
PostgreSQL 7.1 Programmer’s Guide

The PostgreSQL Global Development Group

PostgreSQL 7.1 Programmer’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by PostgreSQL Global Development Group

Legal Notice

PostgreSQL

 is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the University of

California below.

Postgres95

 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement

is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED

HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE

MAINTAINANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

i

Table of Contents

Table of Contents . i
List of Tables . ii
List of Figures . iii
List of Examples . iv
Preface . i

1. What is PostgreSQL? . i
2. A Short History of Postgres . i
3. Documentation Resources . iii
4. Terminology and Notation . v
5. Bug Reporting Guidelines . v
6. Y2K Statement . viii

Organization . x
Chapter 1. libpq - C Library . 1

1.1. Database Connection Functions . 1
1.2. Query Execution Functions . 7
1.3. Asynchronous Query Processing . 11
1.4. Fast Path . 14
1.5. Asynchronous Notification. 14
1.6. Functions Associated with the COPY Command. 15
1.7. libpq Tracing Functions . 17
1.8. libpq Control Functions . 17
1.9. Environment Variables . 18
1.10. Threading Behavior . 19
1.11. Example Programs . 19

Chapter 2. Large Objects . 28
2.1. Historical Note . 28
2.2. Implementation Features . 28
2.3. Interfaces . 28
2.4. Built in registered functions. 30
2.5. Accessing Large Objects from LIBPQ . 31
2.6. Sample Program . 31

Chapter 3. libpq++ - C++ Binding Library. 37
3.1. Control and Initialization. 37
3.2. libpq++ Classes . 38
3.3. Database Connection Functions . 38
3.4. Query Execution Functions . 39
3.5. Asynchronous Notification. 43
3.6. Functions Associated with the COPY Command. 43

Chapter 4. pgtcl - TCL Binding Library. 45
4.1. Commands. 45
4.2. Examples . 46
4.3. pgtcl Command Reference Information . 47
pg_connect . 47
pg_disconnect . 48
pg_conndefaults . 49
pg_exec . 50
pg_result . 51
pg_select . 53

ii

pg_listen . 54
pg_lo_creat . 55
pg_lo_open . 56
pg_lo_close . 57
pg_lo_read . 57
pg_lo_write . 59
pg_lo_lseek . 60
pg_lo_tell. 61
pg_lo_unlink. 61
pg_lo_import . 62
pg_lo_export. 63

Chapter 5. libpgeasy - Simplified C Library. 64
Chapter 6. ecpg - Embedded SQL in C . 65

6.1. Why Embedded SQL? . 65
6.2. The Concept . 65
6.3. How To Use ecpg. 65
6.4. Limitations. 68
6.5. Porting From Other RDBMS Packages . 69
6.6. For the Developer . 69

Chapter 7. ODBC Interface . 76
7.1. Background . 76
7.2. Installation. 76
7.3. Configuration Files . 77
7.4. Windows Applications . 78
7.5. ApplixWare . 79

Chapter 8. JDBC Interface. 83
8.1. Setting up the JDBC Driver . 83
8.2. Using the Driver . 84
8.3. Issuing a Query and Processing the Result. 86
8.4. Performing Updates . 87
8.5. Using Large Objects . 87
8.6. PostgreSQL Extensions to the JDBC API . 88
8.7. Using the driver in a multi-threaded or a servlet environment . 121
8.8. Further Reading . 122

Chapter 9. PyGreSQL - Python Interface. 123
9.1. The pg Module . 123
9.2. pg Module Functions . 124
connect . 125
get_defhost . 127
set_defhost . 128
get_defport . 129
set_defport . 130
get_defopt . 131
set_defopt . 132
get_deftty . 133
set_deftty. 134
get_defbase . 135
set_defbase . 136
9.3. Connection object: pgobject. 136
query . 138
reset . 139
close. 140
fileno . 141
getnotify . 142

iii

inserttable . 143
putline . 144
getline . 145
endcopy . 146
locreate . 147
getlo . 148
loimport . 149
9.4. Database wrapper class: DB . 149
pkey. 150
get_databases . 151
get_tables . 151
get_attnames. 152
get . 153
insert . 154
update . 155
clear. 156
delete . 157
9.5. Query result object: pgqueryobject. 158
getresult . 158
dictresult . 159
listfields . 160
fieldname . 161
fieldnum . 162
ntuples. 163
9.6. Large Object: pglarge . 163
open. 165
close. 166
read . 167
write . 168
seek . 169
tell . 170
unlink . 171
size. 172
export . 173
9.7. DB-API Interface . 173

Chapter 10. Lisp Programming Interface. 174
Chapter 11. Architecture . 176

11.1. Postgres Architectural Concepts . 176
Chapter 12. Extending SQL: An Overview . 179

12.1. How Extensibility Works . 179
12.2. The Postgres Type System . 179
12.3. About the Postgres System Catalogs . 180

Chapter 13. Extending SQL: Functions . 183
13.1. Query Language (SQL) Functions . 183
13.2. Procedural Language Functions . 187
13.3. Internal Functions. 187
13.4. Compiled (C) Language Functions . 187
13.5. Function Overloading. 200

Chapter 14. Extending SQL: Types. 202
14.1. User-Defined Types. 202

Chapter 15. Extending SQL: Operators . 205
15.1. Operator Optimization Information . 206

Chapter 16. Extending SQL: Aggregates . 211
Chapter 17. The Postgres Rule System . 213

iv

17.1. What is a Querytree? . 213
17.2. Views and the Rule System . 215
17.3. Rules on INSERT, UPDATE and DELETE. 223
17.4. Rules and Permissions . 233
17.5. Rules versus Triggers . 234

Chapter 18. Interfacing Extensions To Indices . 238
Chapter 19. Index Cost Estimation Functions . 244
Chapter 20. GiST Indices . 247
Chapter 21. Triggers . 249

21.1. Trigger Creation . 249
21.2. Interaction with the Trigger Manager . 250
21.3. Visibility of Data Changes . 253
21.4. Examples . 253

Chapter 22. Server Programming Interface . 257
22.1. Interface Functions . 258
SPI_connect . 258
SPI_finish . 259
SPI_exec . 260
SPI_prepare . 262
SPI_saveplan . 263
SPI_execp . 264
22.2. Interface Support Functions . 265
SPI_copytuple . 266
SPI_modifytuple . 266
SPI_fnumber . 268
SPI_fname . 269
SPI_getvalue. 270
SPI_getbinval . 271
SPI_gettype. 272
SPI_gettypeid . 273
SPI_getrelname . 274
SPI_palloc. 275
SPI_repalloc . 276
SPI_pfree . 277
22.3. Memory Management . 277
22.4. Visibility of Data Changes . 278
22.5. Examples . 278

Chapter 23. Procedural Languages . 283
23.1. Installing Procedural Languages. 283

Chapter 24. PL/pgSQL - SQL Procedural Language . 285
24.1. Overview . 285
24.2. Description. 287
24.3. Trigger Procedures . 301
24.4. Examples . 303
24.5. Porting from Oracle PL/SQL . 304

Chapter 25. PL/Tcl - TCL Procedural Language. 316
25.1. Overview . 316
25.2. Description. 316

Chapter 26. PL/Perl - Perl Procedural Language . 322
26.1. Building and Installing . 322
26.2. Using PL/Perl . 323

Bibliography . 325
SQL Reference Books . 325
PostgreSQL-Specific Documentation. 325

v

Proceedings and Articles . 326

vi

List of Tables
4-1. pgtcl Commands...45
12-1. Postgres System Catalogs..180
13-1. Equivalent C Types for Built-In Postgres Types...188
18-1. Index Schema ..238
18-2. B-tree Strategies ..239
24-1. Single Quotes Escaping Chart ...304

vii

List of Figures
11-1. How a connection is established ...177
12-1. The major Postgres system catalogs..181

viii

List of Examples
1-1. libpq Example Program 1..19
1-2. libpq Example Program 2..22
1-3. libpq Example Program 3..24
8-1. Processing a Simple Query in JDCB...86
8-2. Using the JDBC Large Object Interface..88
24-1. A PL/pgSQL Trigger Procedure Example...302
24-2. A Simple PL/pgSQL Function to Increment an Integer ..303
24-3. A Simple PL/pgSQL Function to Concatenate Text ...303
24-4. A PL/pgSQL Function on Composite Type ..303
24-5. A Simple Function ..305
24-6. A Function that Creates Another Function..306
24-7. A Procedure with a lot of String Manipulation and OUT Parameters...308

i

Preface

1. What is PostgreSQL?
 PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2 (http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html), developed at the University
of California at Berkeley Computer Science Department. The POSTGRES project, led by Professor
Michael Stonebraker, was sponsored by the Defense Advanced Research Projects Agency (DARPA),
the Army Research Office (ARO), the National Science Foundation (NSF), and ESL, Inc.

 PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

 POSTGRES pioneered many of the object-relational concepts now becoming available in some
commercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data processing
applications. The relational model successfully replaced previous models in part because of its �Spartan
simplicity�. However, as mentioned, this simplicity often makes the implementation of certain
applications very difficult. Postgres offers substantial additional power by incorporating the following
additional concepts in such a way that users can easily extend the system:

inheritance
data types
functions

 Other features provide additional power and flexibility:

constraints
triggers
rules
transaction integrity

 These features put Postgres into the category of databases referred to as object-relational. Note that this
is distinct from those referred to as object-oriented, which in general are not as well suited to supporting
the traditional relational database languages. So, although Postgres has some object-oriented features, it
is firmly in the relational database world. In fact, some commercial databases have recently incorporated
features pioneered by Postgres.

2. A Short History of Postgres
 The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the Postgres package written at the University of California at Berkeley.
With over a decade of development behind it, PostgreSQL is the most advanced open-source database

Preface

ii

available anywhere, offering multi-version concurrency control, supporting almost all SQL constructs
(including subselects, transactions, and user-defined types and functions), and having a wide range of
language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley Postgres Project

 Implementation of the Postgres DBMS began in 1986. The initial concepts for the system were
presented in The Design of Postgres and the definition of the initial data model appeared in The Postgres
Data Model. The design of the rule system at that time was described in The Design of the Postgres
Rules System. The rationale and architecture of the storage manager were detailed in The Postgres
Storage System.

 Postgres has undergone several major releases since then. The first "demoware" system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. We released Version 1,
described in The Implementation of Postgres, to a few external users in June 1989. In response to a
critique of the first rule system (A Commentary on the Postgres Rules System), the rule system was
redesigned (On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, releases until Postgres95 (see below) focused on portability and reliability.

 Postgres has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
Postgres has also been used as an educational tool at several universities. Finally, Illustra Information
Technologies (http://www.illustra.com/) (since merged into Informix (http://www.informix.com/))
picked up the code and commercialized it. Postgres became the primary data manager for the Sequoia
2000 (http://www.sdsc.edu/0/Parts_Collabs/S2K/s2k_home.html) scientific computing project in late
1992.

 The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the project officially
ended with Version 4.2.

2.2. Postgres95

 In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to Postgres. Postgres95 was
subsequently released to the Web to find its own way in the world as an open-source descendant of the
original Postgres Berkeley code.

 Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 v1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to Postgres v4.2. Apart from bug fixes, these were the major enhancements:

 The query language Postquel was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. The libpq interface remained available for C programs.

Preface

iii

 In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU readline.

 A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface tcl programs with the Postgres95 backend.

 The large object interface was overhauled. The Inversion large objects were the only mechanism for
storing large objects. (The Inversion file system was removed.)

 The instance-level rule system was removed. Rules were still available as rewrite rules.

 A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code.

 GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched gcc (data alignment of doubles was fixed).

2.3. PostgreSQL

 By 1996, it became clear that the name "Postgres95" would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original Postgres and the more recent versions
with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the numbers
back into the sequence originally begun by the Postgres Project.

 The emphasis during development of Postgres95 was on identifying and understanding existing
problems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

 Major enhancements in PostgreSQL include:

 Table-level locking has been replaced with multi-version concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

 Important backend features, including subselects, defaults, constraints, and triggers, have been
implemented.

 Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

 Built-in types have been improved, including new wide-range date/time types and additional
geometric type support.

 Overall backend code speed has been increased by approximately 20-40%, and backend start-up time
has decreased 80% since version 6.0 was released.

3. Documentation Resources
 This manual set is organized into several parts:

Tutorial

 An introduction for new users. Does not cover advanced features.

Preface

iv

User’s Guide

 Documents the SQL query language environment, including data types and functions.

Programmer’s Guide

 Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

 Installation and server management information

Reference Manual

 Reference pages for SQL command syntax and client and server programs

Developer’s Guide

 Information for Postgres developers. This is intended for those who are contributing to the
Postgres project; application development information should appear in the Programmer’s Guide.

 In addition to this manual set, there are other resources to help you with Postgres installation and use:

man pages

 The Reference Manual’s pages in the traditional Unix man format.

FAQs

 Frequently Asked Questions (FAQ) lists document both general issues and some platform-specific
issues.

READMEs

 README files are available for some contributed packages.

Web Site

 The PostgreSQL web site (http://www.postgresql.org) carries details on the latest release,
upcoming features, and other information to make your work or play with PostgreSQL more
productive.

Mailing Lists

 The <pgsql-general@postgresql.org>
(archive (http://www.postgresql.org/mhonarc/pgsql-general/)) mailing list is a good place to have
user questions answered. Other mailing lists are available; consult the User’s Lounge
(http://www.postgresql.org/users-lounge/) section of the PostgreSQL web site for details.

Yourself!

 PostgreSQL is an open source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you

Preface

v

learn something which is not in the documentation, write it up and contribute it. If you add features
to the code, contribute it.

 Even those without a lot of experience can provide corrections and minor changes in the
documentation, and that is a good way to start. The <pgsql-docs@postgresql.org> (archive
(http://www.postgresql.org/mhonarc/pgsql-docs/)) mailing list is the place to get going.

4. Terminology and Notation
 The terms �Postgres� and �PostgreSQL� will be used interchangeably to refer to the software that
accompanies this documentation.

 An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

 /usr/local/pgsql/ is generally used as the root directory of the installation and
/usr/local/pgsql/data as the directory with the database files. These directories may vary on your
site, details can be derived in the Administrator’s Guide.

 In a command synopsis, brackets ("[" and "]") indicate an optional phrase or keyword. Anything in
braces ("{" and "}") and containing vertical bars ("|") indicates that you must choose one.

 Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceeded with a dollar sign (�$�). Commands executed from particular user
accounts such as root or postgres are specially flagged and explained. SQL commands may be preceeded
with �=>� or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistant throughout the
documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org>.

5. Bug Reporting Guidelines
 When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

 The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

 We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more
important things on the agenda. If you need help immediately, consider obtaining a commercial support
contract.

Preface

vi

5.1. Identifying Bugs

 Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

 A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a �disk full� message, since you have to fix that
yourself.)

 A program produces the wrong output for any given input.

 A program refuses to accept valid input (as defined in the documentation).

 A program accepts invalid input without a notice or error message. Keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

 PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

 Here �program� refers to any executable, not only the backend server.

 Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to SQL is not a bug unless
compliance for the specific feature is explicitly claimed.

 Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If
you cannot decode the information on the TODO list, report your problem. The least we can do is make
the TODO list clearer.

5.2. What to report

 The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what "it seemed to do", or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we
are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is
relatively straightforward (you can probably copy and paste them from the screen) but all too often
important details are left out because someone thought it does not matter or the report would be
understood anyway.

 The following items should be contained in every bug report:

 The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create table
and insert statements, if the output should depend on the data in the tables. We do not have the time to
reverse-engineer your database schema, and if we are supposed to make up our own data we would
probably miss the problem. The best format for a test case for query-language related problems is a
file that can be run through the psql frontend that shows the problem. (Be sure to not have anything in
your ~/.psqlrc start-up file.) An easy start at this file is to use pg_dump to dump out the table
declarations and data needed to set the scene, then add the problem query. You are encouraged to

Preface

vii

minimize the size of your example, but this is not absolutely necessary. If the bug is reproduceable,
we will find it either way.

 If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for "large files" or
"mid-size databases", etc. since this information is too inexact to be of use.

 The output you got. Please do not say that it �didn’t work� or �crashed�. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
the terminal, if possible.

Note: In case of fatal errors, the error message provided by the client might not contain all the
information available. In that case, also look at the log output of the database server. If you do
not keep your server output, this would be a good time to start doing so.

 The output you expected is very important to state. If you just write "This command gives me that
output." or "This is not what I expected.", we might run it ourselves, scan the output, and think it
looks okay and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that "This is not what
SQL says/Oracle does." Digging out the correct behavior from SQL is not a fun undertaking, nor do
we all know how all the other relational databases out there behave. (If your problem is a program
crash you can obviously omit this item.)

 Any command line options and other start-up options, including concerned environment variables or
configuration files that you changed from the default. Again, be exact. If you are using a
pre-packaged distribution that starts the database server at boot time, you should try to find out how
that is done.

 Anything you did at all differently from the installation instructions.

 The PostgreSQL version. You can run the command SELECT version(); to find out the version of
the server you are connected to. Most executable programs also support a --version option; at least
postmaster --version and psql --version should work. If the function or the options do not
exist then your version is probably old enough. You can also look into the README file in the source
directory or at the name of your distribution file or package name. If you run a pre-packaged version,
such as RPMs, say so, including any subversion the package may have. If you are talking about a
CVS snapshot, mention that, including its date and time.

 If your version is older than 7.1 we will almost certainly tell you to upgrade. There are tons of bug
fixes in each new release, that is why we make new releases.

 Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly "Debian" contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

 Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it.

Preface

viii

 Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

 When writing a bug report, please choose non-confusing terminology. The software package as such is
called "PostgreSQL", sometimes "Postgres" for short. (Sometimes the abbreviation "Pgsql" is used but
don’t do that.) When you are specifically talking about the backend server, mention that, do not just say
"Postgres crashes". The interactive frontend is called "psql" and is for all intends and purposes
completely separate from the backend.

5.3. Where to report bugs

 In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org>. You
are invited to find a descriptive subject for your email message, perhaps parts of the error message.

 Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org> or
<pgsql-general@postgresql.org>. These mailing lists are for answering user questions and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

 Also, please do not send reports to the developers’ mailing list <pgsql-hackers@postgresql.org>.
This list is for discussing the development of PostgreSQL and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report on it, if the bug needs
more review.

 If you have a problem with the documentation, send email to the documentation mailing list
<pgsql-docs@postgresql.org>. Mention the document, chapter, and sections in your problem
report.

 If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. If you
simply want to send mail but do not want to receive list traffic, you can subscribe and set your
subscription option to nomail. For more information send mail to <majordomo@postgresql.org>
with the single word help in the body of the message.

6. Y2K Statement
Author: Written by Thomas Lockhart (<lockhart@alumni.caltech.edu>) on 1998-10-22. Updated
2000-03-31.

 The PostgreSQL Global Development Group provides the PostgreSQL software code tree as a public
service, without warranty and without liability for its behavior or performance. However, at the time of
writing:

 The author of this statement, a volunteer on the Postgres support team since November, 1996, is not
aware of any problems in the Postgres code base related to time transitions around Jan 1, 2000 (Y2K).

Preface

ix

 The author of this statement is not aware of any reports of Y2K problems uncovered in regression
testing or in other field use of recent or current versions of Postgres. We might have expected to hear
about problems if they existed, given the installed base and the active participation of users on the
support mailing lists.

 To the best of the author’s knowledge, the assumptions Postgres makes about dates specified with a
two-digit year are documented in the current User’s Guide in the chapter on data types. For two-digit
years, the significant transition year is 1970, not 2000; e.g. "70-01-01" is interpreted as 1970-01-01,
whereas "69-01-01" is interpreted as 2069-01-01.

 Any Y2K problems in the underlying OS related to obtaining "the current time" may propagate into
apparent Y2K problems in Postgres.

 Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl Institute
(http://language.perl.com/news/y2k.html) for further discussion of Y2K issues, particularly as it relates
to open source, no fee software.

x

Organization
 The first part of this manual is the description of the client-side programming interfaces and support
libraries for various languages. The second part explains the PostgreSQL approach to extensibility and
describe how users can extend PostgreSQL by adding user-defined types, operators, aggregates, and
both query language and programming language functions. After a discussion of the PostgreSQL rule
system, we discuss the trigger and SPI interfaces. The third part documents the procedural languages
available in the PostgreSQL distribution.

 Proficiency with Unix and C programming is assumed.

I. Client Interfaces

1

Chapter 1. libpq - C Library
 libpq is the C application programmer’s interface to Postgres. libpq is a set of library routines that
allow client programs to pass queries to the Postgres backend server and to receive the results of these
queries. libpq is also the underlying engine for several other Postgres application interfaces, including
libpq++ (C++), libpgtcl (Tcl), Perl, and ecpg. So some aspects of libpq’s behavior will be
important to you if you use one of those packages.

 Three short programs are included at the end of this section to show how to write programs that use
libpq. There are several complete examples of libpq applications in the following directories:

../src/test/regress

../src/test/examples

../src/bin/psql

 Frontend programs that use libpq must include the header file libpq-fe.h and must link with the
libpq library.

1.1. Database Connection Functions
 The following routines deal with making a connection to a Postgres backend server. The application
program can have several backend connections open at one time. (One reason to do that is to access
more than one database.) Each connection is represented by a PGconn object which is obtained from
PQconnectdb or PQsetdbLogin. Note that these functions will always return a non-null object
pointer, unless perhaps there is too little memory even to allocate the PGconn object. The PQstatus
function should be called to check whether a connection was successfully made before queries are sent
via the connection object.

 PQconnectdb Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo)

 This routine opens a new database connection using the parameters taken from the string conninfo.
Unlike PQsetdbLogin() below, the parameter set can be extended without changing the function
signature, so use either of this routine or the non-blocking analogues PQconnectStart / PQconnectPoll
is prefered for application programming. The passed string can be empty to use all default parameters,
or it can contain one or more parameter settings separated by whitespace.

 Each parameter setting is in the form keyword = value. (To write a null value or a value
containing spaces, surround it with single quotes, e.g., keyword = ’a value’. Single quotes within
the value must be written as \’. Spaces around the equal sign are optional.) The currently recognized
parameter keywords are:

Chapter 1. libpq - C Library

2

host

 Name of host to connect to. If this begins with a slash, it specifies Unix-domain communication
rather than TCP/IP communication; the value is the name of the directory in which the socket
file is stored. The default is to connect to a Unix-domain socket in /tmp.

hostaddr

 IP address of host to connect to. This should be in standard numbers-and-dots form, as used by
the BSD functions inet_aton et al. If a non-zero-length string is specified, TCP/IP
communication is used.

 Using hostaddr instead of host allows the application to avoid a host name look-up, which may
be important in applications with time constraints. However, Kerberos authentication requires
the host name. The following therefore applies. If host is specified without hostaddr, a hostname
look-up is forced. If hostaddr is specified without host, the value for hostaddr gives the remote
address; if Kerberos is used, this causes a reverse name query. If both host and hostaddr are
specified, the value for hostaddr gives the remote address; the value for host is ignored, unless
Kerberos is used, in which case that value is used for Kerberos authentication. Note that
authentication is likely to fail if libpq is passed a host name that is not the name of the machine
at hostaddr.

 Without either a host name or host address, libpq will connect using a local Unix domain socket.

port

 Port number to connect to at the server host, or socket filename extension for Unix-domain
connections.

dbname

 The database name.

user

 User name to connect as.

password

 Password to be used if the server demands password authentication.

options

 Trace/debug options to be sent to the server.

tty

 A file or tty for optional debug output from the backend.

requiressl

 Set to ’1’ to require SSL connection to the backend. Libpq will then refuse to connect if the
server does not support SSL. Set to ’0’ (default) to negotiate with server.

Chapter 1. libpq - C Library

3

 If any parameter is unspecified, then the corresponding environment variable (see "Environment
Variables" section) is checked. If the environment variable is not set either, then hardwired defaults
are used. The return value is a pointer to an abstract struct representing the connection to the backend.

 PQsetdbLogin Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
 const char *pgport,
 const char *pgoptions,
 const char *pgtty,
 const char *dbName,
 const char *login,
 const char *pwd)

 This is the predecessor of PQconnectdb with a fixed number of parameters but the same
functionality.

 PQsetdb Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
 char *pgport,
 char *pgoptions,
 char *pgtty,
 char *dbName)

 This is a macro that calls PQsetdbLogin() with null pointers for the login and pwd parameters. It is
provided primarily for backward compatibility with old programs.

 PQconnectStart, PQconnectPoll Make a connection to the database server in a non-blocking
manner.

PGconn *PQconnectStart(const char *conninfo)

PostgresPollingStatusType PQconnectPoll(PGconn *conn)

 These two routines are used to open a connection to a database server such that your application’s
thread of execution is not blocked on remote I/O whilst doing so.

 The database connection is made using the parameters taken from the string conninfo, passed to
PQconnectStart. This string is in the same format as described above for PQconnectdb.

 Neither PQconnectStart nor PQconnectPoll will block, as long as a number of restrictions are met:

 The hostaddr and host parameters are used appropriately to ensure that name and reverse name
queries are not made. See the documentation of these parameters under PQconnectdb above for
details.

 If you call PQtrace, ensure that the stream object into which you trace will not block.

 You ensure for yourself that the socket is in the appropriate state before calling PQconnectPoll, as
described below.

 To begin, call conn=PQconnectStart("<connection_info_string>"). If conn is NULL, then
libpq has been unable to allocate a new PGconn structure. Otherwise, a valid PGconn pointer is
returned (though not yet representing a valid connection to the database). On return from
PQconnectStart, call status=PQstatus(conn). If status equals CONNECTION_BAD, PQconnectStart
has failed.

Chapter 1. libpq - C Library

4

 If PQconnectStart succeeds, the next stage is to poll libpq so that it may proceed with the connection
sequence. Loop thus: Consider a connection ’inactive’ by default. If PQconnectPoll last returned
PGRES_POLLING_ACTIVE, consider it ’active’ instead. If PQconnectPoll(conn) last returned
PGRES_POLLING_READING, perform a select for reading on PQsocket(conn). If it last returned
PGRES_POLLING_WRITING, perform a select for writing on PQsocket(conn). If you have yet to
call PQconnectPoll, i.e. after the call to PQconnectStart, behave as if it last returned
PGRES_POLLING_WRITING. If the select shows that the socket is ready, consider it ’active’. If it
has been decided that this connection is ’active’, call PQconnectPoll(conn) again. If this call returns
PGRES_POLLING_FAILED, the connection procedure has failed. If this call returns
PGRES_POLLING_OK, the connection has been successfully made.

 Note that the use of select() to ensure that the socket is ready is merely a (likely) example; those with
other facilities available, such as a poll() call, may of course use that instead.

 At any time during connection, the status of the connection may be checked, by calling PQstatus. If
this is CONNECTION_BAD, then the connection procedure has failed; if this is
CONNECTION_OK, then the connection is ready. Either of these states should be equally detectable
from the return value of PQconnectPoll, as above. Other states may be shown during (and only
during) an asynchronous connection procedure. These indicate the current stage of the connection
procedure, and may be useful to provide feedback to the user for example. These statuses may
include:

 CONNECTION_STARTED: Waiting for connection to be made.

 CONNECTION_MADE: Connection OK; waiting to send.

 CONNECTION_AWAITING_RESPONSE: Waiting for a response from the postmaster.

 CONNECTION_AUTH_OK: Received authentication; waiting for backend start-up.

 CONNECTION_SETENV: Negotiating environment.

 Note that, although these constants will remain (in order to maintain compatibility) an application
should never rely upon these appearing in a particular order, or at all, or on the status always being
one of these documented values. An application may do something like this:

 switch(PQstatus(conn))
 {
 case CONNECTION_STARTED:
 feedback = "Connecting...";
 break;

 case CONNECTION_MADE:
 feedback = "Connected to server...";
 break;
.
.
.
 default:
 feedback = "Connecting...";
 }

Chapter 1. libpq - C Library

5

 Note that if PQconnectStart returns a non-NULL pointer, you must call PQfinish when you are
finished with it, in order to dispose of the structure and any associated memory blocks. This must be
done even if a call to PQconnectStart or PQconnectPoll failed.

