications

This part contains reference information for PostgreSQL server applications and support utilities.
These commands can only be run usefully on the host where the database server resides. Other utility
programs are listed inReference II,PostgreSQL Client Applications.

250

initdb

Name
initdb — create a new PostgreSQL database cluster

Synopsis

initdb --pgdata | -Ddirectory [--username | -Uusername] [--pwprompt | -W] [--encoding |
-E encoding] [-L directory] [--noclean | -n] [--debug | -d]

Description

initdb creates a new PostgreSQL database cluster (or database system). A database cluster is a col-
lection of databases that are managed by a single server instance.

Creating a database system consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any particu-
lar database), and creating thetemplate1 database. When you create a new database, everything in
thetemplate1 database is copied. It contains catalog tables filled in for things like the built-in types.

initdb must be run as the user that will own the server process, because the server needs to have access
to the files and directories thatinitdb creates. Since the server may not be run as root, you must not
run initdb as root either. (It will in fact refuse to do so.)

Although initdb will attempt to create the specified data directory, often it won’t have permission
to do so, since the parent of the desired data directory is often a root-owned directory. To set up an
arrangement like this, create an empty data directory as root, then usechown to hand over ownership
of that directory to the database user account, thensu to become the database user, and finally run
initdb as the database user.

Options

--pgdata=directory
-D directory

This option specifies the directory where the database system should be stored. This is the only
information required byinitdb , but you can avoid writing it by setting thePGDATAenvironment
variable, which can be convenient since the database server (postmaster) can find the database
directory later by the same variable.

--username=username
-U username

Selects the user name of the database superuser. This defaults to the name of the effective user
runninginitdb . It is really not important what the superuser’s name is, but one might choose to
keep the customary name “postgres”, even if the operating system user’s name is different.

251

initdb

--pwprompt
-W

Makesinitdb prompt for a password to give the database superuser. If you don’t plan on using
password authentication, this is not important. Otherwise you won’t be able to use password
authentication until you have a password set up.

--encoding=encoding
-E encoding

Selects the encoding of the template database. This will also be the default encoding of any
database you create later, unless you override it there. To use the encoding feature, you must
have enabled it at build time, at which time you also select the default for this option.

Other, less commonly used, parameters are also available:

-L directory

Specifies whereinitdb should find its input files to initialize the database system. This is nor-
mally not necessary. You will be told if you need to specify their location explicitly.

--noclean
-n

By default, wheninitdb determines that an error prevented it from completely creating the
database system, it removes any files it may have created before discovering that it can’t fin-
ish the job. This option inhibits tidying-up and is thus useful for debugging.

--debug
-d

Print debugging output from the bootstrap backend and a few other messages of lesser interest
for the general public. The bootstrap backend is the programinitdb uses to create the catalog
tables. This option generates a tremendous amount of extremely boring output.

Environment

PGDATA

Specifies the directory where the database system is to be stored; may be overridden using the
-D option.

See Also

postgres, postmaster, PostgreSQL Administrator’s Guide

252

initlocation

Name
initlocation — create a secondary PostgreSQL database storage area

Synopsis

initlocation directory

Description

initlocation creates a new PostgreSQL secondary database storage area. See the discussion under
CREATE DATABASEabout how to manage and use secondary storage areas. If the argument does
not contain a slash and is not valid as a path, it is assumed to be an environment variable, which is
referenced. See the examples at the end.

In order to use this command you must be logged in (usingsu, for example) as the database superuser.

Usage

To create a database in an alternate location, using an environment variable:

$ export PGDATA2=/opt/postgres/data

Stop and start postmaster so it sees thePGDATA2environment variable. The system must be configured
so the postmaster seesPGDATA2every time it starts. Finally:
$ initlocation PGDATA2
$ createdb -D PGDATA2 testdb

Alternatively, if you allow absolute paths you could write:

$ initlocation /opt/postgres/data
$ createdb -D /opt/postgres/data/testdb testdb

253

ipcclean

Name
ipcclean — remove shared memory and semaphores from an aborted PostgreSQL server

Synopsis

ipcclean

Description

ipcclean removes all shared memory segments and semaphore sets owned by the current user. It
is intended to be used for cleaning up after a crashed PostgreSQL server (postmaster). Note that
immediately restarting the server will also clean up shared memory and semaphores, so this command
is of little real utility.