 PQconnectPoll will currently block if libpq is compiled with USE_SSL defined. This restriction may
be removed in the future.

 PQconnectPoll will currently block under Windows, unless libpq is compiled with
WIN32_NON_BLOCKING_CONNECTIONS defined. This code has not yet been tested under
Windows, and so it is currently off by default. This may be changed in the future.

 These functions leave the socket in a non-blocking state as if PQsetnonblocking had been called.

 PQconndefaults Returns the default connection options.

PQconninfoOption *PQconndefaults(void)

struct PQconninfoOption
{
 char *keyword; /* The keyword of the option */
 char *envvar; /* Fallback environment variable name */
 char *compiled; /* Fallback compiled in default value */
 char *val; /* Option’s current value, or NULL */
 char *label; /* Label for field in connect dialog */
 char *dispchar; /* Character to display for this field
 in a connect dialog. Values are:
 "" Display entered value as is
 "*" Password field - hide value
 "D" Debug option - don’t show by default */
 int dispsize; /* Field size in characters for dialog */
}

 Returns a connection options array. This may be used to determine all possible PQconnectdb options
and their current default values. The return value points to an array of PQconninfoOption structs,
which ends with an entry having a NULL keyword pointer. Note that the default values ("val" fields)
will depend on environment variables and other context. Callers must treat the connection options
data as read-only.

 After processing the options array, free it by passing it to PQconninfoFree(). If this is not done, a
small amount of memory is leaked for each call to PQconndefaults().

 In Postgres versions before 7.0, PQconndefaults() returned a pointer to a static array, rather than a
dynamically allocated array. That wasn’t thread-safe, so the behavior has been changed.

 PQfinish Close the connection to the backend. Also frees memory used by the PGconn object.

void PQfinish(PGconn *conn)

 Note that even if the backend connection attempt fails (as indicated by PQstatus), the application
should call PQfinish to free the memory used by the PGconn object. The PGconn pointer should not
be used after PQfinish has been called.

 PQreset Reset the communication port with the backend.

void PQreset(PGconn *conn)

Chapter 1. libpq - C Library

6

 This function will close the connection to the backend and attempt to reestablish a new connection to
the same postmaster, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost.

 PQresetStart PQresetPoll Reset the communication port with the backend, in a non-blocking
manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

 These functions will close the connection to the backend and attempt to reestablish a new connection
to the same postmaster, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost. They differ from PQreset (above) in that they act in a
non-blocking manner. These functions suffer from the same restrictions as PQconnectStart and
PQconnectPoll.

 Call PQresetStart. If it returns 0, the reset has failed. If it returns 1, poll the reset using PQresetPoll in
exactly the same way as you would create the connection using PQconnectPoll.

libpq application programmers should be careful to maintain the PGconn abstraction. Use the accessor
functions below to get at the contents of PGconn. Avoid directly referencing the fields of the PGconn
structure because they are subject to change in the future. (Beginning in Postgres release 6.4, the
definition of struct PGconn is not even provided in libpq-fe.h. If you have old code that accesses
PGconn fields directly, you can keep using it by including libpq-int.h too, but you are encouraged to
fix the code soon.)

PQdb Returns the database name of the connection.

char *PQdb(const PGconn *conn)

PQdb and the next several functions return the values established at connection. These values are
fixed for the life of the PGconn object.

PQuser Returns the user name of the connection.

char *PQuser(const PGconn *conn)

PQpass Returns the password of the connection.

char *PQpass(const PGconn *conn)

PQhost Returns the server host name of the connection.

char *PQhost(const PGconn *conn)

PQport Returns the port of the connection.

char *PQport(const PGconn *conn)

PQtty Returns the debug tty of the connection.

char *PQtty(const PGconn *conn)

PQoptions Returns the backend options used in the connection.

char *PQoptions(const PGconn *conn)

PQstatus Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn)

Chapter 1. libpq - C Library

7

 The status can be one of a number of values. However, only two of these are seen outside of an
asynchronous connection procedure - CONNECTION_OK or CONNECTION_BAD. A good connection to
the database has the status CONNECTION_OK. A failed connection attempt is signaled by status
CONNECTION_BAD. Ordinarily, an OK status will remain so until PQfinish, but a communications
failure might result in the status changing to CONNECTION_BAD prematurely. In that case the
application could try to recover by calling PQreset.

 See the entry for PQconnectStart and PQconnectPoll with regards to other status codes that might be
seen.

 PQerrorMessage Returns the error message most recently generated by an operation on the
connection.

char *PQerrorMessage(const PGconn* conn);

 Nearly all libpq functions will set PQerrorMessage if they fail. Note that by libpq convention, a
non-empty PQerrorMessage will include a trailing newline.

 PQbackendPID Returns the process ID of the backend server handling this connection.

int PQbackendPID(const PGconn *conn);

 The backend PID is useful for debugging purposes and for comparison to NOTIFY messages (which
include the PID of the notifying backend). Note that the PID belongs to a process executing on the
database server host, not the local host!

 PQgetssl Returns the SSL structure used in the connection, or NULL if SSL is not in use.

SSL *PQgetssl(const PGconn *conn);

 This structure can be used to verify encryption levels, check server certificate and more. Refer to the
OpenSSL documentation for information about this structure.

 You must define USE_SSL in order to get the prototype for this function. Doing this will also
automatically include ssl.h from OpenSSL.

 PQgetssl Returns the SSL structure used in the connection, or NULL if SSL is not in use.

SSL *PQgetssl(const PGconn *conn);

 This structure can be used to verify encryption levels, check server certificate and more. Refer to the
OpenSSL documentation for information about this structure.

 You must define USE_SSL in order to get the prototype for this function. Doing this will also
automatically include ssl.h from OpenSSL.

1.2. Query Execution Functions
Once a connection to a database server has been successfully established, the functions described here
are used to perform SQL queries and commands.

Chapter 1. libpq - C Library

8

PQexec Submit a query to Postgres and wait for the result.

PGresult *PQexec(PGconn *conn,
 const char *query);

 Returns a PGresult pointer or possibly a NULL pointer. A non-NULL pointer will generally be
returned except in out-of-memory conditions or serious errors such as inability to send the query to
the backend. If a NULL is returned, it should be treated like a PGRES_FATAL_ERROR result. Use
PQerrorMessage to get more information about the error.

The PGresult structure encapsulates the query result returned by the backend. libpq application
programmers should be careful to maintain the PGresult abstraction. Use the accessor functions below to
get at the contents of PGresult. Avoid directly referencing the fields of the PGresult structure because
they are subject to change in the future. (Beginning in Postgres release 6.4, the definition of struct
PGresult is not even provided in libpq-fe.h. If you have old code that accesses PGresult fields directly,
you can keep using it by including libpq-int.h too, but you are encouraged to fix the code soon.)

PQresultStatus Returns the result status of the query.

ExecStatusType PQresultStatus(const PGresult *res)

PQresultStatus can return one of the following values:

PGRES_EMPTY_QUERY -- The string sent to the backend was empty.

PGRES_COMMAND_OK -- Successful completion of a command returning no data

PGRES_TUPLES_OK -- The query successfully executed

PGRES_COPY_OUT -- Copy Out (from server) data transfer started

PGRES_COPY_IN -- Copy In (to server) data transfer started

PGRES_BAD_RESPONSE -- The server’s response was not understood

PGRES_NONFATAL_ERROR

PGRES_FATAL_ERROR

If the result status is PGRES_TUPLES_OK, then the routines described below can be used to retrieve
the tuples returned by the query. Note that a SELECT that happens to retrieve zero tuples still shows
PGRES_TUPLES_OK. PGRES_COMMAND_OK is for commands that can never return tuples (INSERT,
UPDATE, etc.). A response of PGRES_EMPTY_QUERY often exposes a bug in the client software.

PQresStatus Converts the enumerated type returned by PQresultStatus into a string constant
describing the status code.

char *PQresStatus(ExecStatusType status);

PQresultErrorMessage returns the error message associated with the query, or an empty string if
there was no error.

char *PQresultErrorMessage(const PGresult *res);

Immediately following a PQexec or PQgetResult call, PQerrorMessage (on the connection) will
return the same string as PQresultErrorMessage (on the result). However, a PGresult will retain
its error message until destroyed, whereas the connection’s error message will change when
subsequent operations are done. Use PQresultErrorMessage when you want to know the status
associated with a particular PGresult; use PQerrorMessage when you want to know the status from
the latest operation on the connection.

Chapter 1. libpq - C Library

9

PQntuples Returns the number of tuples (rows) in the query result.

int PQntuples(const PGresult *res);

PQnfields Returns the number of fields (attributes) in each tuple of the query result.

int PQnfields(const PGresult *res);

PQbinaryTuples Returns 1 if the PGresult contains binary tuple data, 0 if it contains ASCII data.

int PQbinaryTuples(const PGresult *res);

Currently, binary tuple data can only be returned by a query that extracts data from a BINARY cursor.

PQfname Returns the field (attribute) name associated with the given field index. Field indices start at
0.

char *PQfname(const PGresult *res,
 int field_index);

PQfnumber Returns the field (attribute) index associated with the given field name.

int PQfnumber(const PGresult *res,
 const char *field_name);

 -1 is returned if the given name does not match any field.

PQftype Returns the field type associated with the given field index. The integer returned is an
internal coding of the type. Field indices start at 0.

Oid PQftype(const PGresult *res,
 int field_index);

You can query the system table pg_type to obtain the name and properties of the various datatypes.
The OIDs of the built-in datatypes are defined in src/include/catalog/pg_type.h in the source
tree.

PQfsize Returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

int PQfsize(const PGresult *res,
 int field_index);

 PQfsize returns the space allocated for this field in a database tuple, in other words the size of the
server’s binary representation of the data type. -1 is returned if the field is variable size.

PQfmod Returns the type-specific modification data of the field associated with the given field index.
Field indices start at 0.

int PQfmod(const PGresult *res,
 int field_index);

PQgetvalue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and field
indices start at 0.

char* PQgetvalue(const PGresult *res,
 int tup_num,
 int field_num);

For most queries, the value returned by PQgetvalue is a null-terminated ASCII string representation
of the attribute value. But if PQbinaryTuples() is 1, the value returned by PQgetvalue is the
binary representation of the type in the internal format of the backend server (but not including the

Chapter 1. libpq - C Library

10

size word, if the field is variable-length). It is then the programmer’s responsibility to cast and convert
the data to the correct C type. The pointer returned by PQgetvalue points to storage that is part of
the PGresult structure. One should not modify it, and one must explicitly copy the value into other
storage if it is to be used past the lifetime of the PGresult structure itself.

PQgetlength Returns the length of a field (attribute) in bytes. Tuple and field indices start at 0.

int PQgetlength(const PGresult *res,
 int tup_num,
 int field_num);

This is the actual data length for the particular data value, that is the size of the object pointed to by
PQgetvalue. Note that for ASCII-represented values, this size has little to do with the binary size
reported by PQfsize.

PQgetisnull Tests a field for a NULL entry. Tuple and field indices start at 0.

int PQgetisnull(const PGresult *res,
 int tup_num,
 int field_num);

 This function returns 1 if the field contains a NULL, 0 if it contains a non-null value. (Note that
PQgetvalue will return an empty string, not a null pointer, for a NULL field.)

PQcmdStatus Returns the command status string from the SQL command that generated the
PGresult.

char * PQcmdStatus(const PGresult *res);

PQcmdTuples Returns the number of rows affected by the SQL command.

char * PQcmdTuples(const PGresult *res);

 If the SQL command that generated the PGresult was INSERT, UPDATE or DELETE, this returns a
string containing the number of rows affected. If the command was anything else, it returns the empty
string.

PQoidValue Returns the object id of the tuple inserted, if the SQL command was an INSERT.
Otherwise, returns InvalidOid.

Oid PQoidValue(const PGresult *res);

 The type Oid and the constant InvalidOid will be defined if you include the libpq header file. They
will both be some integer type.

PQoidStatus Returns a string with the object id of the tuple inserted, if the SQL command was an
INSERT. Otherwise, returns an empty string.

char * PQoidStatus(const PGresult *res);

This function is deprecated in favor of PQoidValue and is not thread-safe.

PQprint Prints out all the tuples and, optionally, the attribute names to the specified output stream.

void PQprint(FILE* fout, /* output stream */
 const PGresult *res,
 const PQprintOpt *po);

struct {
 pqbool header; /* print output field headings and row count */
 pqbool align; /* fill align the fields */

Chapter 1. libpq - C Library

11

 pqbool standard; /* old brain dead format */
 pqbool html3; /* output html tables */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if needed */
 char *fieldSep; /* field separator */
 char *tableOpt; /* insert to HTML table ... */
 char *caption; /* HTML caption */
 char **fieldName; /* null terminated array of replacement field
names */
} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case and this
function is no longer actively supported.

PQclear Frees the storage associated with the PGresult. Every query result should be freed via
PQclear when it is no longer needed.

void PQclear(PQresult *res);

 You can keep a PGresult object around for as long as you need it; it does not go away when you issue
a new query, nor even if you close the connection. To get rid of it, you must call PQclear. Failure to
do this will result in memory leaks in the frontend application.

PQmakeEmptyPGresult Constructs an empty PGresult object with the given status.

PGresult* PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq’s internal routine to allocate and initialize an empty PGresult object. It is exported
because some applications find it useful to generate result objects (particularly objects with error
status) themselves. If conn is not NULL and status indicates an error, the connection’s current
errorMessage is copied into the PGresult. Note that PQclear should eventually be called on the object,
just as with a PGresult returned by libpq itself.

1.3. Asynchronous Query Processing
The PQexec function is adequate for submitting queries in simple synchronous applications. It has a
couple of major deficiencies however:

PQexec waits for the query to be completed. The application may have other work to do (such as
maintaining a user interface), in which case it won’t want to block waiting for the response.

Since control is buried inside PQexec, it is hard for the frontend to decide it would like to try to
cancel the ongoing query. (It can be done from a signal handler, but not otherwise.)

PQexec can return only one PGresult structure. If the submitted query string contains multiple SQL
commands, all but the last PGresult are discarded by PQexec.

Applications that do not like these limitations can instead use the underlying functions that PQexec is
built from: PQsendQuery and PQgetResult.

Older programs that used this functionality as well as PQputline and PQputnbytes could block
waiting to send data to the backend, to address that issue, the function PQsetnonblocking was added.

Chapter 1. libpq - C Library

12

Old applications can neglect to use PQsetnonblocking and get the older potentially blocking
behavior. Newer programs can use PQsetnonblocking to achieve a completely non-blocking
connection to the backend.

 PQsetnonblocking Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg)

 Sets the state of the connection to nonblocking if arg is TRUE, blocking if arg is FALSE. Returns 0 if
OK, -1 if error.

 In the nonblocking state, calls to PQputline, PQputnbytes, PQsendQuery and PQendcopy will
not block but instead return an error if they need to be called again.

 When a database connection has been set to non-blocking mode and PQexec is called, it will
temporarily set the state of the connection to blocking until the PQexec completes.

 More of libpq is expected to be made safe for PQsetnonblocking functionality in the near future.

PQisnonblocking Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn)

 Returns TRUE if the connection is set to non-blocking mode, FALSE if blocking.

PQsendQuery Submit a query to Postgres without waiting for the result(s). TRUE is returned if the
query was successfully dispatched, FALSE if not (in which case, use PQerrorMessage to get more
information about the failure).

int PQsendQuery(PGconn *conn,
 const char *query);

 After successfully calling PQsendQuery, call PQgetResult one or more times to obtain the query
results. PQsendQuery may not be called again (on the same connection) until PQgetResult has
returned NULL, indicating that the query is done.

PQgetResult Wait for the next result from a prior PQsendQuery, and return it. NULL is returned
when the query is complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

 PQgetResult must be called repeatedly until it returns NULL, indicating that the query is done. (If
called when no query is active, PQgetResult will just return NULL at once.) Each non-null result
from PQgetResult should be processed using the same PGresult accessor functions previously
described. Don’t forget to free each result object with PQclear when done with it. Note that
PQgetResult will block only if a query is active and the necessary response data has not yet been
read by PQconsumeInput.

Using PQsendQuery and PQgetResult solves one of PQexec’s problems: If a query string contains
multiple SQL commands, the results of those commands can be obtained individually. (This allows a
simple form of overlapped processing, by the way: the frontend can be handling the results of one query
while the backend is still working on later queries in the same query string.) However, calling
PQgetResult will still cause the frontend to block until the backend completes the next SQL
command. This can be avoided by proper use of three more functions:

PQconsumeInput If input is available from the backend, consume it.

int PQconsumeInput(PGconn *conn);

Chapter 1. libpq - C Library

13

PQconsumeInput normally returns 1 indicating "no error", but returns 0 if there was some kind of
trouble (in which case PQerrorMessage is set). Note that the result does not say whether any input
data was actually collected. After calling PQconsumeInput, the application may check PQisBusy
and/or PQnotifies to see if their state has changed.

PQconsumeInput may be called even if the application is not prepared to deal with a result or
notification just yet. The routine will read available data and save it in a buffer, thereby causing a
select(2) read-ready indication to go away. The application can thus use PQconsumeInput to clear
the select condition immediately, and then examine the results at leisure.

PQisBusy Returns 1 if a query is busy, that is, PQgetResult would block waiting for input. A 0
return indicates that PQgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the backend; therefore PQconsumeInput must be
invoked first, or the busy state will never end.

PQflush Attempt to flush any data queued to the backend, returns 0 if successful (or if the send
queue is empty) or EOF if it failed for some reason.

int PQflush(PGconn *conn);

PQflush needs to be called on a non-blocking connection before calling select to determine if a
response has arrived. If 0 is returned it ensures that there is no data queued to the backend that has not
actually been sent. Only applications that have used PQsetnonblocking have a need for this.

PQsocket Obtain the file descriptor number for the backend connection socket. A valid descriptor
will be >= 0; a result of -1 indicates that no backend connection is currently open.

int PQsocket(const PGconn *conn);

PQsocket should be used to obtain the backend socket descriptor in preparation for executing
select(2). This allows an application using a blocking connection to wait for either backend
responses or other conditions. If the result of select(2) indicates that data can be read from the
backend socket, then PQconsumeInput should be called to read the data; after which, PQisBusy,
PQgetResult, and/or PQnotifies can be used to process the response.

Non-blocking connections (that have used PQsetnonblocking) should not use select until
PQflush has returned 0 indicating that there is no buffered data waiting to be sent to the backend.

A typical frontend using these functions will have a main loop that uses select(2) to wait for all the
conditions that it must respond to. One of the conditions will be input available from the backend, which
in select’s terms is readable data on the file descriptor identified by PQsocket. When the main loop
detects input ready, it should call PQconsumeInput to read the input. It can then call PQisBusy,
followed by PQgetResult if PQisBusy returns false (0). It can also call PQnotifies to detect
NOTIFY messages (see "Asynchronous Notification", below).

A frontend that uses PQsendQuery/PQgetResult can also attempt to cancel a query that is still being
processed by the backend.

PQrequestCancel Request that Postgres abandon processing of the current query.

int PQrequestCancel(PGconn *conn);

The return value is 1 if the cancel request was successfully dispatched, 0 if not. (If not,
PQerrorMessage tells why not.) Successful dispatch is no guarantee that the request will have any

Chapter 1. libpq - C Library

14

effect, however. Regardless of the return value of PQrequestCancel, the application must continue
with the normal result-reading sequence using PQgetResult. If the cancellation is effective, the
current query will terminate early and return an error result. If the cancellation fails (say, because the
backend was already done processing the query), then there will be no visible result at all.

Note that if the current query is part of a transaction, cancellation will abort the whole transaction.

PQrequestCancel can safely be invoked from a signal handler. So, it is also possible to use it in
conjunction with plain PQexec, if the decision to cancel can be made in a signal handler. For example,
psql invokes PQrequestCancel from a SIGINT signal handler, thus allowing interactive cancellation
of queries that it issues through PQexec. Note that PQrequestCancel will have no effect if the
connection is not currently open or the backend is not currently processing a query.

1.4. Fast Path
Postgres provides a fast path interface to send function calls to the backend. This is a trapdoor into
system internals and can be a potential security hole. Most users will not need this feature.

PQfn Request execution of a backend function via the fast path interface.

PGresult* PQfn(PGconn* conn,
 int fnid,
 int *result_buf,
 int *result_len,
 int result_is_int,
 const PQArgBlock *args,
 int nargs);

 The fnid argument is the object identifier of the function to be executed. result_buf is the buffer in
which to place the return value. The caller must have allocated sufficient space to store the return
value (there is no check!). The actual result length will be returned in the integer pointed to by
result_len. If a 4-byte integer result is expected, set result_is_int to 1; otherwise set it to 0. (Setting
result_is_int to 1 tells libpq to byte-swap the value if necessary, so that it is delivered as a proper int
value for the client machine. When result_is_int is 0, the byte string sent by the backend is returned
unmodified.) args and nargs specify the arguments to be passed to the function.

typedef struct {
 int len;
 int isint;
 union {
 int *ptr;
 int integer;
 } u;
} PQArgBlock;

 PQfn always returns a valid PGresult*. The resultStatus should be checked before the result is used.
The caller is responsible for freeing the PGresult with PQclear when it is no longer needed.

1.5. Asynchronous Notification
Postgres supports asynchronous notification via the LISTEN and NOTIFY commands. A backend
registers its interest in a particular notification condition with the LISTEN command (and can stop

Chapter 1. libpq - C Library

15

listening with the UNLISTEN command). All backends listening on a particular condition will be
notified asynchronously when a NOTIFY of that condition name is executed by any backend. No
additional information is passed from the notifier to the listener. Thus, typically, any actual data that
needs to be communicated is transferred through a database relation. Commonly the condition name is
the same as the associated relation, but it is not necessary for there to be any associated relation.

libpq applications submit LISTEN and UNLISTEN commands as ordinary SQL queries. Subsequently,
arrival of NOTIFY messages can be detected by calling PQnotifies().

PQnotifies Returns the next notification from a list of unhandled notification messages received
from the backend. Returns NULL if there are no pending notifications. Once a notification is returned
from PQnotifies, it is considered handled and will be removed from the list of notifications.

PGnotify* PQnotifies(PGconn *conn);

typedef struct pgNotify {
 char relname[NAMEDATALEN]; /* name of relation
 * containing data */
 int be_pid; /* process id of backend */
} PGnotify;

After processing a PGnotify object returned by PQnotifies, be sure to free it with free() to avoid
a memory leak.

Note: In Postgres 6.4 and later, the be_pid is the notifying backend’s, whereas in earlier versions
it was always your own backend’s PID.

The second sample program gives an example of the use of asynchronous notification.

PQnotifies() does not actually read backend data; it just returns messages previously absorbed by
another libpq function. In prior releases of libpq, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit queries, even empty ones, and then check PQnotifies() after each
PQexec(). While this still works, it is deprecated as a waste of processing power.

A better way to check for NOTIFY messages when you have no useful queries to make is to call
PQconsumeInput(), then check PQnotifies(). You can use select(2) to wait for backend data to
arrive, thereby using no CPU power unless there is something to do. (See PQsocket() to obtain the file
descriptor number to use with select.) Note that this will work OK whether you submit queries with
PQsendQuery/PQgetResult or simply use PQexec. You should, however, remember to check
PQnotifies() after each PQgetResult or PQexec, to see if any notifications came in during the
processing of the query.

1.6. Functions Associated with the COPY Command
 The COPY command in Postgres has options to read from or write to the network connection used by
libpq. Therefore, functions are necessary to access this network connection directly so applications
may take advantage of this capability.

 These functions should be executed only after obtaining a PGRES_COPY_OUT or PGRES_COPY_IN result
object from PQexec or PQgetResult.

PQgetline Reads a newline-terminated line of characters (transmitted by the backend server) into a
buffer string of size length.

Chapter 1. libpq - C Library

16

int PQgetline(PGconn *conn,
 char *string,
 int length)

Like fgets(3), this routine copies up to length-1 characters into string. It is like gets(3), however, in
that it converts the terminating newline into a null character. PQgetline returns EOF at EOF, 0 if the
entire line has been read, and 1 if the buffer is full but the terminating newline has not yet been read.

Notice that the application must check to see if a new line consists of the two characters "\.", which
indicates that the backend server has finished sending the results of the copy command. If the
application might receive lines that are more than length-1 characters long, care is needed to be sure
one recognizes the "\." line correctly (and does not, for example, mistake the end of a long data line
for a terminator line). The code in src/bin/psql/copy.c contains example routines that correctly
handle the copy protocol.

PQgetlineAsync Reads a newline-terminated line of characters (transmitted by the backend server)
into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
 char *buffer,
 int bufsize)

This routine is similar to PQgetline, but it can be used by applications that must read COPY data
asynchronously, that is without blocking. Having issued the COPY command and gotten a
PGRES_COPY_OUT response, the application should call PQconsumeInput and PQgetlineAsync
until the end-of-data signal is detected. Unlike PQgetline, this routine takes responsibility for
detecting end-of-data. On each call, PQgetlineAsync will return data if a complete newline-
terminated data line is available in libpq’s input buffer, or if the incoming data line is too long to fit in
the buffer offered by the caller. Otherwise, no data is returned until the rest of the line arrives.

The routine returns -1 if the end-of-copy-data marker has been recognized, or 0 if no data is available,
or a positive number giving the number of bytes of data returned. If -1 is returned, the caller must next
call PQendcopy, and then return to normal processing. The data returned will not extend beyond a
newline character. If possible a whole line will be returned at one time. But if the buffer offered by
the caller is too small to hold a line sent by the backend, then a partial data line will be returned. This
can be detected by testing whether the last returned byte is "\n" or not. The returned string is not
null-terminated. (If you want to add a terminating null, be sure to pass a bufsize one smaller than the
room actually available.)

PQputline Sends a null-terminated string to the backend server. Returns 0 if OK, EOF if unable to
send the string.

int PQputline(PGconn *conn,
 const char *string);

Note the application must explicitly send the two characters "\." on a final line to indicate to the
backend that it has finished sending its data.

PQputnbytes Sends a non-null-terminated string to the backend server. Returns 0 if OK, EOF if
unable to send the string.

int PQputnbytes(PGconn *conn,
 const char *buffer,
 int nbytes);

Chapter 1. libpq - C Library

17

This is exactly like PQputline, except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly.

PQendcopy Syncs with the backend. This function waits until the backend has finished the copy. It
should either be issued when the last string has been sent to the backend using PQputline or when
the last string has been received from the backend using PGgetline. It must be issued or the backend
may get "out of sync" with the frontend. Upon return from this function, the backend is ready to
receive the next query. The return value is 0 on successful completion, nonzero otherwise.

int PQendcopy(PGconn *conn);

As an example:

PQexec(conn, "create table foo (a int4, b char(16), d double precision)");
PQexec(conn, "copy foo from stdin");
PQputline(conn, "3\thello world\t4.5\n");
PQputline(conn,"4\tgoodbye world\t7.11\n");
...
PQputline(conn,"\\.\n");
PQendcopy(conn);

When using PQgetResult, the application should respond to a PGRES_COPY_OUT result by executing
PQgetline repeatedly, followed by PQendcopy after the terminator line is seen. It should then return
to the PQgetResult loop until PQgetResult returns NULL. Similarly a PGRES_COPY_IN result is
processed by a series of PQputline calls followed by PQendcopy, then return to the PQgetResult
loop. This arrangement will ensure that a copy in or copy out command embedded in a series of SQL
commands will be executed correctly.

Older applications are likely to submit a copy in or copy out via PQexec and assume that the transaction
is done after PQendcopy. This will work correctly only if the copy in/out is the only SQL command in
the query string.

1.7. libpq Tracing Functions
PQtrace Enable tracing of the frontend/backend communication to a debugging file stream.

void PQtrace(PGconn *conn
 FILE *debug_port)

PQuntrace Disable tracing started by PQtrace

void PQuntrace(PGconn *conn)

1.8. libpq Control Functions
PQsetNoticeProcessor Control reporting of notice and warning messages generated by libpq.

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,
 PQnoticeProcessor proc,
 void *arg);

Chapter 1. libpq - C Library

18

By default, libpq prints "notice" messages from the backend on stderr, as well as a few error messages
that it generates by itself. This behavior can be overridden by supplying a callback function that does
something else with the messages. The callback function is passed the text of the error message (which
includes a trailing newline), plus a void pointer that is the same one passed to
PQsetNoticeProcessor. (This pointer can be used to access application-specific state if needed.) The
default notice processor is simply

static void
defaultNoticeProcessor(void * arg, const char * message)
{
 fprintf(stderr, "%s", message);
}

To use a special notice processor, call PQsetNoticeProcessor just after creation of a new PGconn
object.

The return value is the pointer to the previous notice processor. If you supply a callback function pointer
of NULL, no action is taken, but the current pointer is returned.

Once you have set a notice processor, you should expect that that function could be called as long as
either the PGconn object or PGresult objects made from it exist. At creation of a PGresult, the PGconn’s
current notice processor pointer is copied into the PGresult for possible use by routines like
PQgetvalue.

1.9. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used by PQconnectdb or PQsetdbLogin if no value is directly specified by the calling code.
These are useful to avoid hard-coding database names into simple application programs.

PGHOST sets the default server name. If this begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored (default "/tmp").

PGPORT sets the default TCP port number or Unix-domain socket file extension for communicating
with the Postgres backend.

PGDATABASE sets the default Postgres database name.

PGUSER sets the username used to connect to the database and for authentication.

PGPASSWORD sets the password used if the backend demands password authentication.

PGREALM sets the Kerberos realm to use with Postgres, if it is different from the local realm. If
PGREALM is set, Postgres applications will attempt authentication with servers for this realm and
use separate ticket files to avoid conflicts with local ticket files. This environment variable is only
used if Kerberos authentication is selected by the backend.

PGOPTIONS sets additional runtime options for the Postgres backend.

PGTTY sets the file or tty on which debugging messages from the backend server are displayed.

The following environment variables can be used to specify user-level default behavior for every

Chapter 1. libpq - C Library

19

Postgres session:

PGDATESTYLE sets the default style of date/time representation.

PGTZ sets the default time zone.

PGCLIENTENCODING sets the default client encoding (if MULTIBYTE support was selected when
configuring Postgres).

The following environment variables can be used to specify default internal behavior for every Postgres
session:

PGGEQO sets the default mode for the genetic optimizer.

Refer to the SET SQL command for information on correct values for these environment variables.

1.10. Threading Behavior
libpq is thread-safe as of Postgres 7.0, so long as no two threads attempt to manipulate the same
PGconn object at the same time. In particular, you can’t issue concurrent queries from different threads
through the same connection object. (If you need to run concurrent queries, start up multiple
connections.)

PGresult objects are read-only after creation, and so can be passed around freely between threads.

The deprecated functions PQoidStatus and fe_setauthsvc are not thread-safe and should not be
used in multi-thread programs. PQoidStatus can be replaced by PQoidValue. There is no good reason
to call fe_setauthsvc at all.

1.11. Example Programs
Example 1-1. libpq Example Program 1

/*
 * testlibpq.c
 *
 * Test the C version of libpq, the PostgreSQL frontend
 * library.
 */
#include <stdio.h>
#include <libpq-fe.h>

void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

main()
{
 char *pghost,
 *pgport,
 *pgoptions,

Chapter 1. libpq - C Library

20

 *pgtty;
 char *dbName;
 int nFields;
 int i,
 j;

 /* FILE *debug; */

 PGconn *conn;
 PGresult *res;

 /*
 * begin, by setting the parameters for a backend connection if the
 * parameters are null, then the system will try to use reasonable
 * defaults by looking up environment variables or, failing that,
 * using hardwired constants
 */
 pghost = NULL; /* host name of the backend server */
 pgport = NULL; /* port of the backend server */
 pgoptions = NULL; /* special options to start up the backend
 * server */
 pgtty = NULL; /* debugging tty for the backend server */
 dbName = "template1";

 /* make a connection to the database */
 conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

 /*
 * check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) == CONNECTION_BAD)
 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n", dbName);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* debug = fopen("/tmp/trace.out","w"); */
 /* PQtrace(conn, debug); */

 /* start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * should PQclear PGresult whenever it is no longer needed to avoid
 * memory leaks
 */

Chapter 1. libpq - C Library

21

 PQclear(res);

 /*
 * fetch rows from the pg_database, the system catalog of
 * databases
 */
 res = PQexec(conn, "DECLARE mycursor CURSOR FOR select * from
pg_database");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);
 res = PQexec(conn, "FETCH ALL in mycursor");
 if (!res || PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL command didn’t return tuples properly\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /* first, print out the attribute names */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* next, print out the rows */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }
 PQclear(res);

 /* close the cursor */
 res = PQexec(conn, "CLOSE mycursor");
 PQclear(res);

 /* commit the transaction */
 res = PQexec(conn, "COMMIT");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 /* fclose(debug); */
 return 0;

}

Chapter 1. libpq - C Library

22

Example 1-2. libpq Example Program 2

/*
 * testlibpq2.c
 * Test of the asynchronous notification interface
 *
 * Start this program, then from psql in another window do
 * NOTIFY TBL2;
 *
 * Or, if you want to get fancy, try this:
 * Populate a database with the following:
 *
 * CREATE TABLE TBL1 (i int4);
 *
 * CREATE TABLE TBL2 (i int4);
 *
 * CREATE RULE r1 AS ON INSERT TO TBL1 DO
 * (INSERT INTO TBL2 values (new.i); NOTIFY TBL2);
 *
 * and do
 *
 * INSERT INTO TBL1 values (10);
 *
 */
#include <stdio.h>
#include "libpq-fe.h"

void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

main()
{
 char *pghost,
 *pgport,
 *pgoptions,
 *pgtty;
 char *dbName;
 int nFields;
 int i,
 j;

 PGconn *conn;
 PGresult *res;
 PGnotify *notify;

 /*
 * begin, by setting the parameters for a backend connection if the
 * parameters are null, then the system will try to use reasonable

Chapter 1. libpq - C Library

23

 * defaults by looking up environment variables or, failing that,
 * using hardwired constants
 */
 pghost = NULL; /* host name of the backend server */
 pgport = NULL; /* port of the backend server */
 pgoptions = NULL; /* special options to start up the backend
 * server */
 pgtty = NULL; /* debugging tty for the backend server */
 dbName = getenv("USER"); /* change this to the name of your test
 * database */

 /* make a connection to the database */
 conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

 /*
 * check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) == CONNECTION_BAD)
 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n", dbName);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "LISTEN TBL2");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "LISTEN command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * should PQclear PGresult whenever it is no longer needed to avoid
 * memory leaks
 */
 PQclear(res);

 while (1)
 {

 /*
 * wait a little bit between checks; waiting with select()
 * would be more efficient.
 */
 sleep(1);
 /* collect any asynchronous backend messages */
 PQconsumeInput(conn);
 /* check for asynchronous notify messages */
 while ((notify = PQnotifies(conn)) != NULL)
 {
 fprintf(stderr,
 "ASYNC NOTIFY of ’%s’ from backend pid ’%d’ received\n",

Chapter 1. libpq - C Library

24

 notify->relname, notify->be_pid);
 free(notify);
 }
 }

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 1-3. libpq Example Program 3

/*
 * testlibpq3.c Test the C version of Libpq, the Postgres frontend
 * library. tests the binary cursor interface
 *
 *
 *
 * populate a database by doing the following:
 *
 * CREATE TABLE test1 (i int4, d real, p polygon);
 *
 * INSERT INTO test1 values (1, 3.567, polygon ’(3.0, 4.0, 1.0, 2.0)’);
 *
 * INSERT INTO test1 values (2, 89.05, polygon ’(4.0, 3.0, 2.0, 1.0)’);
 *
 * the expected output is:
 *
 * tuple 0: got i = (4 bytes) 1, d = (4 bytes) 3.567000, p = (4
 * bytes) 2 points boundbox = (hi=3.000000/4.000000, lo =
 * 1.000000,2.000000) tuple 1: got i = (4 bytes) 2, d = (4 bytes)
 * 89.050003, p = (4 bytes) 2 points boundbox =
 * (hi=4.000000/3.000000, lo = 2.000000,1.000000)
 *
 *
 */
#include <stdio.h>
#include "libpq-fe.h"
#include "utils/geo-decls.h" /* for the POLYGON type */

void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

main()
{
 char *pghost,
 *pgport,
 *pgoptions,

Chapter 1. libpq - C Library

25

 *pgtty;
 char *dbName;
 int nFields;
 int i,
 j;
 int i_fnum,
 d_fnum,
 p_fnum;
 PGconn *conn;
 PGresult *res;

 /*
 * begin, by setting the parameters for a backend connection if the
 * parameters are null, then the system will try to use reasonable
 * defaults by looking up environment variables or, failing that,
 * using hardwired constants
 */
 pghost = NULL; /* host name of the backend server */
 pgport = NULL; /* port of the backend server */
 pgoptions = NULL; /* special options to start up the backend
 * server */
 pgtty = NULL; /* debugging tty for the backend server */

 dbName = getenv("USER"); /* change this to the name of your test
 * database */

 /* make a connection to the database */
 conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

 /*
 * check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) == CONNECTION_BAD)
 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n", dbName);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * should PQclear PGresult whenever it is no longer needed to avoid
 * memory leaks
 */
 PQclear(res);

Chapter 1. libpq - C Library

26

 /*
 * fetch rows from the pg_database, the system catalog of
 * databases
 */
 res = PQexec(conn, "DECLARE mycursor BINARY CURSOR FOR select * from
test1");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in mycursor");
 if (!res || PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL command didn’t return tuples properly\n");
 PQclear(res);
 exit_nicely(conn);
 }

 i_fnum = PQfnumber(res, "i");
 d_fnum = PQfnumber(res, "d");
 p_fnum = PQfnumber(res, "p");

 for (i = 0; i < 3; i++)
 {
 printf("type[%d] = %d, size[%d] = %d\n",
 i, PQftype(res, i),
 i, PQfsize(res, i));
 }
 for (i = 0; i < PQntuples(res); i++)
 {
 int *ival;
 float *dval;
 int plen;
 POLYGON *pval;

 /* we hard-wire this to the 3 fields we know about */
 ival = (int *) PQgetvalue(res, i, i_fnum);
 dval = (float *) PQgetvalue(res, i, d_fnum);
 plen = PQgetlength(res, i, p_fnum);

 /*
 * plen doesn’t include the length field so need to
 * increment by VARHDSZ
 */
 pval = (POLYGON *) malloc(plen + VARHDRSZ);
 pval->size = plen;
 memmove((char *) &pval->npts, PQgetvalue(res, i, p_fnum), plen);
 printf("tuple %d: got\n", i);

Chapter 1. libpq - C Library

27

 printf(" i = (%d bytes) %d,\n",
 PQgetlength(res, i, i_fnum), *ival);
 printf(" d = (%d bytes) %f,\n",
 PQgetlength(res, i, d_fnum), *dval);
 printf(" p = (%d bytes) %d points \tboundbox = (hi=%f/%f, lo =
%f,%f)\n",
 PQgetlength(res, i, d_fnum),
 pval->npts,
 pval->boundbox.xh,
 pval->boundbox.yh,
 pval->boundbox.xl,
 pval->boundbox.yl);
 }
 PQclear(res);

 /* close the cursor */
 res = PQexec(conn, "CLOSE mycursor");
 PQclear(res);

 /* commit the transaction */
 res = PQexec(conn, "COMMIT");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

28

Chapter 2. Large Objects
 In Postgres, data values are stored in tuples and individual tuples cannot span data pages. Since the size
of a data page is 8192 bytes, the upper limit on the size of a data value is relatively low. To support the
storage of larger atomic values, Postgres provides a large object interface. This interface provides file
oriented access to user data that has been declared to be a large type. This section describes the
implementation and the programming and query language interfaces to Postgres large object data.

2.1. Historical Note
 Originally, Postgres 4.2 supported three standard implementations of large objects: as files external to
Postgres, as external files managed by Postgres, and as data stored within the Postgres database. It
causes considerable confusion among users. As a result, we only support large objects as data stored
within the Postgres database in PostgreSQL. Even though it is slower to access, it provides stricter data
integrity. For historical reasons, this storage scheme is referred to as Inversion large objects. (We will
use Inversion and large objects interchangeably to mean the same thing in this section.) Since
PostgreSQL 7.1 all large objects are placed in one system table called pg_largeobject.

2.2. Implementation Features
 The Inversion large object implementation breaks large objects up into "chunks" and stores the chunks
in tuples in the database. A B-tree index guarantees fast searches for the correct chunk number when
doing random access reads and writes.

2.3. Interfaces
 The facilities Postgres provides to access large objects, both in the backend as part of user-defined
functions or the front end as part of an application using the interface, are described below. For users
familiar with Postgres 4.2, PostgreSQL has a new set of functions providing a more coherent interface.

Note: All large object manipulation must take place within an SQL transaction. This requirement is
strictly enforced as of Postgres 6.5, though it has been an implicit requirement in previous versions,
resulting in misbehavior if ignored.

 The Postgres large object interface is modeled after the Unix file system interface, with analogues of
open(2), read(2), write(2), lseek(2), etc. User functions call these routines to retrieve only the
data of interest from a large object. For example, if a large object type called mugshot existed that stored
photographs of faces, then a function called beard could be declared on mugshot data. Beard could look
at the lower third of a photograph, and determine the color of the beard that appeared there, if any. The
entire large object value need not be buffered, or even examined, by the beard function. Large objects
may be accessed from dynamically-loaded C functions or database client programs that link the library.
Postgres provides a set of routines that support opening, reading, writing, closing, and seeking on large
objects.

Chapter 2. Large Objects

29

2.3.1. Creating a Large Object

 The routine

Oid lo_creat(PGconn *conn, int mode)

 creates a new large object. mode is a bitmask describing several different attributes of the new object.
The symbolic constants listed here are defined in $PGROOT/src/backend/libpq/libpq-fs.h The
access type (read, write, or both) is controlled by OR ing together the bits INV_READ and
INV_WRITE. If the large object should be archived -- that is, if historical versions of it should be
moved periodically to a special archive relation -- then the INV_ARCHIVE bit should be set. The
low-order sixteen bits of mask are the storage manager number on which the large object should reside.
For sites other than Berkeley, these bits should always be zero. The commands below create an
(Inversion) large object:

inv_oid = lo_creat(INV_READ|INV_WRITE|INV_ARCHIVE);

2.3.2. Importing a Large Object

 To import a UNIX file as a large object, call

Oid lo_import(PGconn *conn, const char *filename)

 filename specifies the Unix pathname of the file to be imported as a large object.

2.3.3. Exporting a Large Object

 To export a large object into UNIX file, call

int lo_export(PGconn *conn, Oid lobjId, const char *filename)

 The lobjId argument specifies the Oid of the large object to export and the filename argument specifies
the UNIX pathname of the file.

2.3.4. Opening an Existing Large Object

 To open an existing large object, call

int lo_open(PGconn *conn, Oid lobjId, int mode)

 The lobjId argument specifies the Oid of the large object to open. The mode bits control whether the
object is opened for reading INV_READ), writing or both. A large object cannot be opened before it is
created. lo_open returns a large object descriptor for later use in lo_read, lo_write, lo_lseek,
lo_tell, and lo_close.

Chapter 2. Large Objects

30

2.3.5. Writing Data to a Large Object

 The routine

int lo_write(PGconn *conn, int fd, const char *buf, size_t len)

 writes len bytes from buf to large object fd. The fd argument must have been returned by a previous
lo_open. The number of bytes actually written is returned. In the event of an error, the return value is
negative.

2.3.6. Reading Data from a Large Object

 The routine

int lo_read(PGconn *conn, int fd, char *buf, size_t len)

 reads len bytes from large object fd into byf. The fd argument must have been returned by a previous
lo_open. The number of bytes actually read is returned. In the event of an error, the return value is
negative.

2.3.7. Seeking on a Large Object

 To change the current read or write location on a large object, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence)

 This routine moves the current location pointer for the large object described by fd to the new location
specified by offset. The valid values for whence are SEEK_SET, SEEK_CUR, and SEEK_END.

2.3.8. Closing a Large Object Descriptor

 A large object may be closed by calling

int lo_close(PGconn *conn, int fd)

 where fd is a large object descriptor returned by lo_open. On success, lo_close returns zero. On
error, the return value is negative.

2.3.9. Removing a Large Object

 To remove a large object from the database, call

Oid lo_unlink(PGconn *conn, Oid lobjId)

 The lobjId argument specifies the Oid of the large object to remove.

2.4. Built in registered functions
 There are two built-in registered functions, lo_import and lo_export which are convenient for use in
SQL queries. Here is an example of their use

Chapter 2. Large Objects

31

CREATE TABLE image (
 name text,
 raster oid
);

INSERT INTO image (name, raster)
 VALUES (’beautiful image’, lo_import(’/etc/motd’));

SELECT lo_export(image.raster, ’/tmp/motd’) from image
 WHERE name = ’beautiful image’;

2.5. Accessing Large Objects from LIBPQ
 Below is a sample program which shows how the large object interface in LIBPQ can be used. Parts of
the program are commented out but are left in the source for the readers benefit. This program can be
found in ../src/test/examples Frontend applications which use the large object interface in LIBPQ
should include the header file libpq/libpq-fs.h and link with the libpq library.

2.6. Sample Program
/*--
 *
 * testlo.c--
 * test using large objects with libpq
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 * /usr/local/devel/pglite/cvs/src/doc/manual.me,v 1.16 1995/09/01
23:55:00 jolly Exp
 *
 *--
 */
#include <stdio.h>
#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
 * importFile * import file "in_filename" into database as large object
"lob
jOid"
 *
 */
Oid
importFile(PGconn *conn, char *filename)
{
 Oid lobjId;

Chapter 2. Large Objects

32

 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the file to be read in
 */
 fd = open(filename, O_RDONLY, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "can’t open unix file %s\n", filename);
 }

 /*
 * create the large object
 */
 lobjId = lo_creat(conn, INV_READ | INV_WRITE);
 if (lobjId == 0)
 fprintf(stderr, "can’t create large object\n");

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);

 /*
 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
 {
 tmp = lo_write(conn, lobj_fd, buf, nbytes);
 if (tmp < nbytes)
 fprintf(stderr, "error while reading large object\n");
 }

 (void) close(fd);
 (void) lo_close(conn, lobj_fd);

 return lobjId;
}

void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nread;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 {
 fprintf(stderr, "can’t open large object %d\n",
 lobjId);

Chapter 2. Large Objects

33

 }

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 nread = 0;
 while (len - nread > 0)
 {
 nbytes = lo_read(conn, lobj_fd, buf, len - nread);
 buf[nbytes] = ’ ’;
 fprintf(stderr, ">>> %s", buf);
 nread += nbytes;
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nwritten;
 int i;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 {
 fprintf(stderr, "can’t open large object %d\n",
 lobjId);
 }

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 for (i = 0; i < len; i++)
 buf[i] = ’X’;
 buf[i] = ’ ’;

 nwritten = 0;
 while (len - nwritten > 0)
 {
 nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
 nwritten += nbytes;
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

/*

Chapter 2. Large Objects

34

 * exportFile * export large object "lobjOid" to file "out_filename"
 *
 */
void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * create an inversion "object"
 */
 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 {
 fprintf(stderr, "can’t open large object %d\n",
 lobjId);
 }

 /*
 * open the file to be written to
 */
 fd = open(filename, O_CREAT | O_WRONLY, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "can’t open unix file %s\n",
 filename);
 }

 /*
 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
 {
 tmp = write(fd, buf, nbytes);
 if (tmp < nbytes)
 {
 fprintf(stderr, "error while writing %s\n",
 filename);
 }
 }

 (void) lo_close(conn, lobj_fd);
 (void) close(fd);

 return;
}

void
exit_nicely(PGconn *conn)

Chapter 2. Large Objects

35

{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 char *in_filename,
 *out_filename;
 char *database;
 Oid lobjOid;
 PGconn *conn;
 PGresult *res;

 if (argc != 4)
 {
 fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
 argv[0]);
 exit(1);
 }

 database = argv[1];
 in_filename = argv[2];
 out_filename = argv[3];

 /*
 * set up the connection
 */
 conn = PQsetdb(NULL, NULL, NULL, NULL, database);

 /* check to see that the backend connection was successfully made */
 if (PQstatus(conn) == CONNECTION_BAD)
 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n", database);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "begin");
 PQclear(res);

 printf("importing file %s\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */
 lobjOid = lo_import(conn, in_filename);
/*
 printf("as large object %d.\n", lobjOid);

 printf("picking out bytes 1000-2000 of the large object\n");
 pickout(conn, lobjOid, 1000, 1000);

 printf("overwriting bytes 1000-2000 of the large object with X’s\n");
 overwrite(conn, lobjOid, 1000, 1000);

Chapter 2. Large Objects

36

*/

 printf("exporting large object to file %s\n", out_filename);
/* exportFile(conn, lobjOid, out_filename); */
 lo_export(conn, lobjOid, out_filename);

 res = PQexec(conn, "end");
 PQclear(res);
 PQfinish(conn);
 exit(0);
}

37

Chapter 3. libpq++ - C++ Binding Library
 libpq++ is the C++ API to Postgres. libpq++ is a set of classes that allow client programs to connect
to the Postgres backend server. These connections come in two forms: a Database Class and a Large
Object class.

 The Database Class is intended for manipulating a database. You can send all sorts of SQL queries to
the Postgres backend server and retrieve the responses of the server.

 The Large Object Class is intended for manipulating a large object in a database. Although a Large
Object instance can send normal queries to the Postgres backend server it is only intended for simple
queries that do not return any data. A large object should be seen as a file stream. In the future it should
behave much like the C++ file streams cin, cout and cerr.

 This chapter is based on the documentation for the libpq C library. Three short programs are listed at
the end of this section as examples of libpq++ programming (though not necessarily of good
programming). There are several examples of libpq++ applications in src/libpq++/examples,
including the source code for the three examples in this chapter.

3.1. Control and Initialization

3.1.1. Environment Variables

 The following environment variables can be used to set up default values for an environment and to
avoid hard-coding database names into an application program:

Note: Refer to Section 1.9 for a complete list of available connection options.

 The following environment variables can be used to select default connection parameter values, which
will be used by PQconnectdb or PQsetdbLogin if no value is directly specified by the calling code.
These are useful to avoid hard-coding database names into simple application programs.

Note: libpq++ uses only environment variables or PQconnectdb conninfo style strings.

 PGHOST sets the default server name. If this begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored (default "/tmp").

 PGPORT sets the default TCP port number or Unix-domain socket file extension for communicating
with the Postgres backend.

 PGDATABASE sets the default Postgres database name.

 PGUSER sets the username used to connect to the database and for authentication.

 PGPASSWORD sets the password used if the backend demands password authentication.

Chapter 3. libpq++ - C++ Binding Library

38

 PGREALM sets the Kerberos realm to use with Postgres, if it is different from the local realm. If
PGREALM is set, Postgres applications will attempt authentication with servers for this realm and
use separate ticket files to avoid conflicts with local ticket files. This environment variable is only
used if Kerberos authentication is selected by the backend.

 PGOPTIONS sets additional runtime options for the Postgres backend.

 PGTTY sets the file or tty on which debugging messages from the backend server are displayed.

 The following environment variables can be used to specify user-level default behavior for every
Postgres session:

 PGDATESTYLE sets the default style of date/time representation.

 PGTZ sets the default time zone.

 The following environment variables can be used to specify default internal behavior for every Postgres
session:

 PGGEQO sets the default mode for the genetic optimizer.

 Refer to the SET SQL command for information on correct values for these environment variables.

3.2. libpq++ Classes

3.2.1. Connection Class: PgConnection

 The connection class makes the actual connection to the database and is inherited by all of the access
classes.

3.2.2. Database Class: PgDatabase

 The database class provides C++ objects that have a connection to a backend server. To create such an
object one first needs the apropriate environment for the backend to access. The following constructors
deal with making a connection to a backend server from a C++ program.

3.3. Database Connection Functions

 PgConnection makes a new connection to a backend database server.

 PgConnection::PgConnection(const char *conninfo)

 Although typically called from one of the access classes, a connection to a backend server is possible
by creating a PgConnection object.

 ConnectionBad returns whether or not the connection to the backend server succeeded or failed.

Chapter 3. libpq++ - C++ Binding Library

39

 int PgConnection::ConnectionBad()

 Returns TRUE if the connection failed.

 Status returns the status of the connection to the backend server.

 ConnStatusType PgConnection::Status()

 Returns either CONNECTION_OK or CONNECTION_BAD depending on the state of the
connection.

 PgDatabase makes a new connection to a backend database server.

 PgDatabase(const char *conninfo)

 After a PgDatabase has been created it should be checked to make sure the connection to the
database succeded before sending queries to the object. This can easily be done by retrieving the
current status of the PgDatabase object with the Status or ConnectionBad methods.

 DBName Returns the name of the current database.

 const char *PgConnection::DBName()

 Notifies Returns the next notification from a list of unhandled notification messages received from
the backend.

 PGnotify* PgConnection::Notifies()

 See PQnotifies() for details.

3.4. Query Execution Functions

 Exec Sends a query to the backend server. It’s probably more desirable to use one of the next two
functions.

 ExecStatusType PgConnection::Exec(const char* query)

 Returns the result of the query. The following status results can be expected:

 PGRES_EMPTY_QUERY
 PGRES_COMMAND_OK, if the query was a command
 PGRES_TUPLES_OK, if the query successfully returned tuples
 PGRES_COPY_OUT
 PGRES_COPY_IN
 PGRES_BAD_RESPONSE, if an unexpected response was received
 PGRES_NONFATAL_ERROR
 PGRES_FATAL_ERROR

Chapter 3. libpq++ - C++ Binding Library

40

 ExecCommandOk Sends a command query to the backend server.

 int PgConnection::ExecCommandOk(const char *query)

 Returns TRUE if the command query succeeds.

 ExecTuplesOk Sends a command query to the backend server.

 int PgConnection::ExecTuplesOk(const char *query)

 Returns TRUE if the command query succeeds.

 ErrorMessage Returns the last error message text.

 const char *PgConnection::ErrorMessage()

 Tuples Returns the number of tuples (rows) in the query result.

 int PgDatabase::Tuples()

 CmdTuples Returns the number of rows affected after an INSERT, UPDATE or DELETE. If the
command was anything else, it returns -1.

 int PgDatabase::CmdTuples()

 Fields Returns the number of fields (attributes) in each tuple of the query result.

 int PgDatabase::Fields()

 FieldName Returns the field (attribute) name associated with the given field index. Field indices
start at 0.

 const char *PgDatabase::FieldName(int field_num)

 FieldNum PQfnumber Returns the field (attribute) index associated with the given field name.

 int PgDatabase::FieldNum(const char* field_name)

 -1 is returned if the given name does not match any field.

 FieldType Returns the field type associated with the given field index. The integer returned is an
internal coding of the type. Field indices start at 0.

 Oid PgDatabase::FieldType(int field_num)

Chapter 3. libpq++ - C++ Binding Library

41

 FieldType Returns the field type associated with the given field name. The integer returned is an
internal coding of the type. Field indices start at 0.

 Oid PgDatabase::FieldType(const char* field_name)

 FieldSize Returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

 short PgDatabase::FieldSize(int field_num)

 Returns the space allocated for this field in a database tuple given the field number. In other words
the size of the server’s binary representation of the data type. -1 is returned if the field is variable size.