Only the database administrator should execute this program as it can cause bizarre behavior (i.e.,
crashes) if run during multiuser execution. If this command is executed while a postmaster is running,
the shared memory and semaphores allocated by the postmaster will be deleted. This will result in a
general failure of the backend servers started by that postmaster.

Notes

This script is a hack, but in the many years since it was written, no one has come up with an equally
effective and portable solution. Since the postmaster can now clean up by itself, it is unlikely that
ipccleanwill be improved upon in the future.

The script makes assumption about the format of output of the ipcs utility which may not be true
across different operating systems. Therefore, it may not work on your particular OS.

254

pg_ctl

Name
pg_ctl — start, stop, or restart a PostgreSQL server

Synopsis

pg_ctl start [-w] [-s] [-D datadir] [-l filename] [-o options] [-p path]
pg_ctl stop [-W] [-s] [-D datadir] [-m s[mart] | f[ast] | i[mmediate]]
pg_ctl restart [-w] [-s] [-Ddatadir] [-m s[mart] | f[ast] | i[mmediate]] [-ooptions]
pg_ctl reload [-s] [-Ddatadir]
pg_ctl status [-Ddatadir]

Description

pg_ctl is a utility for starting, stopping, or restartingpostmaster, the PostgreSQL backend server,
or displaying the status of a running postmaster. Although the postmaster can be started manually,
pg_ctl encapulates tasks such as redirecting log output, properly detaching from the terminal and
process group, and it provides convenient options for controlled shutdown.

In start mode, a new postmaster is launched. The server is started in the background, the standard
input attached to/dev/null . The standard output and standard error are either appended to a log file,
if the -l option is used, or are redirected to pg_ctl’s standard output (not standard error). If no log
file is chosen, the standard output of pg_ctl should be redirected to a file or piped to another process,
for example a log rotating program, otherwise the postmaster will write its output the the controlling
terminal (from the background) and will not leave the shell’s process group.

In stop mode, the postmaster that is running in the specified data directory is shut down. Three
different shutdown methods can be selected with the-m option: “Smart” mode waits for all the clients
to disconnect. This is the default. “Fast” mode does not wait for clients to disconnect. All active
transactions are rolled back and clients are forcibly disconnected, then the database is shut down.
“Immediate” mode will abort all server processes without clean shutdown. This will lead to a recovery
run on restart.

restart mode effectively executes a stop followed by a start. This allows the changing of postmaster
command line options.

reload mode simply sends the postmaster a SIGHUP signal, causing it to reread its configuration
files (postgresql.conf , pg_hba.conf , etc.). This allows changing of configuration-file options
that do not require a complete restart to take effect.

status mode checks whether a postmaster is running and if so displays the PID and the command
line options that were used to invoke it.

Options

-D datadir

Specifies the file system location of the database files. If this is omitted, the environment variable
PGDATAis used.

255

pg_ctl

-l filename

Append the server log output tofilename . If the file does not exist, it is created. The umask is
set to 077, so access to the log file from other users is disallowed by default.

-m mode

Specifies the shutdown mode.mode may besmart , fast , or immediate , or the first letter of
one of these three.

-o options

Specifies options to be passed directly to postmaster.

The parameters are usually surrounded by single or double quotes to ensure that they are passed
through as a group.

-p path

Specifies the location of thepostmaster executable. By default the postmaster is taken from the
same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not necessary
to use this option unless you are doing something unusual and get errors that the postmaster was
not found.

-s

Only print errors, no informational messages.

-w

Wait for the start or shutdown to complete. Times out after 60 seconds. This is the default for
shutdowns.

-W

Do not wait for start or shutdown to complete. This is the default for starts and restarts.

Files

If the file postmaster.opts.default exists in the data directory, the contents of the file will be
passed as options to the postmaster, unless overridden by the-o option.

Examples

Starting the postmaster

To start up a postmaster:

$ pg_ctl start

An example of starting the postmaster, blocking until the postmaster comes up is:

$ pg_ctl -w start

For a postmaster using port 5433, and running withoutfsync , use:

256

pg_ctl

$ pg_ctl -o "-F -p 5433" start

Stopping the postmaster

$ pg_ctl stop

stops the postmaster. Using the-m switch allows one to controlhowthe backend shuts down.