 FieldSize Returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

 short PgDatabase::FieldSize(const char *field_name)

 Returns the space allocated for this field in a database tuple given the field name. In other words the
size of the server’s binary representation of the data type. -1 is returned if the field is variable size.

 GetValue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and field indices
start at 0.

 const char *PgDatabase::GetValue(int tup_num, int field_num)

 For most queries, the value returned by GetValue is a null-terminated ASCII string representation of
the attribute value. But if BinaryTuples() is TRUE, the value returned by GetValue is the binary
representation of the type in the internal format of the backend server (but not including the size
word, if the field is variable-length). It is then the programmer’s responsibility to cast and convert the
data to the correct C type. The pointer returned by GetValue points to storage that is part of the
PGresult structure. One should not modify it, and one must explicitly copy the value into other
storage if it is to be used past the lifetime of the PGresult structure itself. BinaryTuples() is not yet
implemented.

 GetValue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and field indices
start at 0.

 const char *PgDatabase::GetValue(int tup_num, const char *field_name)

 For most queries, the value returned by GetValue is a null-terminated ASCII string representation of
the attribute value. But if BinaryTuples() is TRUE, the value returned by GetValue is the binary
representation of the type in the internal format of the backend server (but not including the size
word, if the field is variable-length). It is then the programmer’s responsibility to cast and convert the
data to the correct C type. The pointer returned by GetValue points to storage that is part of the
PGresult structure. One should not modify it, and one must explicitly copy the value into other
storage if it is to be used past the lifetime of the PGresult structure itself. BinaryTuples() is not yet
implemented.

Chapter 3. libpq++ - C++ Binding Library

42

 GetLength Returns the length of a field (attribute) in bytes. Tuple and field indices start at 0.

 int PgDatabase::GetLength(int tup_num, int field_num)

 This is the actual data length for the particular data value, that is the size of the object pointed to by
GetValue. Note that for ASCII-represented values, this size has little to do with the binary size
reported by PQfsize.

 GetLength Returns the length of a field (attribute) in bytes. Tuple and field indices start at 0.

 int PgDatabase::GetLength(int tup_num, const char* field_name)

 This is the actual data length for the particular data value, that is the size of the object pointed to by
GetValue. Note that for ASCII-represented values, this size has little to do with the binary size
reported by PQfsize.

 DisplayTuples Prints out all the tuples and, optionally, the attribute names to the specified output
stream.

 void PgDatabase::DisplayTuples(FILE *out = 0, int fillAlign = 1,
 const char* fieldSep = "|",int printHeader = 1, int quiet = 0)

 PrintTuples Prints out all the tuples and, optionally, the attribute names to the specified output
stream.

 void PgDatabase::PrintTuples(FILE *out = 0, int printAttName = 1,
 int terseOutput = 0, int width = 0)

 GetLine

 int PgDatabase::GetLine(char* string, int length)

 PutLine

 void PgDatabase::PutLine(const char* string)

 OidStatus

 const char *PgDatabase::OidStatus()

 EndCopy

 int PgDatabase::EndCopy()

Chapter 3. libpq++ - C++ Binding Library

43

3.5. Asynchronous Notification
 Postgres supports asynchronous notification via the LISTEN and NOTIFY commands. A backend
registers its interest in a particular semaphore with the LISTEN command. All backends that are
listening on a particular named semaphore will be notified asynchronously when a NOTIFY of that
name is executed by another backend. No additional information is passed from the notifier to the
listener. Thus, typically, any actual data that needs to be communicated is transferred through the
relation.

Note: In the past, the documentation has associated the names used for asyncronous notification
with relations or classes. However, there is in fact no direct linkage of the two concepts in the
implementation, and the named semaphore in fact does not need to have a corresponding relation
previously defined.

 libpq++ applications are notified whenever a connected backend has received an asynchronous
notification. However, the communication from the backend to the frontend is not asynchronous. The
libpq++ application must poll the backend to see if there is any pending notification information. After
the execution of a query, a frontend may call PgDatabase::Notifies to see if any notification data is
currently available from the backend. PgDatabase::Notifies returns the notification from a list of
unhandled notifications from the backend. The function eturns NULL if there is no pending notifications
from the backend. PgDatabase::Notifies behaves like the popping of a stack. Once a notification is
returned from PgDatabase::Notifies, it is considered handled and will be removed from the list of
notifications.

 PgDatabase::Notifies retrieves pending notifications from the server.

 PGnotify* PgDatabase::Notifies()

 The second sample program gives an example of the use of asynchronous notification.

3.6. Functions Associated with the COPY Command
 The copy command in Postgres has options to read from or write to the network connection used by
libpq++. Therefore, functions are necessary to access this network connection directly so applications
may take full advantage of this capability.

 PgDatabase::GetLine reads a newline-terminated line of characters (transmitted by the backend
server) into a buffer string of size length.

 int PgDatabase::GetLine(char* string, int length)

Chapter 3. libpq++ - C++ Binding Library

44

 Like the Unix system routine fgets (3), this routine copies up to length-1 characters into
string. It is like gets (3), however, in that it converts the terminating newline into a null
character.

 PgDatabase::GetLine returns EOF at end of file, 0 if the entire line has been read, and 1 if the
buffer is full but the terminating newline has not yet been read.

 Notice that the application must check to see if a new line consists of a single period ("."), which
indicates that the backend server has finished sending the results of the copy. Therefore, if the
application ever expects to receive lines that are more than length-1 characters long, the application
must be sure to check the return value of PgDatabase::GetLine very carefully.

 PgDatabase::PutLine Sends a null-terminated string to the backend server.

 void PgDatabase::PutLine(char* string)

 The application must explicitly send a single period character (".") to indicate to the backend that it
has finished sending its data.

 PgDatabase::EndCopy syncs with the backend.

 int PgDatabase::EndCopy()

 This function waits until the backend has finished processing the copy. It should either be issued
when the last string has been sent to the backend using PgDatabase::PutLine or when the last
string has been received from the backend using PgDatabase::GetLine. It must be issued or the
backend may get "out of sync" with the frontend. Upon return from this function, the backend is ready
to receive the next query.

 The return value is 0 on successful completion, nonzero otherwise.

 As an example:

PgDatabase data;
data.Exec("create table foo (a int4, b char(16), d double precision)");
data.Exec("copy foo from stdin");
data.PutLine("3\tHello World\t4.5\n");
data.PutLine("4\tGoodbye World\t7.11\n");
&...
data.PutLine("\\.\n");
data.EndCopy();

45

Chapter 4. pgtcl - TCL Binding Library
pgtcl is a tcl package for front-end programs to interface with Postgres backends. It makes most of the
functionality of libpq available to tcl scripts.

This package was originally written by Jolly Chen.

4.1. Commands
Table 4-1. pgtcl Commands

Command Description

pg_connect opens a connection to the backend server

pg_disconnect closes a connection

pg_conndefaults get connection options and their defaults

pg_exec send a query to the backend

pg_result manipulate the results of a query

pg_select loop over the result of a SELECT statement

pg_listen establish a callback for NOTIFY messages

pg_lo_creat create a large object

pg_lo_open open a large object

pg_lo_close close a large object

pg_lo_read read a large object

pg_lo_write write a large object

pg_lo_lseek seek to a position in a large object

pg_lo_tell return the current seek position of a large object

pg_lo_unlink delete a large object

pg_lo_import import a Unix file into a large object

pg_lo_export export a large object into a Unix file

These commands are described further on subsequent pages.

The pg_lo* routines are interfaces to the Large Object features of Postgres. The functions are designed
to mimic the analogous file system functions in the standard Unix file system interface. The pg_lo*
routines should be used within a BEGIN/END transaction block because the file descriptor returned by
pg_lo_open is only valid for the current transaction. pg_lo_import and pg_lo_export MUST be used in a
BEGIN/END transaction block.

Chapter 4. pgtcl - TCL Binding Library

46

4.2. Examples
Here’s a small example of how to use the routines:

getDBs :
get the names of all the databases at a given host and port number
with the defaults being the localhost and port 5432
return them in alphabetical order
proc getDBs { {host "localhost"} {port "5432"} } {
 # datnames is the list to be result
 set conn [pg_connect template1 -host $host -port $port]
 set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY
datname"]
 set ntups [pg_result $res -numTuples]
 for {set i 0} {$i < $ntups} {incr i} {
 lappend datnames [pg_result $res -getTuple $i]
 }
 pg_result $res -clear
 pg_disconnect $conn
 return $datnames
}

Chapter 4. pgtcl - TCL Binding Library

47

4.3. pgtcl Command Reference Information

pg_connect

Name

pg_connect � opens a connection to the backend server

Synopsis
pg_connect -conninfo connectOptions
pg_connect dbName [-host hostName]
 [-port portNumber] [-tty pqtty]
 [-options optionalBackendArgs]

Inputs (new style)

 connectOptions

 A string of connection options, each written in the form keyword = value.

Inputs (old style)

 dbName

 Specifies a valid database name.

 [-host hostName]

 Specifies the domain name of the backend server for dbName.

 [-port portNumber]

 Specifies the IP port number of the backend server for dbName.

 [-tty pqtty]

 Specifies file or tty for optional debug output from backend.

 [-options optionalBackendArgs]

 Specifies options for the backend server for dbName.

Outputs

 dbHandle

 If successful, a handle for a database connection is returned. Handles start with the prefix "pgsql".

Description

pg_connect opens a connection to the Postgres backend.

Chapter 4. pgtcl - TCL Binding Library

48

Two syntaxes are available. In the older one, each possible option has a separate option switch in the
pg_connect statement. In the newer form, a single option string is supplied that can contain multiple
option values. See pg_conndefaults for info about the available options in the newer syntax.

Usage

XXX thomas 1997-12-24

pg_disconnect

Name

pg_disconnect � closes a connection to the backend server

Synopsis

pg_disconnect dbHandle

Inputs

 dbHandle

 Specifies a valid database handle.

Outputs

 None

Description

pg_disconnect closes a connection to the Postgres backend.

Chapter 4. pgtcl - TCL Binding Library

49

pg_conndefaults

Name

pg_conndefaults � obtain information about default connection parameters

Synopsis

pg_conndefaults

Inputs

None.

Outputs

 option list

 The result is a list describing the possible connection options and their current default values. Each
entry in the list is a sublist of the format:

 {optname label dispchar dispsize value}

where the optname is usable as an option in pg_connect -conninfo.

Description

pg_conndefaults returns info about the connection options available in pg_connect -conninfo
and the current default value for each option.

Usage

pg_conndefaults

Chapter 4. pgtcl - TCL Binding Library

50

pg_exec

Name

pg_exec � send a query string to the backend

Synopsis

pg_exec dbHandle queryString

Inputs

 dbHandle

 Specifies a valid database handle.

 queryString

 Specifies a valid SQL query.

Outputs

 resultHandle

 A Tcl error will be returned if Pgtcl was unable to obtain a backend response. Otherwise, a query
result object is created and a handle for it is returned. This handle can be passed to pg_result to
obtain the results of the query.

Description

pg_exec submits a query to the Postgres backend and returns a result. Query result handles start with
the connection handle and add a period and a result number.

Note that lack of a Tcl error is not proof that the query succeeded! An error message returned by the
backend will be processed as a query result with failure status, not by generating a Tcl error in pg_exec.

Chapter 4. pgtcl - TCL Binding Library

51

pg_result

Name

pg_result � get information about a query result

Synopsis

pg_result resultHandle resultOption

Inputs

 resultHandle

 The handle for a query result.

 resultOption

 Specifies one of several possible options.

Options

-status

 the status of the result.

-error

 the error message, if the status indicates error; otherwise an empty string.

-conn

 the connection that produced the result.

-oid

 if the command was an INSERT, the OID of the inserted tuple; otherwise an empty string.

-numTuples

 the number of tuples returned by the query.

-numAttrs

 the number of attributes in each tuple.

-list VarName

 assign the results to a list of lists.

-assign arrayName

 assign the results to an array, using subscripts of the form (tupno,attributeName).

Chapter 4. pgtcl - TCL Binding Library

52

-assignbyidx arrayName ?appendstr?

 assign the results to an array using the first attribute’s value and the remaining attributes’ names as
keys. If appendstr is given then it is appended to each key. In short, all but the first field of each
tuple are stored into the array, using subscripts of the form (firstFieldValue,fieldNameAppendStr).

-getTuple tupleNumber

 returns the fields of the indicated tuple in a list. Tuple numbers start at zero.

-tupleArray tupleNumber arrayName

 stores the fields of the tuple in array arrayName, indexed by field names. Tuple numbers start at
zero.

-attributes

 returns a list of the names of the tuple attributes.

-lAttributes

 returns a list of sublists, {name ftype fsize} for each tuple attribute.

-clear

 clear the result query object.

Outputs

The result depends on the selected option, as described above.

Description

pg_result returns information about a query result created by a prior pg_exec.

You can keep a query result around for as long as you need it, but when you are done with it, be sure to
free it by executing pg_result -clear. Otherwise, you have a memory leak, and Pgtcl will
eventually start complaining that you’ve created too many query result objects.

Chapter 4. pgtcl - TCL Binding Library

53

pg_select

Name

pg_select � loop over the result of a SELECT statement

Synopsis
pg_select dbHandle queryString
 arrayVar queryProcedure

Inputs

 dbHandle

 Specifies a valid database handle.

 queryString

 Specifies a valid SQL select query.

 arrayVar

 Array variable for tuples returned.

 queryProcedure

 Procedure run on each tuple found.

Outputs

 resultHandle

 the return result is either an error message or a handle for a query result.

Description

pg_select submits a SELECT query to the Postgres backend, and executes a given chunk of code for
each tuple in the result. The queryString must be a SELECT statement. Anything else returns an
error. The arrayVar variable is an array name used in the loop. For each tuple, arrayVar is filled in
with the tuple field values, using the field names as the array indexes. Then the queryProcedure is
executed.

Usage

This would work if table "table" has fields "control" and "name" (and, perhaps, other fields):

 pg_select $pgconn "SELECT * from table" array {
 puts [format "%5d %s" array(control) array(name)]
 }

Chapter 4. pgtcl - TCL Binding Library

54

pg_listen

Name

pg_listen � sets or changes a callback for asynchronous NOTIFY messages

Synopsis

pg_listen dbHandle notifyName callbackCommand

Inputs

 dbHandle

 Specifies a valid database handle.

 notifyName

 Specifies the notify condition name to start or stop listening to.

 callbackCommand

 If present and not empty, provides the command string to execute when a matching notification
arrives.

Outputs

 None

Description

pg_listen creates, changes, or cancels a request to listen for asynchronous NOTIFY messages from
the Postgres backend. With a callbackCommand parameter, the request is established, or the command
string of an already existing request is replaced. With no callbackCommand parameter, a prior request is
canceled.

After a pg_listen request is established, the specified command string is executed whenever a
NOTIFY message bearing the given name arrives from the backend. This occurs when any Postgres
client application issues a NOTIFY command referencing that name. (Note that the name can be, but
does not have to be, that of an existing relation in the database.) The command string is executed from
the Tcl idle loop. That is the normal idle state of an application written with Tk. In non-Tk Tcl shells,
you can execute update or vwait to cause the idle loop to be entered.

You should not invoke the SQL statements LISTEN or UNLISTEN directly when using pg_listen.
Pgtcl takes care of issuing those statements for you. But if you want to send a NOTIFY message
yourself, invoke the SQL NOTIFY statement using pg_exec.

Chapter 4. pgtcl - TCL Binding Library

55

pg_lo_creat

Name

pg_lo_creat � create a large object

Synopsis

pg_lo_creat conn mode

Inputs

 conn

 Specifies a valid database connection.

 mode

 Specifies the access mode for the large object

Outputs

 objOid

 The oid of the large object created.

Description

pg_lo_creat creates an Inversion Large Object.

Usage

mode can be any OR’ing together of INV_READ, INV_WRITE, and INV_ARCHIVE. The OR
delimiter character is "|".

[pg_lo_creat $conn "INV_READ|INV_WRITE"]

Chapter 4. pgtcl - TCL Binding Library

56

pg_lo_open

Name

pg_lo_open � open a large object

Synopsis

pg_lo_open conn objOid mode

Inputs

 conn

 Specifies a valid database connection.

 objOid

 Specifies a valid large object oid.

 mode

 Specifies the access mode for the large object

Outputs

 fd

 A file descriptor for use in later pg_lo* routines.

Description

pg_lo_open open an Inversion Large Object.

Usage

Mode can be either "r", "w", or "rw".

Chapter 4. pgtcl - TCL Binding Library

57

pg_lo_close

Name

pg_lo_close � close a large object

Synopsis

pg_lo_close conn fd

Inputs

 conn

 Specifies a valid database connection.

 fd

 A file descriptor for use in later pg_lo* routines.

Outputs

None

Description

pg_lo_close closes an Inversion Large Object.

Usage

pg_lo_read

Name

pg_lo_read � read a large object

Synopsis

pg_lo_read conn fd bufVar len

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

Chapter 4. pgtcl - TCL Binding Library

58

 bufVar

 Specifies a valid buffer variable to contain the large object segment.

 len

 Specifies the maximum allowable size of the large object segment.

Outputs

None

Description

pg_lo_read reads at most len bytes from a large object into a variable named bufVar.

Usage

bufVar must be a valid variable name.

Chapter 4. pgtcl - TCL Binding Library

59

pg_lo_write

Name

pg_lo_write � write a large object

Synopsis

pg_lo_write conn fd buf len

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

 buf

 Specifies a valid string variable to write to the large object.

 len

 Specifies the maximum size of the string to write.

Outputs

None

Description

pg_lo_write writes at most len bytes to a large object from a variable buf.

Usage

buf must be the actual string to write, not a variable name.

Chapter 4. pgtcl - TCL Binding Library

60

pg_lo_lseek

Name

pg_lo_lseek � seek to a position in a large object

Synopsis

pg_lo_lseek conn fd offset whence

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

 offset

 Specifies a zero-based offset in bytes.

 whence

 whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET"

Outputs

None

Description

pg_lo_lseek positions to offset bytes from the beginning of the large object.

Usage

whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET".

Chapter 4. pgtcl - TCL Binding Library

61

pg_lo_tell

Name

pg_lo_tell � return the current seek position of a large object

Synopsis

pg_lo_tell conn fd

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

Outputs

 offset

 A zero-based offset in bytes suitable for input to pg_lo_lseek.

Description

pg_lo_tell returns the current to offset in bytes from the beginning of the large object.

Usage

pg_lo_unlink

Name

pg_lo_unlink � delete a large object

Synopsis

pg_lo_unlink conn lobjId

Inputs

 conn

 Specifies a valid database connection.

Chapter 4. pgtcl - TCL Binding Library

62

 lobjId

 Identifier for a large object. XXX Is this the same as objOid in other calls?? - thomas 1998-01-11

Outputs

None

Description

pg_lo_unlink deletes the specified large object.

Usage

pg_lo_import

Name

pg_lo_import � import a large object from a Unix file

Synopsis

pg_lo_import conn filename

Inputs

 conn

 Specifies a valid database connection.

 filename

 Unix file name.

Outputs

None XXX Does this return a lobjId? Is that the same as the objOid in other calls? thomas - 1998-01-11

Description

pg_lo_import reads the specified file and places the contents into a large object.

Usage

 pg_lo_import must be called within a BEGIN/END transaction block.

Chapter 4. pgtcl - TCL Binding Library

63

pg_lo_export

Name

pg_lo_export � export a large object to a Unix file

Synopsis

pg_lo_export conn lobjId filename

Inputs

 conn

 Specifies a valid database connection.

 lobjId

 Large object identifier. XXX Is this the same as the objOid in other calls?? thomas - 1998-01-11

 filename

 Unix file name.

Outputs

None XXX Does this return a lobjId? Is that the same as the objOid in other calls? thomas - 1998-01-11

Description

pg_lo_export writes the specified large object into a Unix file.

Usage

 pg_lo_export must be called within a BEGIN/END transaction block.

64

Chapter 5. libpgeasy - Simplified C Library
Author: Written by Bruce Momjian (<pgman@candle.pha.pa.us>) and last updated 2000-03-30

 pgeasy allows you to cleanly interface to the libpq library, more like a 4GL SQL interface.

 It consists of set of simplified C functions that encapsulate the functionality of libpq. The functions are:

PGresult *doquery(char *query);

PGconn *connectdb(char *options);

void disconnectdb();

int fetch(void *param,...);

int fetchwithnulls(void *param,...);

void reset_fetch();

void on_error_continue();

void on_error_stop();

PGresult *get_result();

void set_result(PGresult *newres);

void unset_result(PGresult *oldres);

 Many functions return a structure or value, so you can do more work with the result if required.

 You basically connect to the database with connectdb, issue your query with doquery, fetch the
results with fetch, and finish with disconnectdb.

 For SELECT queries, fetch allows you to pass pointers as parameters, and on return the variables are
filled with data from the binary cursor you opened. These binary cursors can not be used if you are
running the pgeasy client on a system with a different architecture than the database server. If you pass a
NULL pointer parameter, the column is skipped. fetchwithnulls allows you to retrieve the NULL
status of the field by passing an int* after each result pointer, which returns true or false if the field is
null. You can always use libpq functions on the PGresult pointer returned by doquery. reset_fetch
starts the fetch back at the beginning.

 get_result, set_result, and unset_result allow you to handle multiple result sets at the same
time.

 There are a variety of demonstration programs in the source directory.

65

Chapter 6. ecpg - Embedded SQL in C
 This describes an embedded SQL in C package for Postgres. It was written by Linus Tolke
(<linus@epact.se>) and Michael Meskes (<meskes@debian.org>). The package is installed with
the Postgres distribution.

Note: Permission is granted to copy and use in the same way as you are allowed to copy and use
the rest of PostgreSQL.

6.1. Why Embedded SQL?
 Embedded SQL has some small advantages over other ways to handle SQL queries. It takes care of all
the tedious moving of information to and from variables in your C program. Many RDBMS packages
support this embedded language.

 There is an ANSI-standard describing how the embedded language should work. ecpg was designed to
meet this standard as much as possible. So it is possible to port programs with embedded SQL written
for other RDBMS packages to Postgres and thus promoting the spirit of free software.

6.2. The Concept
 You write your program in C with some special SQL things. For declaring variables that can be used in
SQL statements you need to put them in a special declare section. You use a special syntax for the SQL
queries.

 Before compiling you run the file through the embedded SQL C preprocessor and it converts the SQL
statements you used to function calls with the variables used as arguments. Both variables that are used
as input to the SQL statements and variables that will contain the result are passed.

 Then you compile and at link time you link with a special library that contains the functions used.
These functions (actually it is mostly one single function) fetches the information from the arguments,
performs the SQL query using the ordinary interface (libpq) and puts back the result in the arguments
dedicated for output.

 Then you run your program and when the control arrives to the SQL statement the SQL statement is
performed against the database and you can continue with the result.

6.3. How To Use ecpg
 This section describes how to use the ecpg tool.

6.3.1. Preprocessor

 The preprocessor is called ecpg. After installation it resides in the Postgres bin/ directory.

Chapter 6. ecpg - Embedded SQL in C

66

6.3.2. Library

 The ecpg library is called libecpg.a or libecpg.so. Additionally, the library uses the libpq library
for communication to the Postgres server so you will have to link your program with -lecpg -lpq.

 The library has some methods that are "hidden" but that could prove very useful sometime.

 ECPGdebug(int on, FILE *stream) turns on debug logging if called with the first argument
non-zero. Debug logging is done on stream. Most SQL statement logs its arguments and result.

 The most important one (ECPGdo) that is called on almost all SQL statements logs both its expanded
string, i.e. the string with all the input variables inserted, and the result from the Postgres server. This
can be very useful when searching for errors in your SQL statements.

 ECPGstatus() This method returns TRUE if we are connected to a database and FALSE if not.

6.3.3. Error handling

 To be able to detect errors from the Postgres server you include a line like

 exec sql include sqlca;

 in the include section of your file. This will define a struct and a variable with the name sqlca as
following:

struct sqlca
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[70];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 /* 0: empty */
 /* 1: OID of processed tuple if applicable */
 /* 2: number of rows processed in an INSERT, UPDATE */
 /* or DELETE statement */
 /* 3: empty */
 /* 4: empty */
 /* 5: empty */
 char sqlwarn[8];
 /* 0: set to ’W’ if at least one other is ’W’ */
 /* 1: if ’W’ at least one character string */
 /* value was truncated when it was */
 /* stored into a host variable. */
 /* 2: empty */

Chapter 6. ecpg - Embedded SQL in C

67

 /* 3: empty */
 /* 4: empty */
 /* 5: empty */
 /* 6: empty */
 /* 7: empty */
 char sqlext[8];
} sqlca;

 If an error occured in the last SQL statement then sqlca.sqlcode will be non-zero. If
sqlca.sqlcode is less that 0 then this is some kind of serious error, like the database definition does
not match the query given. If it is bigger than 0 then this is a normal error like the table did not contain
the requested row.

 sqlca.sqlerrm.sqlerrmc will contain a string that describes the error. The string ends with the line
number in the source file.

 List of errors that can occur:

-12, Out of memory in line %d.

 Does not normally occur. This is a sign that your virtual memory is exhausted.

-200, Unsupported type %s on line %d.

 Does not normally occur. This is a sign that the preprocessor has generated something that the
library does not know about. Perhaps you are running incompatible versions of the preprocessor
and the library.

-201, Too many arguments line %d.

 This means that Postgres has returned more arguments than we have matching variables. Perhaps
you have forgotten a couple of the host variables in the INTO :var1,:var2-list.

-202, Too few arguments line %d.

 This means that Postgres has returned fewer arguments than we have host variables. Perhaps you
have too many host variables in the INTO :var1,:var2-list.

-203, Too many matches line %d.

 This means that the query has returned several lines but the variables specified are no arrays. The
SELECT you made probably was not unique.

-204, Not correctly formatted int type: %s line %d.

 This means that the host variable is of an int type and the field in the Postgres database is of
another type and contains a value that cannot be interpreted as an int. The library uses strtol for
this conversion.

Chapter 6. ecpg - Embedded SQL in C

68

-205, Not correctly formatted unsigned type: %s line %d.

 This means that the host variable is of an unsigned int type and the field in the Postgres
database is of another type and contains a value that cannot be interpreted as an unsigned int.
The library uses strtoul for this conversion.

-206, Not correctly formatted floating point type: %s line %d.

 This means that the host variable is of a float type and the field in the Postgres database is of
another type and contains a value that cannot be interpreted as an float. The library uses strtod
for this conversion.

-207, Unable to convert %s to bool on line %d.

 This means that the host variable is of a bool type and the field in the Postgres database is neither
’t’ nor ’f’.

-208, Empty query line %d.

 Postgres returned PGRES_EMPTY_QUERY, probably because the query indeed was empty.

-220, No such connection %s in line %d.

 The program tries to access a connection that does not exist.

-221, Not connected in line %d.

 The program tries to access a connection that does exist but is not open.

-230, Invalid statement name %s in line %d.

 The statement you are trying to use has not been prepared.

-400, Postgres error: %s line %d.

 Some Postgres error. The message contains the error message from the Postgres backend.

-401, Error in transaction processing line %d.

 Postgres signalled to us that we cannot start, commit or rollback the transaction.

-402, connect: could not open database %s.

 The connect to the database did not work.

100, Data not found line %d.

 This is a "normal" error that tells you that what you are quering cannot be found or we have gone
through the cursor.

6.4. Limitations
 What will never be included and why or what cannot be done with this concept.

Chapter 6. ecpg - Embedded SQL in C

69

Oracle’s single tasking possibility

 Oracle version 7.0 on AIX 3 uses the OS-supported locks on the shared memory segments and
allows the application designer to link an application in a so called single tasking way. Instead of
starting one client process per application process both the database part and the application part is
run in the same process. In later versions of Oracle this is no longer supported.

 This would require a total redesign of the Postgres access model and that effort can not justify the
performance gained.