Restarting the postmaster

This is almost equivalent to stopping the postmaster and starting it again except that pg_ctl saves and
reuses the command line options that were passed to the previously running instance. To restart the
postmaster in the simplest form:

$ pg_ctl restart

To restart postmaster, waiting for it to shut down and to come up:

$ pg_ctl -w restart

To restart using port 5433 and disabling fsync after restarting:

$ pg_ctl -o "-F -p 5433" restart

Showing postmaster status

Here is a sample status output from pg_ctl:

$ pg_ctl status
pg_ctl: postmaster is running (pid: 13718)

Command line was:

/usr/local/pgsql/bin/postmaster ’-D’ ’/usr/local/pgsql/data’ ’-p’ ’5433’ ’-B’ ’128’

This is the command line that would be invoked in restart mode.

Bugs

Waiting for complete start is not a well-defined operation and may fail if access control is set up so
that a local client cannot connect without manual interaction. It should be avoided.

See Also

postmaster, PostgreSQL Administrator’s Guide

257

pg_passwd

Name
pg_passwd — change a secondary PostgreSQL password file

Synopsis

pg_passwd filename

Description

pg_passwd is a tool for manipulating flat text password files. These files can control client authentica-
tion of the PostgreSQL server. More information about setting up this authentication mechanism can
be found in theAdministrator’s Guide.

The format of a text password file is one entry per line; the fields of each entry are separated by colons.
The first field is the user name, the second field is the encrypted password. Other fields are ignored (to
allow password files to be shared between applications that use similar formats). pg_passwd enables
users to interactively add entries to such a file, to alter passwords of existing entries, and to encrypt
such passwords.

Supply the name of the password file as argument to the pg_passwd command. To be used by Post-
greSQL, the file needs to be located in the server’s data directory, and the base name of the file needs
to be specified in thepg_hba.conf access control file.

$ pg_passwd /usr/local/pgsql/data/passwords
File "/usr/local/pgsql/data/passwords" does not exist. Create? (y/n): y
Username: guest
Password:

Re-enter password:

where thePassword: andRe-enter password: prompts require the same password input which
is not displayed on the terminal. Note that the password is limited to eight useful characters by re-
strictions of the standard crypt(3) library routine.

The original password file is renamed topasswords.bk .

To make use of this password file, put a line like the following inpg_hba.conf :

host mydb 133.65.96.250 255.255.255.255 password passwords

which would allow access to database mydb from host 133.65.96.250 using the passwords listed in
thepasswords file (and only to the users listed in that file).

Note: It is also useful to have entries in a password file with empty password fields. (This is differ-
ent from an empty password.) Such entries allow you to restrict users who can access the system.
These entries cannot be managed by pg_passwd, but you can edit password files manually.

258

pg_passwd

See also

PostgreSQL Administrator’s Guide

259

postgres

Name
postgres — run a PostgreSQL server in single-user mode

Synopsis

postgres [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-e] [-
E] [-f s | i | t | n | m | h] [-F] [-i] [-N] [-o filename] [-O] [-P] [-s | -t pa | pl | ex] [-Ssort-mem] [-W
seconds] [--name=value] database
postgres [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-
e] [-f s | i | t | n | m | h] [-F] [-i] [-o filename] [-O] [-p database] [-P] [-s | -t pa | pl | ex] [-S
sort-mem] [-v protocol-version] [-W seconds] [--name=value]

Description

The postgres executable is the actual PostgreSQL server process that processes queries. It is nor-
mally not called directly; instead apostmastermulti-user server is started.

The second form above is how postgres is invoked by thepostmaster(only conceptually, since both
postmaster andpostgres are in fact the same program); it should not be invoked directly this
way. The first form invokes the server directly in interactive single-user mode. The primary use for
this mode is during bootstrapping byinitdb. Sometimes it is used for debugging or disaster recovery.

When invoked in interactive mode from the shell, the user can enter queries and the results will
be printed to the screen, but in a form that is more useful for developers than end users. But note
that running a single-user backend is not truly suitable for debugging the server since no realistic
interprocess communication and locking will happen.

When running a stand-alone backend, the session user will be set to the user with id 1. This user does
not actually have to exist, so a stand-alone backend can be used to manually recover from certain
kinds of accidental damage to the system catalogs. Implicit superuser powers are granted to the user
with id 1 in stand-alone mode.