6.5. Porting From Other RDBMS Packages
 The design of ecpg follows SQL standard. So porting from a standard RDBMS should not be a
problem. Unfortunately there is no such thing as a standard RDBMS. So ecpg also tries to understand
syntax additions as long as they do not create conflicts with the standard.

 The following list shows all the known incompatibilities. If you find one not listed please notify
Michael Meskes (meskes@debian.org). Note, however, that we list only incompatibilities from a
precompiler of another RDBMS to ecpg and not additional ecpg features that these RDBMS do not
have.

Syntax of FETCH command

 The standard syntax of the FETCH command is:

 FETCH [direction] [amount] IN|FROM cursor name.

 ORACLE, however, does not use the keywords IN resp. FROM. This feature cannot be added
since it would create parsing conflicts.

6.6. For the Developer
 This section is for those who want to develop the ecpg interface. It describes how the things work. The
ambition is to make this section contain things for those that want to have a look inside and the section
on How to use it should be enough for all normal questions. So, read this before looking at the internals
of the ecpg. If you are not interested in how it really works, skip this section.

6.6.1. ToDo List

 This version the preprocessor has some flaws:

Library functions

 to_date et al. do not exists. But then Postgres has some good conversion routines itself. So you
probably won’t miss these.

Chapter 6. ecpg - Embedded SQL in C

70

Structures ans unions

 Structures and unions have to be defined in the declare section.

Missing statements

 The following statements are not implemented thus far:

 exec sql allocate

 exec sql deallocate

 SQLSTATE

message ’no data found’

 The error message for "no data" in an exec sql insert select from statement has to be 100.

sqlwarn[6]

 sqlwarn[6] should be ’W’ if the PRECISION or SCALE value specified in a SET DESCRIPTOR
statement will be ignored.

6.6.2. The Preprocessor

 The first four lines written to the output are constant additions by ecpg. These are two comments and
two include lines necessary for the interface to the library.

 Then the preprocessor works in one pass only, reading the input file and writing to the output as it goes
along. Normally it just echoes everything to the output without looking at it further.

 When it comes to an EXEC SQL statements it intervenes and changes them depending on what it is.
The EXEC SQL statement can be one of these:

Declare sections

 Declare sections begins with

exec sql begin declare section;

 and ends with

exec sql end declare section;

 In the section only variable declarations are allowed. Every variable declare within this section is
also entered in a list of variables indexed on their name together with the corresponding type.

Chapter 6. ecpg - Embedded SQL in C

71

 In particular the definition of a structure or union also has to be listed inside a declare section.
Otherwise ecpg cannot handle these types since it simply does not know the definition.

 The declaration is echoed to the file to make the variable a normal C-variable also.

 The special types VARCHAR and VARCHAR2 are converted into a named struct for every
variable. A declaration like:

VARCHAR var[180];

 is converted into

struct varchar_var { int len; char arr[180]; } var;

Include statements

 An include statement looks like:

exec sql include filename;

 Note that this is NOT the same as

#include <filename.h>

 Instead the file specified is parsed by ecpg itself. So the contents of the specified file is included in
the resulting C code. This way you are able to specify EXEC SQL commands in an include file.

Connect statement

 A connect statement looks like:

exec sql connect to connection target;

 It creates a connection to the specified database.

 The connection target can be specified in the following ways:

dbname[@server][:port][as connection name][user user name]

tcp:postgresql://server[:port][/dbname][as connection name][user user name]

unix:postgresql://server[:port][/dbname][as connection name][user user name]

character variable[as connection name][user user name]

Chapter 6. ecpg - Embedded SQL in C

72

character string[as connection name][user]

default

user

 There are also different ways to specify the user name:

userid

userid/password

userid identified by password

userid using password

 Finally the userid and the password. Each may be a constant text, a character variable or a
chararcter string.

Disconnect statements

 A disconnect statement looks loke:

exec sql disconnect [connection target];

 It closes the connection to the specified database.

 The connection target can be specified in the following ways:

connection name

default

current

Chapter 6. ecpg - Embedded SQL in C

73

all

Open cursor statement

 An open cursor statement looks like:

exec sql open cursor;

 and is ignore and not copied from the output.

Commit statement

 A commit statement looks like

exec sql commit;

 and is translated on the output to

ECPGcommit(__LINE__);

Rollback statement

 A rollback statement looks like

exec sql rollback;

 and is translated on the output to

ECPGrollback(__LINE__);

Other statements

 Other SQL statements are other statements that start with exec sql and ends with ;. Everything
inbetween is treated as an SQL statement and parsed for variable substitution.

 Variable substitution occur when a symbol starts with a colon (:). Then a variable with that name
is looked for among the variables that were previously declared within a declare section and
depending on the variable being for input or output the pointers to the variables are written to the
output to allow for access by the function.

 For every variable that is part of the SQL request the function gets another ten arguments:

The type as a special symbol.
A pointer to the value or a pointer to the pointer.
The size of the variable if it is a char or varchar.
Number of elements in the array (for array fetches).
The offset to the next element in the array (for array fetches)

Chapter 6. ecpg - Embedded SQL in C

74

The type of the indicator variable as a special symbol.
A pointer to the value of the indicator variable or a pointer to the pointer of the indicator variable.
0.
Number of elements in the indicator array (for array fetches).
The offset to the next element in the indicator array (for array fetches)

6.6.3. A Complete Example

 Here is a complete example describing the output of the preprocessor of a file foo.pgc:

exec sql begin declare section;
int index;
int result;
exec sql end declare section;
...
exec sql select res into :result from mytable where index = :index;

 is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;
 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "select res from mytable where index = ? ",
 ECPGt_int,&(index),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
 ECPGt_int,&(result),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"

 (the indentation in this manual is added for readability and not something that the preprocessor can do.)

6.6.4. The Library

 The most important function in the library is the ECPGdo function. It takes a variable amount of
arguments. Hopefully we will not run into machines with limits on the amount of variables that can be
accepted by a vararg function. This could easily add up to 50 or so arguments.

Chapter 6. ecpg - Embedded SQL in C

75

 The arguments are:

A line number

 This is a line number for the original line used in error messages only.

A string

 This is the SQL request that is to be issued. This request is modified by the input variables, i.e. the
variables that where not known at compile time but are to be entered in the request. Where the
variables should go the string contains ";".

Input variables

 As described in the section about the preprocessor every input variable gets ten arguments.

ECPGt_EOIT

 An enum telling that there are no more input variables.

Output variables

 As described in the section about the preprocessor every input variable gets ten arguments. These
variables are filled by the function.

ECPGt_EORT

 An enum telling that there are no more variables.

 All the SQL statements are performed in one transaction unless you issue a commit transaction. To get
this auto-transaction going the first statement or the first after statement after a commit or rollback
always begins a transaction. To disable this feature per default use the -t option on the commandline.

 To be completed: entries describing the other entries.

76

Chapter 7. ODBC Interface
Note: Background information originally by Tim Goeke (<tgoeke@xpressway.com>)

 ODBC (Open Database Connectivity) is an abstract API that allows you to write applications that can
interoperate with various RDBMS servers. ODBC provides a product-neutral interface between frontend
applications and database servers, allowing a user or developer to write applications that are
transportable between servers from different manufacturers..

7.1. Background
 The ODBC API matches up on the backend to an ODBC-compatible data source. This could be
anything from a text file to an Oracle or Postgres RDBMS.

 The backend access come from ODBC drivers, or vendor specifc drivers that allow data access.
psqlODBC is such a driver, along with others that are available, such as the OpenLink ODBC drivers.

 Once you write an ODBC application, you should be able to connect to any back end database,
regardless of the vendor, as long as the database schema is the same.

 For example. you could have MS SQL Server and Postgres servers that have exactly the same data.
Using ODBC, your Windows application would make exactly the same calls and the back end data
source would look the same (to the Windows app).

7.2. Installation
 The first thing to note about the psqlODBC driver (or any ODBC driver) is that there must exist a
driver manager on the system where the ODBC driver is to be used. There exists a free ODBC driver
for Unix called iODBC which can be obtained via http://www.iodbc.org. Instructions for installing
iODBC are contained in the iODBC distribution. Having said that, any driver manager that you can find
for your platform should support the psqlODBC driver, or any other ODBC driver for that matter.

 To install psqlODBC you simply need to supply the --enable-odbc option to the configure script
when you are building the entire PostgreSQL distribution. The library and header files will then
automatically be built and installed with the rest of the programs. If you forget that option or want to
build the ODBC driver later you can change into the directory src/interfaces/odbc and do make
and make install there.

 The installation-wide configuration file odbcinst.ini will be installed into the directory
/usr/local/pgsql/etc/, or equivalent, depending on what --prefix and/or --sysconfdir
options you supplied to configure. Since this file can also be shared between different ODBC drivers
you can also install it in a shared location. To do that, override the location of this file with the
--with-odbcinst option.

 Additionally, you should install the ODBC catalog extensions. That will provide a number of functions
mandated by the ODBC standard that are not supplied by PostgreSQL by default. The file
/usr/local/pgsql/share/odbc.sql (in the default installation layout) contains the appropriate

Chapter 7. ODBC Interface

77

definitions, which you can install as follows:

psql -d template1 -f LOCATION/odbc.sql

 where specifying template1 as the target database will ensure that all subsequent new databases will
have these same definitions.

7.2.1. Supported Platforms

 psqlODBC has been built and tested on Linux. There have been reports of success with FreeBSD and
with Solaris. There are no known restrictions on the basic code for other platforms which already
support Postgres.

7.3. Configuration Files
 ~/.odbc.ini contains user-specified access information for the psqlODBC driver. The file uses
conventions typical for Windows Registry files, but despite this restriction can be made to work.

 The .odbc.ini file has three required sections. The first is [ODBC Data Sources] which is a list of
arbitrary names and descriptions for each database you wish to access. The second required section is
the Data Source Specification and there will be one of these sections for each database. Each section
must be labeled with the name given in [ODBC Data Sources] and must contain the following
entries:

Driver = prefix/lib/libpsqlodbc.so
Database=DatabaseName
Servername=localhost
Port=5432

Tip: Remember that the Postgres database name is usually a single word, without path names of
any sort. The Postgres server manages the actual access to the database, and you need only
specify the name from the client.

 Other entries may be inserted to control the format of the display. The third required section is [ODBC]
which must contain the InstallDir keyword and which may contain other options.

 Here is an example .odbc.ini file, showing access information for three databases:

[ODBC Data Sources]
DataEntry = Read/Write Database
QueryOnly = Read-only Database
Test = Debugging Database
Default = Postgres Stripped

[DataEntry]
ReadOnly = 0
Servername = localhost
Database = Sales

Chapter 7. ODBC Interface

78

[QueryOnly]
ReadOnly = 1
Servername = localhost
Database = Sales

[Test]
Debug = 1
CommLog = 1
ReadOnly = 0
Servername = localhost
Username = tgl
Password = "no$way"
Port = 5432
Database = test

[Default]
Servername = localhost
Database = tgl
Driver = /opt/postgres/current/lib/libpsqlodbc.so

[ODBC]
InstallDir = /opt/applix/axdata/axshlib

7.4. Windows Applications
 In the real world, differences in drivers and the level of ODBC support lessens the potential of ODBC:

 Access, Delphi, and Visual Basic all support ODBC directly.
 Under C++, such as Visual C++, you can use the C++ ODBC API.
 In Visual C++, you can use the CRecordSet class, which wraps the ODBC API set within an MFC
4.2 class. This is the easiest route if you are doing Windows C++ development under Windows NT.

7.4.1. Writing Applications

 � If I write an application for Postgres can I write it using ODBC calls to the Postgres server, or is that
only when another database program like MS SQL Server or Access needs to access the data? �

 The ODBC API is the way to go. For Visual C++ coding you can find out more at Microsoft’s web site
or in your VC++ docs.

 Visual Basic and the other RAD tools have Recordset objects that use ODBC directly to access data.
Using the data-aware controls, you can quickly link to the ODBC back end database (very quickly).

 Playing around with MS Access will help you sort this out. Try using File->Get External Data.

Tip: You’ll have to set up a DSN first.

Chapter 7. ODBC Interface

79

7.5. ApplixWare
 ApplixWare has an ODBC database interface supported on at least some platforms. ApplixWare 4.4.2
has been demonstrated under Linux with Postgres 7.0 using the psqlODBC driver contained in the
Postgres distribution.

7.5.1. Configuration

 ApplixWare must be configured correctly in order for it to be able to access the Postgres ODBC
software drivers.

Enabling ApplixWare Database Access

 These instructions are for the 4.4.2 release of ApplixWare on Linux. Refer to the Linux Sys Admin
on-line book for more detailed information.

1. You must modify axnet.cnf so that elfodbc can find libodbc.so (the ODBC driver manager)
shared library. This library is included with the ApplixWare distribution, but axnet.cnf needs to
be modified to point to the correct location.

 As root, edit the file applixroot/applix/axdata/axnet.cnf.

a. At the bottom of axnet.cnf, find the line that starts with

#libFor elfodbc /ax/...

b. Change line to read

libFor elfodbc applixroot/applix/axdata/axshlib/lib

 which will tell elfodbc to look in this directory for the ODBC support library. Typically
Applix is installed in /opt so the full path would be
/opt/applix/axdata/axshlib/lib, but if you have installed Applix somewhere else
then change the path accordingly.

2. Create .odbc.ini as described above. You may also want to add the flag

TextAsLongVarchar=0

 to the database-specific portion of .odbc.ini so that text fields will not be shown as **BLOB**.

Testing ApplixWare ODBC Connections

1. Bring up Applix Data

2. Select the Postgres database of interest.

a. Select Query->Choose Server.

b. Select ODBC, and click Browse. The database you configured in .odbc.ini should be
shown. Make sure that the Host: field is empty (if it is not, axnet will try to contact
axnet on another machine to look for the database).

Chapter 7. ODBC Interface

80

c. Select the database in the box that was launched by Browse, then click OK.

d. Enter username and password in the login identification dialog, and click OK.

 You should see "Starting elfodbc server" in the lower left corner of the data window. If you
get an error dialog box, see the debugging section below.

3. The ’Ready’ message will appear in the lower left corner of the data window. This indicates that
you can now enter queries.

4. Select a table from Query->Choose tables, and then select Query->Query to access the database.
The first 50 or so rows from the table should appear.

7.5.2. Common Problems

 The following messages can appear while trying to make an ODBC connection through Applix Data:

 Cannot launch gateway on server

 elfodbc can’t find libodbc.so. Check your axnet.cnf.

 Error from ODBC Gateway: IM003::[iODBC][Driver Manager]Specified driver could not be loaded

 libodbc.so cannot find the driver listed in .odbc.ini. Verify the settings.

 Server: Broken Pipe

 The driver process has terminated due to some other problem. You might not have an up-to-date
version of the Postgres ODBC package.

 setuid to 256: failed to launch gateway

 The September release of ApplixWare v4.4.1 (the first release with official ODBC support under
Linux) shows problems when usernames exceed eight (8) characters in length. Problem description
ontributed by Steve Campbell (<scampbell@lear.com>).

Author: Contributed by Steve Campbell (<scampbell@lear.com>), 1998-10-20

 The axnet program’s security system seems a little suspect. axnet does things on behalf of the user and
on a true multiple user system it really should be run with root security (so it can read/write in each
user’s directory). I would hesitate to recommend this, however, since we have no idea what security
holes this creates.

7.5.3. Debugging ApplixWare ODBC Connections

 One good tool for debugging connection problems uses the Unix system utility strace.

Debugging with strace

1. Start applixware.

2. Start an strace on the axnet process. For example, if

Chapter 7. ODBC Interface

81

% ps -aucx | grep ax

 shows

cary 10432 0.0 2.6 1740 392 ? S Oct 9 0:00 axnet
cary 27883 0.9 31.0 12692 4596 ? S 10:24 0:04 axmain

 Then run

% strace -f -s 1024 -p 10432

3. Check the strace output.

Note from Cary: Many of the error messages from ApplixWare go to stderr, but I’m not sure
where stderr is sent, so strace is the way to find out.

 For example, after getting a "Cannot launch gateway on server", I ran strace on axnet and got

[pid 27947] open("/usr/lib/libodbc.so", O_RDONLY) = -1 ENOENT
(No such file or directory)
[pid 27947] open("/lib/libodbc.so", O_RDONLY) = -1 ENOENT
(No such file or directory)
[pid 27947] write(2, "/usr2/applix/axdata/elfodbc:
can’t load library ’libodbc.so’\n", 61) = -1 EIO (I/O error)

 So what is happening is that applix elfodbc is searching for libodbc.so, but it can’t find it. That is why
axnet.cnf needed to be changed.

7.5.4. Running the ApplixWare Demo

 In order to go through the ApplixWare Data Tutorial, you need to create the sample tables that the
Tutorial refers to. The ELF Macro used to create the tables tries to use a NULL condition on many of
the database columns, and Postgres does not currently allow this option.

 To get around this problem, you can do the following:

Modifying the ApplixWare Demo

1. Copy /opt/applix/axdata/eng/Demos/sqldemo.am to a local directory.

2. Edit this local copy of sqldemo.am:

a. Search for ’null_clause = "NULL"

b. Change this to null_clause = ""

3. Start Applix Macro Editor.

4. Open the sqldemo.am file from the Macro Editor.

5. Select File->Compile and Save.

Chapter 7. ODBC Interface

82

6. Exit Macro Editor.

7. Start Applix Data.

8. Select *->Run Macro

9. Enter the value "sqldemo", then click OK.

 You should see the progress in the status line of the data window (in the lower left corner).

10. You should now be able to access the demo tables.

7.5.5. Useful Macros

 You can add information about your database login and password to the standard Applix start-up macro
file. This is an example ~/axhome/macros/login.am file:

macro login
set_set_system_var@("sql_username@","tgl")
set_system_var@("sql_passwd@","no$way")
endmacro

Caution
 You should be careful about the file protections on any file containing username and
password information.

83

Chapter 8. JDBC Interface
Author: Written by Peter T. Mount (<peter@retep.org.uk>), the author of the JDBC driver.

 JDBC is a core API of Java 1.1 and later. It provides a standard set of interfaces to SQL-compliant
databases.

 Postgres provides a type 4 JDBC Driver. Type 4 indicates that the driver is written in Pure Java, and
communicates in the database system’s own network protocol. Because of this, the driver is platform
independent; once compiled, the driver can be used on any system.

 This chapter is not intended as a complete guide to JDBC programming, but should help to get you
started. For more information refer to the standard JDBC API documentation. Also, take a look at the
examples included with the source. The basic example is used here.

8.1. Setting up the JDBC Driver

8.1.1. Building the Driver

 Precompiled versions of the driver are regularly made available on the PostgreSQL JDBC web site
(http://jdbc.postgresql.org). Here we describe how to build the driver manually.

 Starting with PostgreSQL version 7.1, the JDBC driver is built using Ant, a special tool for building
Java-based packages. You should download Ant from the Ant web site
(http://jakarta.apache.org/ant/index.html) and install it before proceeding. Precompiled Ant distributions
are typically set up to read a file .antrc in the current user’s home directory for configuration. For
example, to use a different JDK than the default, this may work:

JAVA_HOME=/usr/local/sun-jdk1.3
JAVACMD=$JAVA_HOME/bin/java

 The build the driver, add the --with-java option to your configure command line, e.g.,

$./configure --prefix=xxx --with-java ...

 This will build and install the driver along with the rest of the PostgreSQL package when you issue the
gmake and gmake install commands. If you only want to build the driver and not the rest of
PostgreSQL, change into the directory src/interfaces/jdbc and issue the respective make
command there. Refer to the PostgreSQL installation instructions for more information about the
configuration and build process.

Note: Do not try to build by calling javac directly, as the driver uses some dynamic loading
techniques for performance reasons, and javac cannot cope. Do not try to run ant directly either,
because some configuration information is communicated through the makefiles. Running ant
directly without providing these parameters will result in a broken driver.

Chapter 8. JDBC Interface

84

8.1.2. Setting up the Class Path

 To use the driver, the jar archive postgresql.jar needs to be included in the class path, either by
putting it in the CLASSPATH environment variable, or by using flags on the java command line. By
default, the jar archive is installed in the directory /usr/local/pgsql/share/java. You may have it
in a different directory if you used the --prefix option when you ran configure.

 For instance, I have an application that uses the JDBC driver to access a large database containing
astronomical objects. I have the application and the JDBC driver installed in the /usr/local/lib
directory, and the Java JDK installed in /usr/local/jdk1.1.6. To run the application, I would use:
export
CLASSPATH=/usr/local/lib/finder.jar:/usr/local/pgsql/share/java/postgresql.j-

ar:.
java uk.org.retep.finder.Main

 finder.jar contains my application.

 Loading the driver from within the application is covered in Section 8.2.

8.1.3. Preparing the Database for JDBC

 Because Java can only use TCP/IP connections, the Postgres server must be configured to accept
TCP/IP connections, for instance by supplying the -i option flag when starting the postmaster.

 Also, the client authentication setup in the pg_hba.conf file may need to be configured. Refer to the
Administrator’s Guide for details. The JDBC Driver supports trust, ident, password, and crypt
authentication methods.

8.2. Using the Driver

8.2.1. Importing JDBC

 Any source that uses JDBC needs to import the java.sql package, using:

import java.sql.*;

Important: Do not import the org.postgresql package. If you do, your source will not compile, as
javac will get confused.

8.2.2. Loading the Driver

 Before you can connect to a database, you need to load the driver. There are two methods available, and
it depends on your code which is the best one to use.

Chapter 8. JDBC Interface

85

 In the first method, your code implicitly loads the driver using the Class.forName() method. For
Postgres, you would use:

Class.forName("org.postgresql.Driver");

 This will load the driver, and while loading, the driver will automatically register itself with JDBC.

Note: The forName() method can throw a ClassNotFoundException if the driver is not available.

 This is the most common method to use, but restricts your code to use just Postgres. If your code may
access another database system in the future, and you do not use any Postgres-specific extensions, then
the second method is advisable.

 The second method passes the driver as a parameter to the JVM as it starts, using the -D argument.
Example:

java -Djdbc.drivers=org.postgresql.Driver example.ImageViewer

 In this example, the JVM will attempt to load the driver as part of its initialization. Once done, the
ImageViewer is started.

 Now, this method is the better one to use because it allows your code to be used with other database
packages without recompiling the code. The only thing that would also change is the connection URL,
which is covered next.

 One last thing: When your code then tries to open a Connection, and you get a No driver available
SQLException being thrown, this is probably caused by the driver not being in the class path, or the
value in the parameter not being correct.

8.2.3. Connecting to the Database

 With JDBC, a database is represented by a URL (Uniform Resource Locator). With Postgres, this takes
one of the following forms:

jdbc:postgresql:database

jdbc:postgresql://host/database

jdbc:postgresql://host:port/database

 where:

 host

 The host name of the server. Defaults to localhost.

 port

 The port number the server is listening on. Defaults to the Postgres standard port number (5432).

 database

 The database name.

Chapter 8. JDBC Interface

86

 To connect, you need to get a Connection instance from JDBC. To do this, you would use the
DriverManager.getConnection() method:

Connection db = DriverManager.getConnection(url, username, password);

8.2.4. Closing the Connection

 To close the database connection, simply call the close() method to the Connection:

db.close();

8.3. Issuing a Query and Processing the Result
 Any time you want to issue SQL statements to the database, you require a Statement instance. Once
you have a Statement, you can use the executeQuery() method to issue a query. This will return a
ResultSet instance, which contains the entire result. Example 8-1 illustrates this process.

Example 8-1. Processing a Simple Query in JDCB

 This example with issue a simple query and print out the first column of each row.
Statement st = db.createStatement();
ResultSet rs = st.executeQuery("SELECT * FROM mytable");
while(rs.next()) {
 System.out.print("Column 1 returned ");
 System.out.println(rs.getString(1));
}
rs.close();
st.close();

8.3.1. Using the Statement Interface

 The following must be considered when using the Statement interface:

 You can use a single Statement instance as many times as you want. You could create one as soon
as you open the connection and use it for the connection’s lifetime. But you have to remember that
only one ResultSet can exist per Statement.

 If you need to perform a query while processing a ResultSet, you can simply create and use
another Statement.

 If you are using threads, and several are using the database, you must use a separate Statement for
each thread. Refer to Section 8.7 if you are thinking of using threads, as it covers some important
points.

Chapter 8. JDBC Interface

87

8.3.2. Using the ResultSet Interface

 The following must be considered when using the ResultSet interface:

 Before reading any values, you must call next(). This returns true if there is a result, but more
importantly, it prepares the row for processing.

 Under the JDBC specification, you should access a field only once. It is safest to stick to this rule,
although at the current time, the Postgres driver will allow you to access a field as many times as you
want.

 You must close a ResultSet by calling close() once you have finished using it.

 Once you make another query with the Statement used to create a ResultSet, the currently open
ResultSet instance is closed automatically.

8.4. Performing Updates
 To perform an update (or any other SQL statement that does not return a result), you simply use the
executeUpdate() method:

st.executeUpdate("CREATE TABLE basic (a int, b int)");

8.5. Using Large Objects
 In Postgres, Large Objects (also known as BLOBs) are used to hold data in the database that cannot be
stored in a normal SQL table. They are stored in a separate table in a special format, and are referred to
from your own tables by an OID value.

Important: For Postgres, you must access Large Objects within an SQL transaction. You would
open a transaction by using the setAutoCommit() method with an input parameter of false:

Connection mycon;

...

mycon.setAutoCommit(false);

... // now use Large Objects

 There are two methods of using Large Objects. The first is the standard JDBC way, and is documented
here. The other, uses PostgreSQL extensions to the API, which presents the libpq large object API to
Java, providing even better access to large objects than the standard. Internally, the driver uses the
extension to provide large object support.

 In JDBC, the standard way to access Large Objects is using the getBinaryStream() method in
ResultSet, and setBinaryStream() method in PreparedStatement. These methods make the
large object appear as a Java stream, allowing you to use the java.io package, and others, to
manipulate the object. Example 8-2 illustrates the usage of this approach.

Chapter 8. JDBC Interface

88

Example 8-2. Using the JDBC Large Object Interface

 For example, suppose you have a table containing the file name of an image and you have a large object
containing that image:
CREATE TABLE images (imgname text, imgoid oid);

 To insert an image, you would use:
File file = new File("myimage.gif");
FileInputStream fis = new FileInputStream(file);
PreparedStatement ps = conn.prepareStatement("INSERT INTO images VALUES (?,
?)");

ps.setString(1, file.getName());
ps.setBinaryStream(2, fis, file.length());
ps.executeUpdate();
ps.close();
fis.close();

 The question marks must appear literally. The actual data is substituted by the next lines.

 Here, setBinaryStream transfers a set number of bytes from a stream into a Large Object, and stores
the OID into the field holding a reference to it. Notice that the creation of the Large Object itself in the
database happens transparently.

 Retrieving an image is even easier. (We use PreparedStatement here, but the Statement class can
equally be used.)
PreparedStatement ps = con.prepareStatement("SELECT oid FROM images WHERE
name=?");
ps.setString(1, "myimage.gif");
ResultSet rs = ps.executeQuery();
if (rs != null) {
 while(rs.next()) {
 InputStream is = rs.getBinaryInputStream(1);
 // use the stream in some way here
 is.close();
 }
 rs.close();
}
ps.close();

 Here you can see how the Large Object is retrieved as an InputStream. You will also notice that we
close the stream before processing the next row in the result. This is part of the JDBC specification,
which states that any InputStream returned is closed when ResultSet.next() or
ResultSet.close() is called.

8.6. PostgreSQL Extensions to the JDBC API
 Postgres is an extensible database system. You can add your own functions to the backend, which can
then be called from queries, or even add your own data types. As these are facilities unique to Postgres,

Chapter 8. JDBC Interface

89

we support them from Java, with a set of extension API’s. Some features within the core of the standard
driver actually use these extensions to implement Large Objects, etc.