Options

When postgres is started by apostmasterthen it inherits all options set by the latter. Additionally,
postgres-specific options can be passed from the postmaster with the-o switch.

You can avoid having to type these options by setting up a configuration file. See theAdministrator’s
Guide for details. Some (safe) options can also be set from the connecting client in an application-
dependent way. For example, if the environment variablePGOPTIONSis set, then libpq-based clients
will pass that string to the server, which will interpret it as postgres command-line options.

General Purpose

The options-A , -B , -c , -d , -D , -F , and--name have the same meanings as for thepostmaster.

-e

Sets the default date style to “European”, which means that the “day before month” (rather than
month before day) rule is used to interpret ambiguous date input, and that the day is printed

260

postgres

before the month in certain date output formats. See thePostgreSQL User’s Guidefor more
information.

-o filename

Sends all debugging and error output tofilename . If the backend is running under the post-
master, this option is ignored, and the stderr inherited from the postmaster is used.

-P

Ignore system indexes while scanning/updating system tuples. TheREINDEX command for
system tables/indexes requires this option to be used.

-s

Print time information and other statistics at the end of each query. This is useful for benchmark-
ing or for use in tuning the number of buffers.

-Ssort-mem

Specifies the amount of memory to be used by internal sorts and hashes before resorting to
temporary disk files. The value is specified in kilobytes, and defaults to 512 kilobytes. Note that
for a complex query, several sorts and/or hashes might be running in parallel, and each one will
be allowed to use as much assort-mem kilobytes before it starts to put data into temporary
files.

Options for stand-alone mode

database

Specifies the name of the database to be accessed. If it is omitted it defaults to the user name.

-E

Echo all queries.

-N

Disables use of newline as a query delimiter.

Semi-internal Options

There are several other options that may be specified, used mainly for debugging purposes. These are
listed here only for the use by PostgreSQL system developers.Use of any of these options is highly
discouraged.Furthermore, any of these options may disappear or change in a future release without
notice.

-f { s | i | m | n | h }

Forbids the use of particular scan and join methods:s andi disable sequential and index scans
respectively, whilen, m, andh disable nested-loop, merge and hash joins respectively.

Note: Neither sequential scans nor nested-loop joins can be disabled completely; the -fs

and -fn options simply discourage the optimizer from using those plan types if it has any
other alternative.

261

postgres

-i

Prevents query execution, but shows the plan tree.

-O

Allows the structure of system tables to be modified. This is used by initdb.

-p database

Indicates that this server has been started by a postmaster and makes different assumptions about
buffer pool management, file descriptors, etc.

-t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option
cannot be used together with the-s option.

-v protocol

Specifies the version number of the frontend/backend protocol to be used for this particular
session.

-W seconds

As soon as this option is encountered, the process sleeps for the specified amount of seconds.
This gives developers time to attach a debugger to the backend process.

Usage

Start a stand-alone backend with a command like

postgres -D $PGDATA other-options my_database

Provide the correct path to the database area with-D , or make sure that the environment variable
PGDATAis set. Also specify the name of the particular database you want to work in.

Normally, the stand-alone backend treats newline as the command entry terminator; there is no intel-
ligence about semicolons, as there is in psql. To continue a command across multiple lines, you must
type backslash just before each newline except the last one.

But if you use the-N command line switch, then newline does not terminate command entry. The
backend will read the standard input until the end-of-file (EOF) marker, then process the input as a
single query string. Backslash-newline is not treated specially in this case.

To quit the session, type EOF (Control+D, usually). If you’ve used-N , two consecutive EOFs are
needed to exit.

Note that the stand-alone backend does not provide sophisticated line-editing features (no command
history, for example).

See Also

initdb, ipcclean, postmaster

262

postmaster

Name
postmaster — PostgreSQL multiuser database server

Synopsis

postmaster [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-
F] [-h hostname] [-i] [-k directory] [-l] [-N max-connections] [-o extra-options] [-p
port] [-S] [--name=value] [-n | -s]

Description

postmaster is the PostgreSQL multiuser database server. In order for a client application to access a
database it connects (over a network or locally) to a running postmaster. The postmaster then starts
a separate server process (“postgres”) to handle the connection. The postmaster also manages the
communication among server processes.