8.6.1. Accessing the Extensions

 To access some of the extensions, you need to use some extra methods in the
org.postgresql.Connection class. In this case, you would need to case the return value of
Driver.getConnection(). For example:

Connection db = Driver.getConnection(url, username, password);
// ...
// later on
Fastpath fp = ((org.postgresql.Connection)db).getFastpathAPI();

8.6.1.1. Class org.postgresql.Connection

public class Connection extends Object implements Connection

java.lang.Object
 |
 +----org.postgresql.Connection

 These are the extra methods used to gain access to PostgreSQL’s extensions. Methods defined by
java.sql.Connection are not listed.

8.6.1.1.1. Methods

public Fastpath getFastpathAPI() throws SQLException

 This returns the Fastpath API for the current connection. It is primarily used by the Large Object
API.

 The best way to use this is as follows:

import org.postgresql.fastpath.*;
...
Fastpath fp = ((org.postgresql.Connection)myconn).getFastpathAPI();

 where myconn is an open Connection to PostgreSQL.

Returns: Fastpath object allowing access to functions on the PostgreSQL backend.

Throws: SQLException by Fastpath when initializing for first time

public LargeObjectManager getLargeObjectAPI() throws SQLException

 This returns the Large Object API for the current connection.

 The best way to use this is as follows:

import org.postgresql.largeobject.*;
...
LargeObjectManager lo =
((org.postgresql.Connection)myconn).getLargeObjectAPI();

Chapter 8. JDBC Interface

90

 where myconn is an open Connection to PostgreSQL.

Returns: LargeObject object that implements the API

Throws: SQLException by LargeObject when initializing for first time

public void addDataType(String type, String name)

 This allows client code to add a handler for one of PostgreSQL’s more unique data types. Normally,
a data type not known by the driver is returned by ResultSet.getObject() as a PGobject instance. This
method allows you to write a class that extends PGobject, and tell the driver the type name, and class
name to use. The down side to this, is that you must call this method each time a connection is made.

 The best way to use this is as follows:

 ...
((org.postgresql.Connection)myconn).addDataType("mytype","my.class.name");
 ...

 where myconn is an open Connection to PostgreSQL. The handling class must extend
org.postgresql.util.PGobject.

8.6.1.2. Class org.postgresql.Fastpath

public class Fastpath extends Object

java.lang.Object
 |
 +----org.postgresql.fastpath.Fastpath

 Fastpath is an API that exists within the libpq C interface, and allows a client machine to execute a
function on the database backend. Most client code will not need to use this method, but it is provided
because the Large Object API uses it.

 To use, you need to import the org.postgresql.fastpath package, using the line:

import org.postgresql.fastpath.*;

 Then, in your code, you need to get a FastPath object:

Fastpath fp = ((org.postgresql.Connection)conn).getFastpathAPI();

 This will return an instance associated with the database connection that you can use to issue
commands. The casing of Connection to org.postgresql.Connection is required, as the
getFastpathAPI() is an extension method, not part of JDBC. Once you have a Fastpath instance,
you can use the fastpath() methods to execute a backend function.

See Also: FastpathFastpathArg, LargeObject

8.6.1.2.1. Methods

public Object fastpath(int fnid,
 boolean resulttype,
 FastpathArg args[]) throws SQLException

Chapter 8. JDBC Interface

91

 Send a function call to the PostgreSQL backend.

Parameters: fnid - Function id resulttype - True if the result is an integer, false for other results args -
FastpathArguments to pass to fastpath

Returns: null if no data, Integer if an integer result, or byte[] otherwise

public Object fastpath(String name,
 boolean resulttype,
 FastpathArg args[]) throws SQLException

 Send a function call to the PostgreSQL backend by name.

Note: The mapping for the procedure name to function id needs to exist, usually to an earlier call
to addfunction(). This is the preferred method to call, as function id’s can/may change between
versions of the backend. For an example of how this works, refer to org.postgresql.LargeObject

Parameters: name - Function name resulttype - True if the result is an integer, false for other results
args - FastpathArguments to pass to fastpath

Returns: null if no data, Integer if an integer result, or byte[] otherwise

See Also: LargeObject

public int getInteger(String name,
 FastpathArg args[]) throws SQLException

 This convenience method assumes that the return value is an Integer

Parameters: name - Function name args - Function arguments

Returns: integer result

Throws: SQLException if a database-access error occurs or no result

public byte[] getData(String name,
 FastpathArg args[]) throws SQLException

 This convenience method assumes that the return value is binary data.

Parameters: name - Function name args - Function arguments

Returns: byte[] array containing result

Throws: SQLException if a database-access error occurs or no result

public void addFunction(String name,
 int fnid)

 This adds a function to our look-up table. User code should use the addFunctions method, which is
based upon a query, rather than hard coding the oid. The oid for a function is not guaranteed to remain
static, even on different servers of the same version.

public void addFunctions(ResultSet rs) throws SQLException

 This takes a ResultSet containing two columns. Column 1 contains the function name, Column 2
the oid. It reads the entire ResultSet, loading the values into the function table.

Chapter 8. JDBC Interface

92

Important: Remember to close() the ResultSet after calling this!

Implementation note about function name look-ups: PostgreSQL stores the function id’s and
their corresponding names in the pg_proc table. To speed things up locally, instead of querying
each function from that table when required, a Hashtable is used. Also, only the function’s
required are entered into this table, keeping connection times as fast as possible.

The org.postgresql.LargeObject class performs a query upon its start-up, and passes the
returned ResultSet to the addFunctions() method here. Once this has been done, the Large
Object API refers to the functions by name.

Do not think that manually converting them to the oid’s will work. Okay, they will for now, but they
can change during development (there was some discussion about this for V7.0), so this is
implemented to prevent any unwarranted headaches in the future.

See Also: LargeObjectManager

public int getID(String name) throws SQLException

 This returns the function id associated by its name If addFunction() or addFunctions() have not been
called for this name, then an SQLException is thrown.

8.6.1.3. Class org.postgresql.fastpath.FastpathArg

public class FastpathArg extends Object

java.lang.Object
 |
 +----org.postgresql.fastpath.FastpathArg

 Each fastpath call requires an array of arguments, the number and type dependent on the function being
called. This class implements methods needed to provide this capability.

 For an example on how to use this, refer to the org.postgresql.LargeObject package.

See Also: Fastpath, LargeObjectManager, LargeObject

8.6.1.3.1. Constructors

public FastpathArg(int value)

 Constructs an argument that consists of an integer value

Parameters: value - int value to set

public FastpathArg(byte bytes[])

 Constructs an argument that consists of an array of bytes

Parameters: bytes - array to store

public FastpathArg(byte buf[],
 int off,
 int len)

 Constructs an argument that consists of part of a byte array

Chapter 8. JDBC Interface

93

Parameters:

buf

 source array

off

 offset within array

len

 length of data to include

public FastpathArg(String s)

 Constructs an argument that consists of a String.

8.6.2. Geometric Data Types

 PostgreSQL has a set of data types that can store geometric features into a table. These include single
points, lines, and polygons. We support these types in Java with the org.postgresql.geometric package. It
contains classes that extend the org.postgresql.util.PGobject class. Refer to that class for details on how
to implement your own data type handlers.

Class org.postgresql.geometric.PGbox

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGbox

 public class PGbox extends PGobject implements Serializable,
Cloneable

 This represents the box data type within PostgreSQL.

Variables

 public PGpoint point[]

 These are the two corner points of the box.

Constructors

 public PGbox(double x1,
 double y1,
 double x2,
 double y2)

Chapter 8. JDBC Interface

94

 Parameters:
 x1 - first x coordinate
 y1 - first y coordinate
 x2 - second x coordinate
 y2 - second y coordinate

 public PGbox(PGpoint p1,
 PGpoint p2)

 Parameters:
 p1 - first point
 p2 - second point

 public PGbox(String s) throws SQLException

 Parameters:
 s - Box definition in PostgreSQL syntax

 Throws: SQLException
 if definition is invalid

 public PGbox()

 Required constructor

Methods

 public void setValue(String value) throws SQLException

 This method sets the value of this object. It should be
overridden, but still called by subclasses.

 Parameters:
 value - a string representation of the value of the
object
 Throws: SQLException
 thrown if value is invalid for this type

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

Chapter 8. JDBC Interface

95

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:
 the PGbox in the syntax expected by PostgreSQL

 Overrides:
 getValue in class PGobject

Class org.postgresql.geometric.PGcircle

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGcircle

 public class PGcircle extends PGobject implements Serializable,
Cloneable

 This represents PostgreSQL’s circle data type, consisting of a point
and a radius

Variables

 public PGpoint center

 This is the center point

public double radius

 This is the radius

Constructors

 public PGcircle(double x,
 double y,
 double r)

 Parameters:
 x - coordinate of center
 y - coordinate of center
 r - radius of circle

 public PGcircle(PGpoint c,
 double r)

Chapter 8. JDBC Interface

96

 Parameters:
 c - PGpoint describing the circle’s center
 r - radius of circle

 public PGcircle(String s) throws SQLException

 Parameters:
 s - definition of the circle in PostgreSQL’s syntax.

 Throws: SQLException
 on conversion failure

 public PGcircle()

 This constructor is used by the driver.

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - definition of the circle in PostgreSQL’s syntax.

 Throws: SQLException
 on conversion failure

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:
 the PGcircle in the syntax expected by PostgreSQL

Chapter 8. JDBC Interface

97

 Overrides:
 getValue in class PGobject

Class org.postgresql.geometric.PGline

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGline

 public class PGline extends PGobject implements Serializable,
Cloneable

 This implements a line consisting of two points. Currently line is
not yet implemented in the backend, but this class ensures that when
it’s done were ready for it.

Variables

 public PGpoint point[]

 These are the two points.

Constructors

 public PGline(double x1,
 double y1,
 double x2,
 double y2)

 Parameters:
 x1 - coordinate for first point
 y1 - coordinate for first point
 x2 - coordinate for second point
 y2 - coordinate for second point

 public PGline(PGpoint p1,
 PGpoint p2)

 Parameters:
 p1 - first point
 p2 - second point

 public PGline(String s) throws SQLException

 Parameters:
 s - definition of the circle in PostgreSQL’s syntax.

 Throws: SQLException
 on conversion failure

Chapter 8. JDBC Interface

98

 public PGline()

 required by the driver

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - Definition of the line segment in PostgreSQL’s
syntax

 Throws: SQLException
 on conversion failure

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:
 the PGline in the syntax expected by PostgreSQL

 Overrides:
 getValue in class PGobject

Class org.postgresql.geometric.PGlseg

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGlseg

 public class PGlseg extends PGobject implements Serializable,

Chapter 8. JDBC Interface

99

Cloneable

 This implements a lseg (line segment) consisting of two points

Variables

 public PGpoint point[]

 These are the two points.

Constructors

 public PGlseg(double x1,
 double y1,
 double x2,
 double y2)

 Parameters:

 x1 - coordinate for first point
 y1 - coordinate for first point
 x2 - coordinate for second point
 y2 - coordinate for second point

 public PGlseg(PGpoint p1,
 PGpoint p2)

 Parameters:
 p1 - first point
 p2 - second point

 public PGlseg(String s) throws SQLException

 Parameters:
 s - definition of the circle in PostgreSQL’s syntax.

 Throws: SQLException
 on conversion failure

 public PGlseg()

 required by the driver

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - Definition of the line segment in PostgreSQL’s
syntax

 Throws: SQLException
 on conversion failure

Chapter 8. JDBC Interface

100

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:
 the PGlseg in the syntax expected by PostgreSQL

 Overrides:
 getValue in class PGobject

Class org.postgresql.geometric.PGpath

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGpath

 public class PGpath extends PGobject implements Serializable,
Cloneable

 This implements a path (a multiply segmented line, which may be
closed)

Variables

 public boolean open

 True if the path is open, false if closed

 public PGpoint points[]

 The points defining this path

Chapter 8. JDBC Interface

101

Constructors

 public PGpath(PGpoint points[],
 boolean open)

 Parameters:
 points - the PGpoints that define the path
 open - True if the path is open, false if closed

 public PGpath()

 Required by the driver

 public PGpath(String s) throws SQLException

 Parameters:
 s - definition of the circle in PostgreSQL’s syntax.

 Throws: SQLException
 on conversion failure

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - Definition of the path in PostgreSQL’s syntax

 Throws: SQLException
 on conversion failure

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

Chapter 8. JDBC Interface

102

 public String getValue()

 This returns the polygon in the syntax expected by
PostgreSQL

 Overrides:
 getValue in class PGobject

 public boolean isOpen()

 This returns true if the path is open

 public boolean isClosed()

 This returns true if the path is closed

 public void closePath()

 Marks the path as closed

 public void openPath()

 Marks the path as open

Class org.postgresql.geometric.PGpoint

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGpoint

 public class PGpoint extends PGobject implements Serializable,
Cloneable

 This implements a version of java.awt.Point, except it uses double
to represent the coordinates.

 It maps to the point data type in PostgreSQL.

Variables

 public double x

 The X coordinate of the point

 public double y

 The Y coordinate of the point

Constructors

 public PGpoint(double x,

Chapter 8. JDBC Interface

103

 double y)

 Parameters:
 x - coordinate
 y - coordinate

 public PGpoint(String value) throws SQLException

 This is called mainly from the other geometric types, when a
point is embedded within their definition.

 Parameters:
 value - Definition of this point in PostgreSQL’s
syntax

 public PGpoint()

 Required by the driver

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - Definition of this point in PostgreSQL’s syntax

 Throws: SQLException
 on conversion failure

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:

Chapter 8. JDBC Interface

104

 the PGpoint in the syntax expected by PostgreSQL

 Overrides:
 getValue in class PGobject

 public void translate(int x,
 int y)

 Translate the point with the supplied amount.

 Parameters:
 x - integer amount to add on the x axis
 y - integer amount to add on the y axis

 public void translate(double x,
 double y)

 Translate the point with the supplied amount.

 Parameters:
 x - double amount to add on the x axis
 y - double amount to add on the y axis

 public void move(int x,
 int y)

 Moves the point to the supplied coordinates.

 Parameters:
 x - integer coordinate
 y - integer coordinate

public void move(double x,
 double y)

 Moves the point to the supplied coordinates.

 Parameters:
 x - double coordinate
 y - double coordinate

 public void setLocation(int x,
 int y)

 Moves the point to the supplied coordinates. refer to
 java.awt.Point for description of this

 Parameters:
 x - integer coordinate
 y - integer coordinate

 See Also:
 Point

Chapter 8. JDBC Interface

105

 public void setLocation(Point p)

 Moves the point to the supplied java.awt.Point refer to
 java.awt.Point for description of this

 Parameters:
 p - Point to move to

 See Also:
 Point

Class org.postgresql.geometric.PGpolygon

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.geometric.PGpolygon

 public class PGpolygon extends PGobject implements Serializable,
Cloneable

 This implements the polygon data type within PostgreSQL.

Variables

 public PGpoint points[]

 The points defining the polygon

Constructors

 public PGpolygon(PGpoint points[])

 Creates a polygon using an array of PGpoints

 Parameters:
 points - the points defining the polygon

 public PGpolygon(String s) throws SQLException

 Parameters:
 s - definition of the circle in PostgreSQL’s syntax.

 Throws: SQLException
 on conversion failure

 public PGpolygon()

 Required by the driver

Chapter 8. JDBC Interface

106

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - Definition of the polygon in PostgreSQL’s syntax

 Throws: SQLException
 on conversion failure

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:
 the PGpolygon in the syntax expected by PostgreSQL

 Overrides:
 getValue in class PGobject

8.6.3. Large Objects

 Large objects are supported in the standard JDBC specification. However, that interface is limited, and
the API provided by PostgreSQL allows for random access to the objects contents, as if it was a local
file.

 The org.postgresql.largeobject package provides to Java the libpq C interface’s large object API. It
consists of two classes, LargeObjectManager, which deals with creating, opening and deleting large
objects, and LargeObject which deals with an individual object.

8.6.3.1. Class org.postgresql.largeobject.LargeObject

public class LargeObject extends Object

Chapter 8. JDBC Interface

107

java.lang.Object
 |
 +----org.postgresql.largeobject.LargeObject

 This class implements the large object interface to PostgreSQL.

 It provides the basic methods required to run the interface, plus a pair of methods that provide
InputStream and OutputStream classes for this object.

 Normally, client code would use the getAsciiStream, getBinaryStream, or getUnicodeStream methods
in ResultSet, or setAsciiStream, setBinaryStream, or setUnicodeStream methods in
PreparedStatement to access Large Objects.

 However, sometimes lower level access to Large Objects are required, that are not supported by the
JDBC specification.

 Refer to org.postgresql.largeobject.LargeObjectManager on how to gain access to a Large Object, or
how to create one.

See Also: LargeObjectManager

8.6.3.1.1. Variables

public static final int SEEK_SET

 Indicates a seek from the beginning of a file

public static final int SEEK_CUR

 Indicates a seek from the current position

public static final int SEEK_END

 Indicates a seek from the end of a file

8.6.3.1.2. Methods

public int getOID()

 Returns the OID of this LargeObject

public void close() throws SQLException

 This method closes the object. You must not call methods in this object after this is called.

public byte[] read(int len) throws SQLException

 Reads some data from the object, and return as a byte[] array

public void read(byte buf[],
 int off,
 int len) throws SQLException

 Reads some data from the object into an existing array

Parameters:

buf

 destination array

Chapter 8. JDBC Interface

108

off

 offset within array

len

 number of bytes to read

public void write(byte buf[]) throws SQLException

 Writes an array to the object

public void write(byte buf[],
 int off,
 int len) throws SQLException

 Writes some data from an array to the object

Parameters:

buf

 destination array

off

 offset within array

len

 number of bytes to write

8.6.3.2. Class org.postgresql.largeobject.LargeObjectManager

public class LargeObjectManager extends Object

java.lang.Object
 |
 +----org.postgresql.largeobject.LargeObjectManager

 This class implements the large object interface to PostgreSQL. It provides methods that allow client
code to create, open and delete large objects from the database. When opening an object, an instance of
org.postgresql.largeobject.LargeObject is returned, and its methods then allow access to the
object.

 This class can only be created by org.postgresql.Connection. To get access to this class, use the
following segment of code:

import org.postgresql.largeobject.*;
Connection conn;
LargeObjectManager lobj;
// ... code that opens a connection ...
lobj = ((org.postgresql.Connection)myconn).getLargeObjectAPI();

Chapter 8. JDBC Interface

109

 Normally, client code would use the getAsciiStream, getBinaryStream, or getUnicodeStream methods
in ResultSet, or setAsciiStream, setBinaryStream, or setUnicodeStream methods in PreparedStatement
to access Large Objects. However, sometimes lower level access to Large Objects are required, that are
not supported by the JDBC specification.

 Refer to org.postgresql.largeobject.LargeObject on how to manipulate the contents of a Large Object.

8.6.3.2.1. Variables

public static final int WRITE

 This mode indicates we want to write to an object.

public static final int READ

 This mode indicates we want to read an object.

public static final int READWRITE

 This mode is the default. It indicates we want read and write access to a large object.

8.6.3.2.2. Methods

public LargeObject open(int oid) throws SQLException

 This opens an existing large object, based on its OID. This method assumes that READ and WRITE
access is required (the default).

public LargeObject open(int oid,
 int mode) throws SQLException

 This opens an existing large object, based on its OID, and allows setting the access mode.

public int create() throws SQLException

 This creates a large object, returning its OID. It defaults to READWRITE for the new object’s
attributes.

public int create(int mode) throws SQLException

 This creates a large object, returning its OID, and sets the access mode.

public void delete(int oid) throws SQLException

 This deletes a large object.

public void unlink(int oid) throws SQLException

 This deletes a large object. It is identical to the delete method, and is supplied as the C API uses
�unlink�.

8.6.4. Object Serialization

 PostgreSQL is not a normal SQL database. It is more extensible than most other databases, and does
support object oriented features that are unique to it.

 One of the consequences of this, is that you can have one table refer to a row in another table. For

Chapter 8. JDBC Interface

110

example:

test=> create table users (username name,fullname text);
CREATE
test=> create table server (servername name,adminuser users);
CREATE
test=> insert into users values (’peter’,’Peter Mount’);
INSERT 2610132 1
test=> insert into server values (’maidast’,2610132::users);
INSERT 2610133 1
test=> select * from users;
username|fullname
--------+--------------
peter |Peter Mount
(1 row)

test=> select * from server;
servername|adminuser
----------+---------
maidast | 2610132
(1 row)

 Okay, the above example shows that we can use a table name as a field, and the row’s oid value is
stored in that field.

 What does this have to do with Java?

 In Java, you can store an object to a Stream as long as it’s class implements the java.io.Serializable
interface. This process, known as Object Serialization, can be used to store complex objects into the
database.

 Now, under JDBC, you would have to use a Large Object to store them. However, you cannot perform
queries on those objects.

 What the org.postgresql.util.Serialize class does, is provide a means of storing an object as a table, and
to retrieve that object from a table. In most cases, you would not need to access this class direct, but you
would use the PreparedStatement.setObject() and ResultSet.getObject() methods. Those methods will
check the objects class name against the table’s in the database. If a match is found, it assumes that the
object is a Serialized object, and retrieves it from that table. As it does so, if the object contains other
serialized objects, then it recurses down the tree.

 Sound’s complicated? In fact, it’s simpler than what I wrote - it’s just difficult to explain.

 The only time you would access this class, is to use the create() methods. These are not used by the
driver, but issue one or more "create table" statements to the database, based on a Java Object or Class
that you want to serialize.

 Oh, one last thing. If your object contains a line like:

public int oid;

 then, when the object is retrieved from the table, it is set to the oid within the table. Then, if the object
is modified, and re- serialized, the existing entry is updated.

Chapter 8. JDBC Interface

111

 If the oid variable is not present, then when the object is serialized, it is always inserted into the table,
and any existing entry in the table is preserved.

 Setting oid to 0 before serialization, will also cause the object to be inserted. This enables an object to
be duplicated in the database.

Class org.postgresql.util.Serialize

java.lang.Object
 |
 +----org.postgresql.util.Serialize

 public class Serialize extends Object

 This class uses PostgreSQL’s object oriented features to store Java
Objects. It does this by mapping a Java Class name to a table in the
database. Each entry in this new table then represents a Serialized
instance of this class. As each entry has an OID (Object IDentifier),
this OID can be included in another table. This is too complex to show
here, and will be documented in the main documents in more detail.

Constructors

 public Serialize(Connection c,
 String type) throws SQLException

 This creates an instance that can be used to serialize
or deserialize a Java object from a PostgreSQL table.

Methods

 public Object fetch(int oid) throws SQLException

 This fetches an object from a table, given it’s OID

 Parameters:
 oid - The oid of the object

 Returns:
 Object relating to oid

 Throws: SQLException
 on error

 public int store(Object o) throws SQLException

 This stores an object into a table, returning it’s OID.

 If the object has an int called OID, and it is > 0, then
that value is used for the OID, and the table will be updated. If the
value of OID is 0, then a new row will be created, and the value of
OID will be set in the object. This enables an object’s value in the
database to be updateable. If the object has no int called OID, then

Chapter 8. JDBC Interface

112

the object is stored. However if the object is later retrieved,
amended and stored again, it’s new state will be appended to the
table, and will not overwrite the old entries.

 Parameters:
 o - Object to store (must implement Serializable)

 Returns:
 oid of stored object

 Throws: SQLException
 on error

 public static void create(Connection con,
 Object o) throws SQLException

 This method is not used by the driver, but it creates a
table, given a Serializable Java Object. It should be used before
serializing any objects.

 Parameters:
 c - Connection to database
 o - Object to base table on

 Throws: SQLException
 on error

 Returns:
 Object relating to oid

 Throws: SQLException
 on error

 public int store(Object o) throws SQLException

 This stores an object into a table, returning it’s OID.

 If the object has an int called OID, and it is > 0, then
that value is used for the OID, and the table will be updated. If the
value of OID is 0, then a new row will be created, and the value of
OID will be set in the object. This enables an object’s value in the
database to be updateable. If the object has no int called OID, then
the object is stored. However if the object is later retrieved,
amended and stored again, it’s new state will be appended to the
table, and will not overwrite the old entries.

 Parameters:
 o - Object to store (must implement Serializable)

 Returns:
 oid of stored object

 Throws: SQLException

Chapter 8. JDBC Interface

113

 on error

 public static void create(Connection con,
 Object o) throws SQLException

 This method is not used by the driver, but it creates a
table, given a Serializable Java Object. It should be used before
serializing any objects.

 Parameters:
 c - Connection to database
 o - Object to base table on

 Throws: SQLException
 on error

 public static void create(Connection con,
 Class c) throws SQLException

 This method is not used by the driver, but it creates a
table, given a Serializable Java Object. It should be used before
serializing any objects.

 Parameters:
 c - Connection to database
 o - Class to base table on

 Throws: SQLException
 on error

 public static String toPostgreSQL(String name) throws SQLException

 This converts a Java Class name to a PostgreSQL table, by
 replacing . with _

 Because of this, a Class name may not have _ in the name.

 Another limitation, is that the entire class name (including
 packages) cannot be longer than 31 characters (a limit
forced by PostgreSQL).

 Parameters:
 name - Class name

 Returns:
 PostgreSQL table name

 Throws: SQLException
 on error

 public static String toClassName(String name) throws SQLException

 This converts a PostgreSQL table to a Java Class name, by

Chapter 8. JDBC Interface

114

 replacing _ with .

 Parameters:
 name - PostgreSQL table name

 Returns:
 Class name

 Throws: SQLException
 on error
Utility Classes

The org.postgresql.util package contains classes used by the internals of
the main driver, and the other extensions.

Class org.postgresql.util.PGmoney

java.lang.Object
 |
 +----org.postgresql.util.PGobject
 |
 +----org.postgresql.util.PGmoney

 public class PGmoney extends PGobject implements Serializable,
Cloneable

 This implements a class that handles the PostgreSQL money type

Variables

 public double val

 The value of the field

Constructors

 public PGmoney(double value)

 Parameters:
 value - of field

 public PGmoney(String value) throws SQLException

 This is called mainly from the other geometric types, when a
point is imbeded within their definition.

 Parameters:
 value - Definition of this point in PostgreSQL’s
syntax

 public PGmoney()

 Required by the driver

Chapter 8. JDBC Interface

115

Methods

 public void setValue(String s) throws SQLException

 Parameters:
 s - Definition of this point in PostgreSQL’s syntax

 Throws: SQLException
 on conversion failure

 Overrides:
 setValue in class PGobject

 public boolean equals(Object obj)

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class PGobject

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class PGobject

 public String getValue()

 Returns:
 the PGpoint in the syntax expected by PostgreSQL

 Overrides:
 getValue in class PGobject

Class org.postgresql.util.PGobject

java.lang.Object
 |
 +----org.postgresql.util.PGobject

 public class PGobject extends Object implements Serializable,
Cloneable

 This class is used to describe data types that are unknown by
 JDBC
Standard.
 A call to org.postgresql.Connection permits a class that extends this

Chapter 8. JDBC Interface

116

class to be associated with a named type. This is how the
org.postgresql.geometric package operates.
 ResultSet.getObject() will return this class for any type that is
not recognized on having it’s own handler. Because of this, any
PostgreSQL data type is supported.

Constructors

 public PGobject()

 This is called by org.postgresql.Connection.getObject() to
create the object.

Methods

 public final void setType(String type)

 This method sets the type of this object.

 It should not be extended by subclasses, hence its final

 Parameters:
 type - a string describing the type of the object

 public void setValue(String value) throws SQLException

 This method sets the value of this object. It must be
overridden.

 Parameters:
 value - a string representation of the value of the
 object

 Throws: SQLException
 thrown if value is invalid for this type

 public final String getType()

 As this cannot change during the life of the object, it’s
final.

 Returns:
 the type name of this object

 public String getValue()

 This must be overridden, to return the value of the object,
in the form required by PostgreSQL.

 Returns:
 the value of this object

 public boolean equals(Object obj)

Chapter 8. JDBC Interface

117

 This must be overridden to allow comparisons of objects

 Parameters:
 obj - Object to compare with

 Returns:
 true if the two boxes are identical

 Overrides:
 equals in class Object

 public Object clone()

 This must be overridden to allow the object to be cloned

 Overrides:
 clone in class Object

 public String toString()

 This is defined here, so user code need not override it.

 Returns:
 the value of this object, in the syntax expected by
PostgreSQL

 Overrides:
 toString in class Object

Class org.postgresql.util.PGtokenizer

java.lang.Object
 |
 +----org.postgresql.util.PGtokenizer

 public class PGtokenizer extends Object

 This class is used to tokenize the text output of PostgreSQL.

 We could have used StringTokenizer to do this, however, we needed
to handle nesting of ’(’ ’)’ ’[’ ’]’ ’<’ and ’>’ as these are used by
the geometric data types.

 It’s mainly used by the geometric classes, but is useful in parsing
any output from custom data types output from PostgreSQL.

 See Also:
 PGbox, PGcircle, PGlseg, PGpath, PGpoint, PGpolygon

Constructors

 public PGtokenizer(String string,

Chapter 8. JDBC Interface

118

 char delim)

 Create a tokenizer.

 Parameters:
 string - containing tokens
 delim - single character to split the tokens

Methods

 public int tokenize(String string,
 char delim)

 This resets this tokenizer with a new string and/or
delimiter.

 Parameters:
 string - containing tokens
 delim - single character to split the tokens

 public int getSize()

 Returns:
 the number of tokens available

 public String getToken(int n)

 Parameters:
 n - Token number (0 ... getSize()-1)

 Returns:
 The token value

 public PGtokenizer tokenizeToken(int n,
 char delim)

 This returns a new tokenizer based on one of our tokens. The
geometric data types use this to process nested tokens (usually
PGpoint).

 Parameters:
 n - Token number (0 ... getSize()-1)
 delim - The delimiter to use

 Returns:
 A new instance of PGtokenizer based on the token

 public static String remove(String s,
 String l,
 String t)

 This removes the lead/trailing strings from a string

Chapter 8. JDBC Interface

119

 Parameters:
 s - Source string
 l - Leading string to remove
 t - Trailing string to remove

 Returns:
 String without the lead/trailing strings

 public void remove(String l,
 String t)

 This removes the lead/trailing strings from all tokens

 Parameters:
 l - Leading string to remove
 t - Trailing string to remove

 public static String removePara(String s)

 Removes (and) from the beginning and end of a string

 Parameters:
 s - String to remove from

 Returns:
 String without the (or)

 public void removePara()

 Removes (and) from the beginning and end of all tokens

 Returns:
 String without the (or)

 public static String removeBox(String s)

 Removes [and] from the beginning and end of a string

 Parameters:
 s - String to remove from

 Returns:
 String without the [or]

 public void removeBox()

 Removes [and] from the beginning and end of all tokens

 Returns:
 String without the [or]

 public static String removeAngle(String s)

Chapter 8. JDBC Interface

120

 Removes < and > from the beginning and end of a string

 Parameters:
 s - String to remove from

 Returns:
 String without the < or >

 public void removeAngle()

 Removes < and > from the beginning and end of all tokens

 Returns:
 String without the < or >

Class org.postgresql.util.Serialize

This was documented earlier under Object Serialization.

Class org.postgresql.util.UnixCrypt

java.lang.Object
 |
 +----org.postgresql.util.UnixCrypt

 public class UnixCrypt extends Object

 This class provides us with the ability to encrypt passwords when
sent over the network stream

 Contains static methods to encrypt and compare passwords with Unix
encrypted passwords.

 See John Dumas’s Java Crypt page for the original source.

 http://www.zeh.com/local/jfd/crypt.html

Methods

 public static final String crypt(String salt,
 String original)

 Encrypt a password given the clear-text password and a
"salt".

 Parameters:
 salt - A two-character string representing the salt
used
 to iterate the encryption engine in lots of different
 ways. If you are generating a new encryption then this
 value should be randomized.
 original - The password to be encrypted.

Chapter 8. JDBC Interface

121

 Returns:
 A string consisting of the 2-character salt followed
by
 the encrypted password.

 public static final String crypt(String original)

 Encrypt a password given the clear-text password. This method
generates a random salt using the ’java.util.Random’ class.

 Parameters:
 original - The password to be encrypted.

 Returns:
 A string consisting of the 2-character salt followed
by
 the encrypted password.

 public static final boolean matches(String encryptedPassword,
 String enteredPassword)

 Check that enteredPassword encrypts to encryptedPassword.

 Parameters:
 encryptedPassword - The encryptedPassword. The first
two characters are assumed to be the salt. This string would be the
same as one found in a Unix /etc/passwd file.
 enteredPassword - The password as entered by the user
(or otherwise acquired).

 Returns:
 true if the password should be considered correct.

8.7. Using the driver in a multi-threaded or a servlet
environment

 A problem with many JDBC drivers is that only one thread can use a Connection at any one time --
otherwise a thread could send a query while another one is receiving results, and this would be a bad
thing for the database engine.

 PostgreSQL 6.4 brought thread safety to the entire driver. (Standard JDBC was thread safe in 6.3, but
the Fastpath API was not.) Consequently, if your application uses multiple threads then you do not have
to worry about complex algorithms to ensure that only one uses the database at any time.

 If a thread attempts to use the connection while another one is using it, it will wait until the other thread
has finished its current operation. If it is a regular SQL statement, then the operation consists of sending
the statement and retrieving any ResultSet (in full). If it is a Fastpath call (e.g., reading a block
from a LargeObject) then it is the time to send and retrieve that block.

Chapter 8. JDBC Interface

122

 This is fine for applications and applets but can cause a performance problem with servlets. With
servlets you can have a heavy load on the connection. If you have several threads performing queries
then each but one will pause, which may not be what you are after.

 To solve this, you would be advised to create a pool of connections. When ever a thread needs to use
the database, it asks a manager class for a Connection. The manager hands a free connection to the
thread and marks it as busy. If a free connection is not available, it opens one. Once the thread has
finished with it, it returns it to the manager who can then either close it or add it to the pool. The
manager would also check that the connection is still alive and remove it from the pool if it is dead.

 So, with servlets, it is up to you to use either a single connection, or a pool. The plus side for a pool is
that threads will not be hit by the bottle neck caused by a single network connection. The down side is
that it increases the load on the server, as a backend process is created for each Connection. It is up to
you and your applications requirements.

8.8. Further Reading
 If you have not yet read it, I’d advise you read the JDBC API Documentation (supplied with Sun’s
JDK), and the JDBC Specification. Both are available from
http://java.sun.com/products/jdbc/index.html.

 http://jdbc.postgresql.org contains updated information not included in this document, and also includes
precompiled drivers.

123

Chapter 9. PyGreSQL - Python Interface
Author: Written by D’Arcy J.M. Cain (<darcy@druid.net>). Based heavily on code written by
Pascal Andre <andre@chimay.via.ecp.fr>. Copyright © 1995, Pascal Andre. Further
modifications Copyright © 1997-2000 by D’Arcy J.M. Cain.

9.1. The pg Module
 You may either choose to use the old mature interface provided by the pg module or otherwise the
newer pgdb interface compliant with the DB-API 2.0
(http://www.python.org/topics/database/DatabaseAPI-2.0.html) specification developed by the Python
DB-SIG.

 Here we describe only the older pg API. As long as PyGreSQL does not contain a description of the
DB-API you should read about the API at
http://www.python.org/topics/database/DatabaseAPI-2.0.html.

 A tutorial-like introduction to the DB-API can be found at
http://www2.linuxjournal.com/lj-issues/issue49/2605.html

 The pg module defines three objects:

 pgobject, which handles the connection and all the requests to the database,

 pglargeobject, which handles all the accesses to Postgres large objects, and

 pgqueryobject that handles query results.

 If you want to see a simple example of the use of some of these functions, see
http://www.druid.net/rides where I have a link at the bottom to the actual Python code for the page.

9.1.1. Constants

 Some constants are defined in the pg module dictionary. They are intended to be used as a parameters
for methods calls. You should refer to the libpq description (Chapter 1) for more information about
them. These constants are:

INV_READ

INV_WRITE

INV_ARCHIVE

 large objects access modes, used by (pgobject.)locreate and (pglarge.)open.

SEEK_SET

SEEK_CUR

SEEK_END

 positional flags, used by (pglarge.)seek.

Chapter 9. PyGreSQL - Python Interface

124

version

__version__

 constants that give the current version

9.2. pg Module Functions
 pg module defines only a few methods that allow to connect to a database and to define �default
variables� that override the environment variables used by PostgreSQL.

 These �default variables� were designed to allow you to handle general connection parameters without
heavy code in your programs. You can prompt the user for a value, put it in the default variable, and
forget it, without having to modify your environment. The support for default variables can be disabled
by setting the -DNO_DEF_VAR option in the Python Setup file. Methods relative to this are specified
by te tag [DV].

 All variables are set to None at module initialization, specifying that standard environment variables
should be used.

Chapter 9. PyGreSQL - Python Interface

125

connect

Name

connect � opens a connection to the database server

Synopsis

connect([dbname], [host], [port], [opt], [tty], [user], [passwd])

Parameters

dbname

 Name of connected database (string/None).

host

 Name of the server host (string/None).

port

 Port used by the database server (integer/-1).

opt

 Options for the server (string/None).

tty

 File or tty for optional debug output from backend (string/None).

user

 PostgreSQL user (string/None).

passwd

 Password for user (string/None).

Return Type

pgobject

 If successful, an object handling a database connection is returned.

Exceptions

TypeError

 Bad argument type, or too many arguments.

SyntaxError

 Duplicate argument definition.

Chapter 9. PyGreSQL - Python Interface

126

pg.error

 Some error occurred during pg connection definition.

 (+ all exceptions relative to object allocation)

Description

 This method opens a connection to a specified database on a given PostgreSQL server. You can use
keywords here, as described in the Python tutorial. The names of the keywords are the name of the
parameters given in the syntax line. For a precise description of the parameters, please refer to the
PostgreSQL user manual.

Examples

import pg

con1 = pg.connect(’testdb’, ’myhost’, 5432, None, None, ’bob’, None)
con2 = pg.connect(dbname=’testdb’, host=’localhost’, user=’bob’)

Chapter 9. PyGreSQL - Python Interface

127

get_defhost

Name

get_defhost � get default host name [DV]

Synopsis

get_defhost()

Parameters

 none

Return Type

string or None

 Default host specification

Exceptions

SyntaxError

 Too many arguments.

Description

 get_defhost() returns the current default host specification, or None if the environment variables
should be used. Environment variables will not be looked up.

Chapter 9. PyGreSQL - Python Interface

128

set_defhost

Name

set_defhost � set default host name [DV]

Synopsis

set_defhost(host)

Parameters

 host

 New default host (string/None).

Return Type

 string or None

 Previous default host specification.

Exceptions

 TypeError

 Bad argument type, or too many arguments.

Description

 set_defhost() sets the default host value for new connections. If None is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default host.

Chapter 9. PyGreSQL - Python Interface

129

get_defport

Name

get_defport � get default port [DV]

Synopsis

get_defport()

Parameters

 none

Return Type

 integer or None

 Default port specification

Exceptions

 SyntaxError

 Too many arguments.

Description

 get_defport() returns the current default port specification, or None if the environment variables
should be used. Environment variables will not be looked up.

Chapter 9. PyGreSQL - Python Interface

130

set_defport

Name

set_defport � set default port [DV]

Synopsis

set_defport(port)

Parameters

 port

 New default host (integer/-1).

Return Type

 integer or None

 Previous default port specification.

Exceptions

 TypeError

 Bad argument type, or too many arguments.

Description

 set_defport() sets the default port value for new connections. If -1 is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default port.

Chapter 9. PyGreSQL - Python Interface

131

get_defopt

Name

get_defopt � get default options specification [DV]

Synopsis

get_defopt()

Parameters

 none

Return Type

 string or None

 Default options specification

Exceptions

 SyntaxError

 Too many arguments.

Description

 get_defopt() returns the current default connection options specification, or None if the environment
variables should be used. Environment variables will not be looked up.

Chapter 9. PyGreSQL - Python Interface

132

set_defopt

Name

set_defopt � set options specification [DV]

Synopsis

set_defopt(options)

Parameters

 options

 New default connection options (string/None).

Return Type

 string or None

 Previous default opt specification.

Exceptions

 TypeError

 Bad argument type, or too many arguments.

Description

 set_defopt() sets the default connection options value for new connections. If None is supplied as
parameter, environment variables will be used in future connections. It returns the previous setting for
default options.

Chapter 9. PyGreSQL - Python Interface

133

get_deftty

Name

get_deftty � get default connection debug terminal specification [DV]

Synopsis

get_deftty()

Parameters

 none

Return Type

 string or None

 Default debug terminal specification

Exceptions

 SyntaxError

 Too many arguments.

Description

 get_deftty() returns the current default debug terminal specification, or None if the environment
variables should be used. Environment variables will not be looked up.

Chapter 9. PyGreSQL - Python Interface

134

set_deftty

Name

set_deftty � set default debug terminal specification [DV]

Synopsis

set_deftty(terminal)

Parameters

 terminal

 New default debug terminal (string/None).

Return Type

 string or None

 Previous default debug terminal specification.

Exceptions

 TypeError

 Bad argument type, or too many arguments.

Description

 set_deftty() sets the default terminal value for new connections. If None is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default
terminal.

Chapter 9. PyGreSQL - Python Interface

135

get_defbase

Name

get_defbase � get default database name specification [DV]

Synopsis

get_defbase()

Parameters

 none

Return Type

 string or None

 Default debug database name specification

Exceptions

 SyntaxError

 Too many arguments.

Description

 get_defbase() returns the current default database name specification, or None if the environment
variables should be used. Environment variables will not be looked up.

Chapter 9. PyGreSQL - Python Interface

136

set_defbase

Name

set_defbase � set default database name specification [DV]

Synopsis

set_defbase(database)

Parameters

 database

 New default database name (string/None).

Return Type

 string or None

 Previous default database name specification.

Exceptions

 TypeError

 Bad argument type, or too many arguments.

Description

 set_defbase() sets the default database name for new connections. If None is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default
database name.

9.3. Connection object: pgobject
 This object handles a connection to the PostgreSQL database. It embeds and hides all the parameters
that define this connection, leaving just really significant parameters in function calls.

 Some methods give direct access to the connection socket. They are specified by the tag [DA]. Do not
use them unless you really know what you are doing. If you prefer disabling them, set the -DNO_DIRECT
option in the Python Setup file.

 Some other methods give access to large objects. if you want to forbid access to these from the module,
set the -DNO_LARGE option in the Python Setup file. These methods are specified by the tag [LO].

 Every pgobject defines a set of read-only attributes that describe the connection and its status. These
attributes are:

Chapter 9. PyGreSQL - Python Interface

137

host

 the host name of the server (string)

port

 the port of the server (integer)

db

 the selected database (string)

options

 the connection options (string)

tty

 the connection debug terminal (string)

user

 user name on the database system (string)

status

 the status of the connection (integer: 1 - OK, 0 - BAD)

error

 the last warning/error message from the server (string)

Chapter 9. PyGreSQL - Python Interface

138

query

Name

query � executes a SQL command

Synopsis

query(command)

Parameters

 command

 SQL command (string).

Return Type

 pgqueryobject or None

 Result values.

Exceptions

 TypeError

 Bad argument type, or too many arguments.

 ValueError

 Empty SQL query.

 pg.error

 Error during query processing, or invalid connection.

Description

 query() method sends a SQL query to the database. If the query is an insert statement, the return value
is the OID of the newly inserted row. If it is otherwise a query that does not return a result (i.e., is not a
some kind of SELECT statement), it returns None. Otherwise, it returns a pgqueryobject that can be
accessed via the getresult() or dictresult() methods or simply printed.

Chapter 9. PyGreSQL - Python Interface

139

reset

Name

reset � resets the connection

Synopsis

reset()

Parameters

 none

Return Type

 none

Exceptions

 TypeError

 Too many (any) arguments.

Description

 reset() method resets the current database.

Chapter 9. PyGreSQL - Python Interface

140

close

Name

close � close the database connection

Synopsis

close()

Parameters

 none

Return Type

 none

Exceptions

 TypeError

 Too many (any) arguments.

Description

 close() method closes the database connection. The connection will be closed in any case when the
connection is deleted but this allows you to explicitly close it. It is mainly here to allow the DB-SIG API
wrapper to implement a close function.

Chapter 9. PyGreSQL - Python Interface

141

fileno

Name

fileno � returns the socket used to connect to the database

Synopsis

fileno()

Parameters

 none

Return Type

 socket id

 The underlying socket id used to connect to the database.

Exceptions

 TypeError

 Too many (any) arguments.

Description

 fileno() method returns the underlying socket id used to connect to the database. This is useful for
use in select calls, etc.

Chapter 9. PyGreSQL - Python Interface

142

getnotify

Name

getnotify � gets the last notify from the server

Synopsis

getnotify()

Parameters

 none

Return Type

 tuple, None

 Last notify from server

Exceptions

 TypeError

 Too many (any) arguments.

 pg.error

 Invalid connection.

Description

 getnotify() method tries to get a notify from the server (from the SQL statement NOTIFY). If the
server returns no notify, the methods returns None. Otherwise, it returns a tuple (couple) (relname,
pid), where relname is the name of the notify and pid the process id of the connection that triggered
the notify. Remember to do a listen query first otherwise getnotify will always return None.

Chapter 9. PyGreSQL - Python Interface

143

inserttable

Name

inserttable � inserts a list into a table

Synopsis

inserttable(table, values)

Parameters

 table

 The table name (string).

 values

 The list of rows values to insert (list).

Return Type

 none

Exceptions

 TypeError

 Bad argument type or too many (any) arguments.

 pg.error

 Invalid connection.

Description

 inserttable() method allows to quickly insert large blocks of data in a table: it inserts the whole
values list into the given table. The list is a list of tuples/lists that define the values for each inserted
row. The rows values may contain string, integer, long or double (real) values. Be very careful: this
method does not typecheck the fields according to the table definition; it just look whether or not it
knows how to handle such types.

Chapter 9. PyGreSQL - Python Interface

144

putline

Name

putline � writes a line to the server socket [DA]

Synopsis

putline(line)

Parameters

 line

 Line to be written (string).

Return Type

 none

Exceptions

 TypeError

 Bad argument type or too many (any) arguments.

 pg.error

 Invalid connection.

Description

 putline() method allows to directly write a string to the server socket.

Chapter 9. PyGreSQL - Python Interface

145

getline

Name

getline � gets a line from server socket [DA]

Synopsis

getline()

Parameters

 none

Return Type

 string

 The line read.

Exceptions

 TypeError

 Bad argument type or too many (any) arguments.

 pg.error

 Invalid connection.

Description

 getline() method allows to directly read a string from the server socket.

Chapter 9. PyGreSQL - Python Interface

146

endcopy

Name

endcopy � synchronizes client and server [DA]

Synopsis

endcopy()

Parameters

 none

Return Type

 none

Exceptions

 TypeError

 Bad argument type or too many (any) arguments.

 pg.error

 Invalid connection.

Description

 The use of direct access methods may desynchronize client and server. This method ensure that client
and server will be synchronized.

Chapter 9. PyGreSQL - Python Interface

147

locreate

Name

locreate � creates of large object in the database [LO]

Synopsis

locreate(mode)

Parameters

 mode

 Large object create mode.

Return Type

 pglarge

 Object handling the PostgreSQL large object.

Exceptions

 TypeError

 Bad argument type or too many arguments.

 pg.error

 Invalid connection, or creation error.

Description

 locreate() method creates a large object in the database. The mode can be defined by OR-ing the
constants defined in the pg module (INV_READ, INV_WRITE and INV_ARCHIVE).

Chapter 9. PyGreSQL - Python Interface

148

getlo

Name

getlo � builds a large object from given oid [LO]

Synopsis

getlo(oid)

Parameters

 oid

 OID of the existing large object (integer).

Return Type

 pglarge

 Object handling the PostgreSQL large object.

Exceptions

 TypeError

 Bad argument type or too many arguments.

 pg.error

 Invalid connection.

Description

 getlo() method allows to reuse a formerly created large object through the pglarge interface,
providing the user have its oid.

Chapter 9. PyGreSQL - Python Interface

149

loimport

Name

loimport � imports a file to a PostgreSQL large object [LO]

Synopsis

loimport(filename)

Parameters

 filename

 The name of the file to be imported (string).

Return Type

 pglarge

 Object handling the PostgreSQL large object.

Exceptions

 TypeError

 Bad argument type or too many arguments.

 pg.error

 Invalid connection, or error during file import.

Description

 loimport() method allows to create large objects in a very simple way. You just give the name of a
file containing the data to be use.

9.4. Database wrapper class: DB
 pg module contains a class called DB. All pgobject methods are included in this class also. A number
of additional DB class methods are described below. The preferred way to use this module is as follows
(See description of the initialization method below.):

import pg

db = pg.DB(...)

for r in db.query(
 "SELECT foo,bar
 FROM foo_bar_table

Chapter 9. PyGreSQL - Python Interface

150

 WHERE foo !~ bar"
).dictresult():

 print ’%(foo)s %(bar)s’ % r

 The following describes the methods and variables of this class.

 The DB class is initialized with the same arguments as the pg.connect method. It also initializes a few
internal variables. The statement db = DB() will open the local database with the name of the user just
like pg.connect() does.

pkey

Name

pkey � returns the primary key of a table

Synopsis

pkey(table)

Parameters

 table

 name of table.

Return Type

 string

 Name of field which is the primary key of the table.

Description

 pkey() method returns the primary key of a table. Note that this raises an exception if the table does
not have a primary key.

Chapter 9. PyGreSQL - Python Interface

151

get_databases

Name

get_databases � get list of databases in the system

Synopsis

get_databases()

Parameters

 none

Return Type

 list

 List of databases in the system.

Description

 Although you can do this with a simple select, it is added here for convenience

get_tables

Name

get_tables � get list of tables in connected database

Synopsis

get_tables()

Parameters

 none

Return Type

 list

 List of tables in connected database.

Description

 Although you can do this with a simple select, it is added here for convenience

Chapter 9. PyGreSQL - Python Interface

152

get_attnames

Name

get_attnames � returns the attribute names of a table

Synopsis

get_attnames(table)

Parameters

 table

 name of table.

Return Type

 list

 List of attribute names.

Description

 Given the name of a table, digs out the list of attribute names.

Chapter 9. PyGreSQL - Python Interface

153

get

Name

get � get a tuple from a database table

Synopsis

get(table, arg, [keyname])

Parameters

 table

 Name of table.

 arg

 Either a dictionary or the value to be looked up.

 [keyname]

 Name of field to use as key (optional).

Return Type

 dictionary

 A dictionary mapping attribute names to row values.

Description

 This method is the basic mechanism to get a single row. It assumes that the key specifies a unique row.
If keyname is not specified then the primary key for the table is used. If arg is a dictionary then the value
for the key is taken from it and it is modified to include the new values, replacing existing values where
necessary. The oid is also put into the dictionary but in order to allow the caller to work with multiple
tables, the attribute name is munged to make it unique. It consists of the string oid_ followed by the
name of the table.

Chapter 9. PyGreSQL - Python Interface

154

insert

Name

insert � insert a tuple into a database table

Synopsis

insert(table, a)

Parameters

 table

 Name of table.

 a

 A dictionary of values.

Return Type

 integer

 The OID of the newly inserted row.

Description

 This method inserts values into the table specified filling in the values from the dictionary. It then
reloads the dictionary with the values from the database. This causes the dictionary to be updated with
values that are modified by rules, triggers, etc.

Chapter 9. PyGreSQL - Python Interface

155

update

Name

update � update a database table

Synopsis

update(table, a)

Parameters

 table

 Name of table.

 a

 A dictionary of values.

Return Type

 integer

 The OID of the newly updated row.

Description

 Similar to insert but updates an existing row. The update is based on the OID value as munged by get.
The array returned is the one sent modified to reflect any changes caused by the update due to triggers,
rules, defaults, etc.

Chapter 9. PyGreSQL - Python Interface

156

clear

Name

clear � clear a database table

Synopsis

clear(table, [a])

Parameters

 table

 Name of table.

 [a]

 A dictionary of values.

Return Type

 dictionary

 A dictionary with an empty row.

Description

 This method clears all the attributes to values determined by the types. Numeric types are set to 0, dates
are set to ’today’ and everything else is set to the empty string. If the array argument is present, it is
used as the array and any entries matching attribute names are cleared with everything else left
unchanged.

Chapter 9. PyGreSQL - Python Interface

157

delete

Name

delete � deletes the row from a table

Synopsis

delete(table, [a])

Parameters

 table

 Name of table.

 [a]

 A dictionary of values.

Return Type

 none

Description

 This method deletes the row from a table. It deletes based on the OID as munged as described above.

Chapter 9. PyGreSQL - Python Interface

158

9.5. Query result object: pgqueryobject

getresult

Name

getresult � gets the values returned by the query

Synopsis

getresult()

Parameters

 none

Return Type

 list

 List of tuples.

Exceptions

 SyntaxError

 Too many arguments.

 pg.error

 Invalid previous result.

Description

 getresult() method returns the list of the values returned by the query. More information about this
result may be accessed using listfields, fieldname and fieldnum methods.

Chapter 9. PyGreSQL - Python Interface

159

dictresult

Name

dictresult � like getresult but returns a list of dictionaries

Synopsis

dictresult()

Parameters

 none

Return Type

 list

 List of dictionaries.

Exceptions

 SyntaxError

 Too many arguments.

 pg.error

 Invalid previous result.

Description

 dictresult() method returns the list of the values returned by the query with each tuple returned as a
dictionary with the field names used as the dictionary index.

Chapter 9. PyGreSQL - Python Interface

160

listfields

Name

listfields � lists the fields names of the query result

Synopsis

listfields()

Parameters

 none

Return Type

 list

 field names

Exceptions

 SyntaxError

 Too many arguments.

 pg.error

 Invalid query result, or invalid connection.

Description

 listfields() method returns the list of field names defined for the query result. The fields are in the
same order as the result values.

Chapter 9. PyGreSQL - Python Interface

161

fieldname

Name

fieldname � field number-name conversion

Synopsis

fieldname(i)

Parameters

 i

 field number (integer).

Return Type

 string

 field name.

Exceptions

 TypeError

 Bad parameter type, or too many arguments.

 ValueError

 Invalid field number.

 pg.error

 Invalid query result, or invalid connection.

Description

 fieldname() method allows to find a field name from its rank number. It can be useful for displaying
a result. The fields are in the same order than the result values.

Chapter 9. PyGreSQL - Python Interface

162

fieldnum

Name

fieldnum � field name-number conversion

Synopsis

fieldnum(name)

Parameters

 name

 field name (string).

Return Type

 integer

 field number (integer).

Exceptions

 TypeError

 Bad parameter type, or too many arguments.

 ValueError

 Unknown field name.

 pg.error

 Invalid query result, or invalid connection.

Description

 fieldnum() method returns a field number from its name. It can be used to build a function that
converts result list strings to their correct type, using a hardcoded table definition. The number returned
is the field rank in the result values list.

Chapter 9. PyGreSQL - Python Interface

163

ntuples

Name

ntuples � returns the number of tuples in query object

Synopsis

ntuples()

Parameters

 none

Return Type

 integer

 The number of tuples in query object.

Exceptions

 SyntaxError

 Too many arguments.

Description

 ntuples() method returns the number of tuples found in a query.