By default the postmaster starts in the foreground and prints log messages to the standard output. In
practical applications the postmaster should be started as a background process, perhaps at boot time.

One postmaster always manages the data from exactly one database cluster. A database cluster is a
collection of databases that is stored at a common file system location. When the postmaster starts it
needs to know the location of the database cluster files (“data area”). This is done with the-D invoca-
tion option or thePGDATAenvironment variable; there is no default. More than one postmaster process
can run on a system at one time, as long as they use different data areas and different communication
ports (see below). A data area is created withinitdb.

Options

postmaster accepts the following command line arguments. For a detailed discussion of the options
consult theAdministrator’s Guide. You can also save typing most of these options by setting up a
configuration file.

-A 0|1

Enables run-time assert checks, which is a debugging aid to detect programming mistakes. This
is only available if it was enabled during compilation. If so, the default is on.

-B nbuffers

Sets the number of shared buffers for use by the server processes. This value defaults to 64
buffers, where each buffer is 8 kB.

-c name=value

Sets a named run-time parameter. Consult theAdministrator’s Guidefor a list and descriptions.
Most of the other command line options are in fact short forms of such a parameter assignment.
-c can appear multiple times to set multiple parameters.

263

postmaster

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the
server log. The default is 0, which means no debugging. Values up to 4 are useful; higher numbers
produce no additional output.

-D datadir

Specifies the file system location of the data directory. See discussion above.

-F

Disablesfsync calls for performance improvement, at the risk of data corruption in event of a
system crash. Read the detailed documentation before using this!

-h hostname

Specifies the TCP/IP host name or address on which the postmaster is to listen for connections
from client applications. Defaults to listening on all configured addresses (including localhost).

-i

Allows clients to connect via TCP/IP (Internet domain) connections. Without this option, only
local Unix domain socket connections are accepted.

-k directory

Specifies the directory of the Unix-domain socket on which the postmaster is to listen for con-
nections from client applications. The default is normally/tmp , but can be changed at build
time.

-l

Enables secure connections using SSL. The-i option is also required. You must have compiled
with SSL enabled to use this option.

-N max-connections

Sets the maximum number of client connections that this postmaster will accept. By default, this
value is 32, but it can be set as high as your system will support. (Note that-B is required to be at
least twice-N . See theAdministrator’s Guidefor a discussion of system resource requirements
for large numbers of client connections.)

-o extra-options

The command line-style options specified inextra-options are passed to all backend server
processes started by this postmaster. Seepostgresfor possibilities. If the option string contains
any spaces, the entire string must be quoted.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which the postmaster is
to listen for connections from client applications. Defaults to the value of thePGPORTenviron-
ment variable, or ifPGPORTis not set, then defaults to the value established during compilation
(normally 5432). If you specify a port other than the default port, then all client applications must
specify the same port using either command-line options orPGPORT.

-S

Specifies that the postmaster process should start up in silent mode. That is, it will disassociate
from the user’s (controlling) terminal, start its own process group, and redirect its standard output
and standard error to/dev/null .

264

postmaster

Using this switch discards all logging output, which is probably not what you want, since it
makes it very difficult to troubleshoot problems. See below for a better way to start the postmaster
in the background.

--name=value

Sets a named run-time parameter; a shorter form of-c .

Two additional command line options are available for debugging problems that cause a backend to
die abnormally. These options control the behavior of the postmaster in this situation, andneither
option is intended for use in ordinary operation.

The ordinary strategy for this situation is to notify all other backends that they must terminate and
then reinitialize the shared memory and semaphores. This is because an errant backend could have
corrupted some shared state before terminating.

These special-case options are:

-n

postmaster will not reinitialize shared data structures. A knowledgeable system programmer can
then use a debugger to examine shared memory and semaphore state.

-s

postmaster will stop all other backend processes by sending the signalSIGSTOP, but will not
cause them to terminate. This permits system programmers to collect core dumps from all back-
end processes by hand.

Outputs

semget: No space left on device

If you see this message, you should run the ipcclean command. After doing so, try starting
postmaster again. If this still doesn’t work, you probably need to configure your kernel for shared
memory and semaphores as described in the installation notes. If you run multiple instances of
postmaster on a single host, or have a kernel with particularly small shared memory and/or
semaphore limits, you may have to reconfigure your kernel to increase its shared memory or
semaphore parameters.

Tip: You may be able to postpone reconfiguring your kernel by decreasing -B to reduce
the shared memory consumption of PostgreSQL, and/or by reducing -N to reduce the
semaphore consumption.

StreamServerPort: cannot bind to port

If you see this message, you should make certain that there is no other postmaster process already
running on the same port number. The easiest way to determine this is by using the command

$ ps ax | grep postmaster

or

$ ps -e | grep postmaster

265

postmaster

depending on your system.

If you are sure that no other postmaster processes are running and you still get this error, try
specifying a different port using the-p option. You may also get this error if you terminate the
postmaster and immediately restart it using the same port; in this case, you must simply wait a
few seconds until the operating system closes the port before trying again. Finally, you may get
this error if you specify a port number that your operating system considers to be reserved. For
example, many versions of Unix consider port numbers under 1024 to betrustedand only permit
the Unix superuser to access them.

Notes

If at all possible,do notuseSIGKILL to kill the postmaster. This will prevent postmaster from freeing
the system resources (e.g., shared memory and semaphores) that it holds before terminating.

To terminate the postmaster normally, the signalsSIGTERM, SIGINT , or SIGQUIT can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all
clients, and the third will quit immediately without proper shutdown, resulting in a recovery run
during restart.

The utility commandpg_ctlcan be used to start and shut down the postmaster safely and comfortably.

The-- options will not work on FreeBSD or OpenBSD. Use-c instead. This is a bug in the affected
operating systems; a future release of PostgreSQL will provide a workaround if this is not fixed.

Usage

To start postmaster in the background using default values, type:

$ nohup postmaster >logfile 2 >&1 </dev/null &

To start postmaster with a specific port:

$ postmaster -p 1234

This command will start up postmaster communicating through the port 1234. In order to connect to
this postmaster using psql, you would need to run it as

$ psql -p 1234

or set the environment variablePGPORT:

$ export PGPORT=1234
$ psql

Named runtime parameters can be set in either of these styles:

$ postmaster -c sort_mem=1234
$ postmaster --sort-mem=1234

266

postmaster

Either form overrides whatever setting might exist forsort_mem in postgresql.conf . Notice that
underscores in parameter names can be written as either underscore or dash on the command line.

Tip: Except for short-term experiments, it’s probably better practice to edit the setting in post-

gresql.conf than to rely on a command-line switch to set a parameter.

267

	PostgreSQL 7.2 Reference Manual
	Table of Contents
	Preface
	I. SQL Commands
	ABORT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	ALTER GROUP
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	ALTER TABLE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	ALTER USER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	ANALYZE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Compatibility
	SQL92

	BEGIN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CHECKPOINT
	Name
	Synopsis
	Description
	See Also
	Compatibility

	CLOSE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CLUSTER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	COMMENT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	COMMIT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	COPY
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	File Formats
	Text Format
	Binary Format
	File Header
	Tuples
	File Trailer

	Usage
	Compatibility
	SQL92

	CREATE AGGREGATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CREATE CONSTRAINT TRIGGER
	Name
	Synopsis
	Inputs
	Outputs

	Description

	CREATE DATABASE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CREATE FUNCTION
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	CREATE GROUP
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	CREATE INDEX
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CREATE LANGUAGE
	Name
	Synopsis
	Description
	Parameters
	Diagnostics
	Notes
	Examples
	Compatibility
	History
	See Also

	CREATE OPERATOR
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CREATE RULE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Rules and Views
	Notes

	Compatibility
	SQL92

	CREATE SEQUENCE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	CREATE TABLE
	Name
	Synopsis
	Description
	Parameters
	Diagnostics
	Notes
	Examples
	Compatibility
	Temporary Tables
	NULL Constraint
	Assertions
	Inheritance
	Object IDs

	See Also

	CREATE TABLE AS
	Name
	Synopsis
	Description
	Parameters
	Diagnostics
	Notes
	Compatibility
	History
	See Also

	CREATE TRIGGER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Examples
	Compatibility
	See Also

	CREATE TYPE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Array Types

	Notes
	Examples
	Compatibility
	See Also

	CREATE USER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	CREATE VIEW
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DECLARE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DELETE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	DROP AGGREGATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP DATABASE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Compatibility
	SQL92

	DROP FUNCTION
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Examples
	Compatibility
	See Also

	DROP GROUP
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	DROP INDEX
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP LANGUAGE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP OPERATOR
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP RULE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP SEQUENCE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP TABLE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	DROP TRIGGER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Examples
	Compatibility
	See Also

	DROP TYPE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Examples
	Compatibility
	See Also

	DROP USER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	DROP VIEW
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92
	Inputs
	Notes

	END
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	EXPLAIN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	FETCH
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	GRANT
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	SQL92

	See Also

	INSERT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	LISTEN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	LOAD
	Name
	Synopsis
	Description
	Compatibility
	See Also

	LOCK
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	MOVE
	Name
	Synopsis
	Description
	Notes

	Usage
	Compatibility
	SQL92

	NOTIFY
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	REINDEX
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	RESET
	Name
	Synopsis
	Inputs

	Description
	Diagnostics
	Examples
	Compatibility

	REVOKE
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	SQL92

	See Also

	ROLLBACK
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	SELECT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	UNION Clause
	INTERSECT Clause
	EXCEPT Clause
	LIMIT Clause

	Usage
	Compatibility
	Extensions
	SQL92
	SELECT Clause
	UNION/INTERSECT/EXCEPT Clause

	SELECT INTO
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Compatibility

	SET
	Name
	Synopsis
	Inputs

	Description
	Diagnostics
	Examples
	Compatibility
	SQL92

	SET CONSTRAINTS
	Name
	Synopsis
	Description
	Compatibility
	SQL92, SQL99

	SET SESSION AUTHORIZATION
	Name
	Synopsis
	Description
	Examples
	Compatibility

	SET TRANSACTION
	Name
	Synopsis
	Description
	Notes
	Compatibility
	SQL92, SQL99

	SHOW
	Name
	Synopsis
	Inputs

	Description
	Diagnostics
	Examples
	Compatibility

	TRUNCATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	UNLISTEN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	UPDATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92

	VACUUM
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92

	II. PostgreSQL Client Applications
	createdb
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	createlang
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Usage

	createuser
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	dropdb
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	droplang
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Usage

	dropuser
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	ecpg
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Preprocessing for Compilation
	Compiling and Linking

	Grammar
	Libraries
	Variable Declaration
	Error Handling
	Connecting to the Database Server
	Queries

	Notes

	pgaccess
	Name
	Synopsis
	Options

	Description
	Notes

	pgconfig
	Name
	Synopsis
	Description
	Options
	Notes
	History
	See Also

	pgdump
	Name
	Synopsis
	Description
	Options

	Diagnostics
	Notes
	Examples
	History
	See Also

	pgdumpall
	Name
	Synopsis
	Description
	Options

	Examples
	See Also

	pgrestore
	Name
	Synopsis
	Description
	Options

	Diagnostics
	Notes
	Examples
	History
	See Also

	psql
	Name
	Synopsis
	Summary

	Description
	Connecting To A Database
	Entering Queries

	psql MetaCommands
	Commandline Options
	Advanced features
	Variables
	SQL Interpolation
	Prompting
	Miscellaneous
	GNU readline

	Examples
	Appendix
	Bugs and Issues

	pgtclsh
	Name
	Synopsis
	Description
	See Also

	pgtksh
	Name
	Synopsis
	Description
	See Also

	vacuumdb
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	III. PostgreSQL Server Applications
	initdb
	Name
	Synopsis
	Description
	Options

	Environment
	See Also

	initlocation
	Name
	Synopsis
	Description
	Usage

	ipcclean
	Name
	Synopsis
	Description
	Notes

	pgctl
	Name
	Synopsis
	Description
	Options
	Files

	Examples
	Starting the postmaster
	Stopping the postmaster
	Restarting the postmaster
	Showing postmaster status

	Bugs
	See Also

	pgpasswd
	Name
	Synopsis
	Description
	See also

	postgres
	Name
	Synopsis
	Description
	Options
	General Purpose
	Options for standalone mode
	Semiinternal Options

	Usage
	See Also

	postmaster
	Name
	Synopsis
	Description
	Options
	Outputs

	Notes
	Usage