9.6. Large Object: pglarge
 This object handles all the request concerning a PostgreSQL large object. It embeds and hides all the
�recurrent� variables (object oid and connection), exactly in the same way pgobjects do, thus only
keeping significant parameters in function calls. It keeps a reference to the pgobject used for its
creation, sending requests though with its parameters. Any modification but dereferencing the
pgobject will thus affect the pglarge object. Dereferencing the initial pgobject is not a problem
since Python will not deallocate it before the large object dereference it. All functions return a generic
error message on call error, whatever the exact error was. The error attribute of the object allows to get
the exact error message.

 pglarge objects define a read-only set of attributes that allow to get some information about it. These
attributes are:

oid

 the oid associated with the object

Chapter 9. PyGreSQL - Python Interface

164

pgcnx

 the pgobject associated with the object

error

 the last warning/error message of the connection

Be careful: In multithreaded environments, error may be modified by another thread using the
same pgobject. Remember these object are shared, not duplicated; you should provide some
locking to be able if you want to check this. The oid attribute is very interesting because it allow you
reuse the oid later, creating the pglarge object with a pgobject getlo() method call.

 See also Chapter 2 for more information about the PostgreSQL large object interface.

Chapter 9. PyGreSQL - Python Interface

165

open

Name

open � opens a large object

Synopsis

open(mode)

Parameters

 mode

 open mode definition (integer).

Return Type

 none

Exceptions

 TypeError

 Bad parameter type, or too many arguments.

 IOError

 Already opened object, or open error.

 pg.error

 Invalid connection.

Description

 open() method opens a large object for reading/writing, in the same way than the UNIX open()
function. The mode value can be obtained by OR-ing the constants defined in the pg module
(INV_READ, INV_WRITE).

Chapter 9. PyGreSQL - Python Interface

166

close

Name

close � closes the large object

Synopsis

close()

Parameters

 none

Return Type

 none

Exceptions

 SyntaxError

 Too many arguments.

 IOError

 Object is not opened, or close error.

 pg.error

 Invalid connection.

Description

 close() method closes previously opened large object, in the same way than the UNIX close()
function.

Chapter 9. PyGreSQL - Python Interface

167

read

Name

read � reads from the large object

Synopsis

read(size)

Parameters

 size

 Maximal size of the buffer to be read (integer).

Return Type

 string

 The read buffer.

Exceptions

 TypeError

 Bad parameter type, or too many arguments.

 IOError

 Object is not opened, or read error.

 pg.error

 Invalid connection or invalid object.

Description

 read() method allows to read data from the large object, starting at current position.

Chapter 9. PyGreSQL - Python Interface

168

write

Name

write � writes to the large object

Synopsis

write(string)

Parameters

 string

 Buffer to be written (string).

Return Type

 none

Exceptions

 TypeError

 Bad parameter type, or too many arguments.

 IOError

 Object is not opened, or write error.

 pg.error

 Invalid connection or invalid object.

Description

 write() method allows to write data to the large object, starting at current position.

Chapter 9. PyGreSQL - Python Interface

169

seek

Name

seek � change current position in the large object

Synopsis

seek(offset, whence)

Parameters

 offset

 Position offset (integer).

 whence

 Positional parameter (integer).

Return Type

 integer

 New current position in the object.

Exceptions

 TypeError

 Bad parameter type, or too many arguments.

 IOError

 Object is not opened, or seek error.

 pg.error

 Invalid connection or invalid object.

Description

 seek() method allows to move the cursor position in the large object. The whence parameter can be
obtained by OR-ing the constants defined in the pg module (SEEK_SET, SEEK_CUR, SEEK_END).

Chapter 9. PyGreSQL - Python Interface

170

tell

Name

tell � returns current position in the large object

Synopsis

tell()

Parameters

 none

Return Type

 integer

 Current position in the object.

Exceptions

 SyntaxError

 Too many arguments.

 IOError

 Object is not opened, or seek error.

 pg.error

 Invalid connection or invalid object.

Description

 tell() method allows to get the current position in the large object.

Chapter 9. PyGreSQL - Python Interface

171

unlink

Name

unlink � deletes the large object

Synopsis

unlink()

Parameters

 none

Return Type

 none

Exceptions

 SyntaxError

 Too many arguments.

 IOError

 Object is not closed, or unlink error.

 pg.error

 Invalid connection or invalid object.

Description

 unlink() method unlinks (deletes) the large object.

Chapter 9. PyGreSQL - Python Interface

172

size

Name

size � gives the large object size

Synopsis

size()

Parameters

 none

Return Type

 integer

 The large object size.

Exceptions

 SyntaxError

 Too many arguments.

 IOError

 Object is not opened, or seek/tell error.

 pg.error

 Invalid connection or invalid object.

Description

 size() method allows to get the size of the large object. It was implemented because this function is
very useful for a WWW interfaced database. Currently the large object needs to be opened.

Chapter 9. PyGreSQL - Python Interface

173

export

Name

export � saves the large object to file

Synopsis

export(filename)

Parameters

 filename

 The file to be created.

Return Type

 none

Exceptions

 TypeError

 Bad argument type, or too many arguments.

 IOError

 Object is not closed, or export error.

 pg.error

 Invalid connection or invalid object.

Description

 export() method allows to dump the content of a large object in a very simple way. The exported file
is created on the host of the program, not the server host.

9.7. DB-API Interface
* This section needs to be written.

 See http://www.python.org/topics/database/DatabaseAPI-2.0.html for a description of the DB-API 2.0.

174

Chapter 10. Lisp Programming Interface
 pg.el is a socket-level interface to Postgres for emacs.

Author: Written by Eric Marsden <emarsden@mail.dotcom.fr> on 1999-07-21

 pg.el is a socket-level interface to Postgres for emacs (text editor extraordinaire). The module is
capable of type coercions from a range of SQL types to the equivalent Emacs Lisp type. It currently
supports neither crypt or Kerberos authentication, nor large objects.

 The code (version 0.2) is available under GNU GPL from Eric Marsden
(http://www.chez.com/emarsden/downloads/pg.el)

Changes since last release:
 now works with XEmacs (tested with Emacs 19.34 & 20.2, and XEmacs 20.4)
 added functions to provide database metainformation (list of databases, of tables, of columns)
 arguments to ‘pg:result’ are now :keywords
 MULE-resistant
 more self-testing code

 Please note that this is a programmer’s API, and doesn’t provide any form of user interface. Example:

 (defun demo ()
 (interactive)
 (let* ((conn (pg:connect "template1" "postgres" "postgres"))
 (res (pg:exec conn "SELECT * from scshdemo WHERE a = 42")))
 (message "status is %s" (pg:result res :status))
 (message "metadata is %s" (pg:result res :attributes))
 (message "data is %s" (pg:result res :tuples))
 (pg:disconnect conn)))

II. Server Programming

176

Chapter 11. Architecture

11.1. Postgres Architectural Concepts
 Before we continue, you should understand the basic Postgres system architecture. Understanding how
the parts of Postgres interact will make the next chapter somewhat clearer. In database jargon, Postgres
uses a simple "process per-user" client/server model. A Postgres session consists of the following
cooperating Unix processes (programs):

 A supervisory daemon process (postmaster),

 the user’s frontend application (e.g., the psql program), and

 the one or more backend database servers (the postgres process itself).

 A single postmaster manages a given collection of databases on a single host. Such a collection of
databases is called a cluster (of databases). Frontend applications that wish to access a given database
within a cluster make calls to the library. The library sends user requests over the network to the
postmaster (Figure 11-1(a)), which in turn starts a new backend server process (Figure 11-1(b))

Chapter 11. Architecture

177

Figure 11-1. How a connection is established

(a) frontend sends request to postmaster
 via well-known network socket

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

server host

client host

User
App LIBPQ

(b) postmaster creates backend server

(c) frontend connected to backend server

POSTMASTER

SERVER

server host

(d) frontend connected
 to multiple backend servers

And multiple connections
can be established...

 and connects the frontend process to the new server (Figure 11-1(c)). From that point on, the frontend
process and the backend server communicate without intervention by the postmaster. Hence, the
postmaster is always running, waiting for requests, whereas frontend and backend processes come and
go. The libpq library allows a single frontend to make multiple connections to backend processes.
However, the frontend application is still a single-threaded process. Multithreaded frontend/backend
connections are not currently supported in libpq. One implication of this architecture is that the
postmaster and the backend always run on the same machine (the database server), while the frontend
application may run anywhere. You should keep this in mind, because the files that can be accessed on a

Chapter 11. Architecture

178

client machine may not be accessible (or may only be accessed using a different filename) on the
database server machine. You should also be aware that the postmaster and postgres servers run with the
user-id of the Postgres "superuser." Note that the Postgres superuser does not have to be a special user
(e.g., a user named "postgres"), although many systems are installed that way. Furthermore, the Postgres
superuser should definitely not be the Unix superuser, "root"! In any case, all files relating to a database
should belong to this Postgres superuser.

179

Chapter 12. Extending SQL: An Overview
 In the sections that follow, we will discuss how you can extend the Postgres SQL query language by
adding:

 functions
 types
 operators
 aggregates

12.1. How Extensibility Works
 Postgres is extensible because its operation is catalog-driven. If you are familiar with standard relational
systems, you know that they store information about databases, tables, columns, etc., in what are
commonly known as system catalogs. (Some systems call this the data dictionary). The catalogs appear
to the user as tables like any other, but the DBMS stores its internal bookkeeping in them. One key
difference between Postgres and standard relational systems is that Postgres stores much more
information in its catalogs -- not only information about tables and columns, but also information about
its types, functions, access methods, and so on. These tables can be modified by the user, and since
Postgres bases its internal operation on these tables, this means that Postgres can be extended by users.
By comparison, conventional database systems can only be extended by changing hardcoded procedures
within the DBMS or by loading modules specially-written by the DBMS vendor.

 Postgres is also unlike most other data managers in that the server can incorporate user-written code
into itself through dynamic loading. That is, the user can specify an object code file (e.g., a compiled .o
file or shared library) that implements a new type or function and Postgres will load it as required. Code
written in SQL are even more trivial to add to the server. This ability to modify its operation "on the fly"
makes Postgres uniquely suited for rapid prototyping of new applications and storage structures.

12.2. The Postgres Type System
 The Postgres type system can be broken down in several ways. Types are divided into base types and
composite types. Base types are those, like int4, that are implemented in a language such as C. They
generally correspond to what are often known as "abstract data types"; Postgres can only operate on
such types through methods provided by the user and only understands the behavior of such types to the
extent that the user describes them. Composite types are created whenever the user creates a table. EMP
is an example of a composite type.

 Postgres stores these types in only one way (within the file that stores all rows of a table) but the user
can "look inside" at the attributes of these types from the query language and optimize their retrieval by
(for example) defining indices on the attributes. Postgres base types are further divided into built-in
types and user-defined types. Built-in types (like int4) are those that are compiled into the system.
User-defined types are those created by the user in the manner to be described below.

Chapter 12. Extending SQL: An Overview

180

12.3. About the Postgres System Catalogs
 Having introduced the basic extensibility concepts, we can now take a look at how the catalogs are
actually laid out. You can skip this section for now, but some later sections will be incomprehensible
without the information given here, so mark this page for later reference. All system catalogs have
names that begin with pg_. The following tables contain information that may be useful to the end user.
(There are many other system catalogs, but there should rarely be a reason to query them directly.)

Table 12-1. Postgres System Catalogs

Catalog Name Description

pg_database databases

pg_class tables

pg_attribute table columns

pg_index secondary indices

pg_proc procedures (both C and SQL)

pg_type types (both base and complex)

pg_operator operators

pg_aggregate aggregates and aggregate functions

pg_am access methods

pg_amop access method operators

pg_amproc access method support functions

pg_opclass access method operator classes

Chapter 12. Extending SQL: An Overview

181

Figure 12-1. The major Postgres system catalogs

[8]

[8]

REFERS-TO

non-key

1

0:N

identified by the non-oid primary key in other contexts).

1

13:N

10:N

1

0:N

111

0:N

0:N

11

0:N

1

0:N

0:N

1

0:N

1

0:N

1

0:N

10:1

optional

mandatory

0:1

0:N

0:N

1

1

0:N
0:N

1

1

1

0:N

0:N

0:N

0:N

1

1

0:N

KEY:

atttypid

typrelid

typinput

typoutput

typreceive

typsend

indexrelid

amopstrategy

prolang

amproc

oprcom

oprnegate

oprlsortop

oprrsortop

oprcode

oprrest

oprjoin

amgettuple

aminsert

amdelete

amgetattr

ambeginscan

amrescan

amendscan

ammarkpos

amrestrpos

ambuild

DEPENDENT

INDEPENDENT

pg_attribute

pg_class

pg_index

pg_type

pg_am

pg_proc

pg_language

pg_amop

pg_opclass

pg_amproc

pg_operator

attrelid

attnum

relam

oid

indrelid

indkey

indproc

indpred

oid

oid

oid

oid

amopid

amopclaid

amopopr

oid

amid

amopclaid

amprocnumoid

primary key

foreign key

non-oid primary

key (if any)

oprname

oprleft

oprright

oprresult

proname

prorettype

proargtypes

indicates these key values are alternate primary keys

(i.e., this class is generally identified by oid but may be

amcreate
amdestroy

amcostestimate

 The Reference Manual gives a more detailed explanation of these catalogs and their columns. However,
Figure 12-1 shows the major entities and their relationships in the system catalogs. (Columns that do not
refer to other entities are not shown unless they are part of a primary key.) This diagram is more or less
incomprehensible until you actually start looking at the contents of the catalogs and see how they relate
to each other. For now, the main things to take away from this diagram are as follows:

Chapter 12. Extending SQL: An Overview

182

 In several of the sections that follow, we will present various join queries on the system catalogs that
display information we need to extend the system. Looking at this diagram should make some of
these join queries (which are often three- or four-way joins) more understandable, because you will be
able to see that the columns used in the queries form foreign keys in other tables.
 Many different features (tables, columns, functions, types, access methods, etc.) are tightly integrated
in this schema. A simple create command may modify many of these catalogs.
 Types and procedures are central to the schema.

Note: We use the words procedure and function more or less interchangably.

 Nearly every catalog contains some reference to rows in one or both of these tables. For example,
Postgres frequently uses type signatures (e.g., of functions and operators) to identify unique rows of
other catalogs.
 There are many columns and relationships that have obvious meanings, but there are many
(particularly those that have to do with access methods) that do not. The relationships between
pg_am, pg_amop, pg_amproc, pg_operator and pg_opclass are particularly hard to understand and
will be described in depth (in the section on interfacing types and operators to indices) after we have
discussed basic extensions.

183

Chapter 13. Extending SQL: Functions
 As it turns out, part of defining a new type is the definition of functions that describe its behavior.
Consequently, while it is possible to define a new function without defining a new type, the reverse is
not true. We therefore describe how to add new functions to Postgres before describing how to add new
types.

 Postgres SQL provides three types of functions:

 query language functions (functions written in SQL)

 procedural language functions (functions written in, for example, PLTCL or PLSQL)

 programming language functions (functions written in a compiled programming language such as C)

 Every kind of function can take a base type, a composite type or some combination as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. It’s easiest
to define SQL functions, so we’ll start with those. Examples in this section can also be found in
funcs.sql and funcs.c.

13.1. Query Language (SQL) Functions
 SQL functions execute an arbitrary list of SQL queries, returning the results of the last query in the list.
SQL functions in general return sets. If their returntype is not specified as a setof, then an arbitrary
element of the last query’s result will be returned.

 The body of a SQL function following AS should be a list of queries separated by semicolons and
bracketed within single-quote marks. Note that quote marks used in the queries must be escaped, by
preceding them with a backslash.

 Arguments to the SQL function may be referenced in the queries using a $n syntax: $1 refers to the first
argument, $2 to the second, and so on. If an argument is complex, then a dot notation (e.g. "$1.emp")
may be used to access attributes of the argument or to invoke functions.

13.1.1. Examples

 To illustrate a simple SQL function, consider the following, which might be used to debit a bank
account:

CREATE FUNCTION tp1 (int4, float8)
 RETURNS int4
 AS ’UPDATE bank
 SET balance = bank.balance - $2
 WHERE bank.acctountno = $1;
 SELECT 1;’
LANGUAGE ’sql’;

 A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tp1(17,100.0);

Chapter 13. Extending SQL: Functions

184

 The following more interesting example takes a single argument of type EMP, and retrieves multiple
results:

CREATE FUNCTION hobbies (EMP) RETURNS SETOF hobbies
 AS ’SELECT hobbies.* FROM hobbies
 WHERE $1.name = hobbies.person’
 LANGUAGE ’sql’;

13.1.2. SQL Functions on Base Types

 The simplest possible SQL function has no arguments and simply returns a base type, such as int4:

CREATE FUNCTION one()
 RETURNS int4
 AS ’SELECT 1 as RESULT;’
 LANGUAGE ’sql’;

SELECT one() AS answer;

+-------+
|answer |
+-------+
|1 |
+-------+

 Notice that we defined a column name for the function’s result (with the name RESULT), but this
column name is not visible outside the function. Hence, the result is labelled answer instead of one.

 It’s almost as easy to define SQL functions that take base types as arguments. In the example below,
notice how we refer to the arguments within the function as $1 and $2:

CREATE FUNCTION add_em(int4, int4)
 RETURNS int4
 AS ’SELECT $1 + $2;’
 LANGUAGE ’sql’;

SELECT add_em(1, 2) AS answer;

+-------+
|answer |
+-------+
|3 |
+-------+

Chapter 13. Extending SQL: Functions

185

13.1.3. SQL Functions on Composite Types

 When specifying functions with arguments of composite types (such as EMP), we must not only specify
which argument we want (as we did above with $1 and $2) but also the attributes of that argument. For
example, take the function double_salary that computes what your salary would be if it were doubled:

CREATE FUNCTION double_salary(EMP)
 RETURNS int4
 AS ’SELECT $1.salary * 2 AS salary;’
 LANGUAGE ’sql’;

SELECT name, double_salary(EMP) AS dream
 FROM EMP
 WHERE EMP.cubicle ~= point ’(2,1)’;

+-----+-------+
|name | dream |
+-----+-------+
|Sam | 2400 |
+-----+-------+

 Notice the use of the syntax $1.salary. Before launching into the subject of functions that return
composite types, we must first introduce the function notation for projecting attributes. The simple way
to explain this is that we can usually use the notations attribute(table) and table.attribute interchangably:

--
-- this is the same as:
-- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
--
SELECT name(EMP) AS youngster
 FROM EMP
 WHERE age(EMP) < 30;

+----------+
|youngster |
+----------+
|Sam |
+----------+

 As we shall see, however, this is not always the case. This function notation is important when we want
to use a function that returns a single row. We do this by assembling the entire row within the function,
attribute by attribute. This is an example of a function that returns a single EMP row:

Chapter 13. Extending SQL: Functions

186

CREATE FUNCTION new_emp()
 RETURNS EMP
 AS ’SELECT text ’’None’’ AS name,
 1000 AS salary,
 25 AS age,
 point ’’(2,2)’’ AS cubicle’
 LANGUAGE ’sql’;

 In this case we have specified each of the attributes with a constant value, but any computation or
expression could have been substituted for these constants. Defining a function like this can be tricky.
Some of the more important caveats are as follows:

 The target list order must be exactly the same as that in which the attributes appear in the CREATE
TABLE statement that defined the composite type.

 You must typecast the expressions to match the composite type’s definition, or you will get errors
like this:

 ERROR: function declared to return emp returns varchar instead of text at column
1

 When calling a function that returns a row, we cannot retrieve the entire row. We must either project
an attribute out of the row or pass the entire row into another function.

SELECT name(new_emp()) AS nobody;

+-------+
|nobody |
+-------+
|None |
+-------+

 The reason why, in general, we must use the function syntax for projecting attributes of function
return values is that the parser just doesn’t understand the other (dot) syntax for projection when
combined with function calls.

SELECT new_emp().name AS nobody;
NOTICE:parser: syntax error at or near "."

 Any collection of commands in the SQL query language can be packaged together and defined as a
function. The commands can include updates (i.e., INSERT, UPDATE, and DELETE) as well as

Chapter 13. Extending SQL: Functions

187

SELECT queries. However, the final command must be a SELECT that returns whatever is specified
as the function’s returntype.

CREATE FUNCTION clean_EMP ()
 RETURNS int4
 AS ’DELETE FROM EMP
 WHERE EMP.salary <= 0;
 SELECT 1 AS ignore_this;’
 LANGUAGE ’sql’;

SELECT clean_EMP();

+--+
|x |
+--+
|1 |
+--+

13.2. Procedural Language Functions
 Procedural languages aren’t built into Postgres. They are offered by loadable modules. Please refer to
the documentation for the PL in question for details about the syntax and how the AS clause is
interpreted by the PL handler.

 There are currently three procedural languages available in the standard Postgres distribution (PLSQL,
PLTCL and PLPERL), and other languages can be defined. Refer to Chapter 23 for more information.

13.3. Internal Functions
 Internal functions are functions written in C that have been statically linked into the Postgres backend
process. The AS clause gives the C-language name of the function, which need not be the same as the
name being declared for SQL use. (For reasons of backwards compatibility, an empty AS string is
accepted as meaning that the C-language function name is the same as the SQL name.) Normally, all
internal functions present in the backend are declared as SQL functions during database initialization,
but a user could use CREATE FUNCTION to create additional alias names for an internal function.

 Internal functions are declared in CREATE FUNCTION with language name internal.

13.4. Compiled (C) Language Functions
 Functions written in C can be compiled into dynamically loadable objects (also called shared libraries),
and used to implement user-defined SQL functions. The first time a user-defined function in a particular
loadable object file is called in a backend session, the dynamic loader loads that object file into memory
so that the function can be called. The CREATE FUNCTION for a user-defined function must
therefore specify two pieces of information for the function: the name of the loadable object file, and the

Chapter 13. Extending SQL: Functions

188

C name (link symbol) of the specific function to call within that object file. If the C name is not
explicitly specified then it is assumed to be the same as the SQL function name.

Note: After it is used for the first time, a dynamically loaded user function is retained in memory,
and future calls to the function in the same session will only incur the small overhead of a symbol
table lookup.

 The string that specifies the object file (the first string in the AS clause) should be the full path of the
object code file for the function, bracketed by single quote marks. If a link symbol is given in the AS
clause, the link symbol should also be bracketed by single quote marks, and should be exactly the same
as the name of the function in the C source code. On Unix systems the command nm will print all of the
link symbols in a dynamically loadable object.

Note: Postgres will not compile a function automatically; it must be compiled before it is used in a
CREATE FUNCTION command. See below for additional information.

 Two different calling conventions are currently used for C functions. The newer "version 1" calling
convention is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function, as
illustrated below. Lack of such a macro indicates an old-style ("version 0") function. The language name
specified in CREATE FUNCTION is ’C’ in either case. Old-style functions are now deprecated because
of portability problems and lack of functionality, but they are still supported for compatibility reasons.

13.4.1. Base Types in C-Language Functions

 The following table gives the C type required for parameters in the C functions that will be loaded into
Postgres. The "Defined In" column gives the actual header file (in the .../src/backend/ directory)
that the equivalent C type is defined. Note that you should always include postgres.h first, and that in
turn includes c.h.

Table 13-1. Equivalent C Types for Built-In Postgres Types

 Built-In Type C Type Defined In

abstime AbsoluteTime utils/nabstime.h

bool bool include/c.h

box (BOX *) utils/geo-decls.h

bytea (bytea *) include/postgres.h

"char" char N/A

cid CID include/postgres.h

datetime (DateTime *) include/c.h or include/postgres.h

int2 int2 or int16 include/postgres.h

int2vector (int2vector *) include/postgres.h

Chapter 13. Extending SQL: Functions

189

 Built-In Type C Type Defined In

int4 int4 or int32 include/postgres.h

float4 (float4 *) include/c.h or include/postgres.h

float8 (float8 *) include/c.h or include/postgres.h

lseg (LSEG *) include/geo-decls.h

name (Name) include/postgres.h

oid oid include/postgres.h

oidvector (oidvector *) include/postgres.h

path (PATH *) utils/geo-decls.h

point (POINT *) utils/geo-decls.h

regproc regproc or REGPROC include/postgres.h

reltime RelativeTime utils/nabstime.h

text (text *) include/postgres.h

tid ItemPointer storage/itemptr.h

timespan (TimeSpan *) include/c.h or include/postgres.h

tinterval TimeInterval utils/nabstime.h

xid (XID *) include/postgres.h

 Internally, Postgres regards a base type as a "blob of memory." The user-defined functions that you
define over a type in turn define the way that Postgres can operate on it. That is, Postgres will only store
and retrieve the data from disk and use your user-defined functions to input, process, and output the
data. Base types can have one of three internal formats:

 pass by value, fixed-length

 pass by reference, fixed-length

 pass by reference, variable-length

 By-value types can only be 1, 2 or 4 bytes in length (also 8 bytes, if sizeof(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, the long type is dangerous because it is 4 bytes on some machines and 8
bytes on others, whereas int type is 4 bytes on most Unix machines (though not on most personal
computers). A reasonable implementation of the int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

Chapter 13. Extending SQL: Functions

190

 On the other hand, fixed-length types of any size may be passed by-reference. For example, here is a
sample implementation of a Postgres type:

/* 16-byte structure, passed by reference */
typedef struct
{
 double x, y;
} Point;

 Only pointers to such types can be used when passing them in and out of Postgres functions. To return a
value of such a type, allocate the right amount of memory with palloc(), fill in the allocated memory,
and return a pointer to it. (Alternatively, you can return an input value of the same type by returning its
pointer. Never modify the contents of a pass-by-reference input value, however.)

 Finally, all variable-length types must also be passed by reference. All variable-length types must begin
with a length field of exactly 4 bytes, and all data to be stored within that type must be located in the
memory immediately following that length field. The length field is the total length of the structure (i.e.,
it includes the size of the length field itself). We can define the text type as follows:

typedef struct {
 int4 length;
 char data[1];
} text;

 Obviously, the data field shown here is not long enough to hold all possible strings; it’s impossible to
declare such a structure in C. When manipulating variable-length types, we must be careful to allocate
the correct amount of memory and initialize the length field. For example, if we wanted to store 40 bytes
in a text structure, we might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
destination->length = VARHDRSZ + 40;
memmove(destination->data, buffer, 40);
...

 Now that we’ve gone over all of the possible structures for base types, we can show some examples of
real functions.

13.4.2. Version-0 Calling Conventions for C-Language Functions

 We present the �old style� calling convention first --- although this approach is now deprecated, it’s easier
to get a handle on initially. In the version-0 method, the arguments and result of the C function are just
declared in normal C style, but being careful to use the C representation of each SQL data type as shown
above.

Chapter 13. Extending SQL: Functions

191

 Here are some examples:

#include "postgres.h"
#include <string.h>

/* By Value */

int
add_one(int arg)
{
 return arg + 1;
}

/* By Reference, Fixed Length */

float8 *
add_one_float8(float8 *arg)
{
 float8 *result = (float8 *) palloc(sizeof(float8));

 *result = *arg + 1.0;

 return result;
}

Point *
makepoint(Point *pointx, Point *pointy)
{
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;
 new_point->y = pointy->y;

 return new_point;
}

/* By Reference, Variable Length */

text *
copytext(text *t)
{
 /*
 * VARSIZE is the total size of the struct in bytes.
 */
 text *new_t = (text *) palloc(VARSIZE(t));
 VARATT_SIZEP(new_t) = VARSIZE(t);
 /*
 * VARDATA is a pointer to the data region of the struct.
 */
 memcpy((void *) VARDATA(new_t), /* destination */
 (void *) VARDATA(t), /* source */
 VARSIZE(t)-VARHDRSZ); /* how many bytes */

Chapter 13. Extending SQL: Functions

192

 return new_t;
}

text *
concat_text(text *arg1, text *arg2)
{
 int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 VARATT_SIZEP(new_text) = new_text_size;
 memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
 memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),
 VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
 return new_text;
}

 Supposing that the above code has been prepared in file funcs.c and compiled into a shared object, we
could define the functions to Postgres with commands like this:

CREATE FUNCTION add_one(int4) RETURNS int4
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’
 WITH (isStrict);

-- note overloading of SQL function name add_one()
CREATE FUNCTION add_one(float8) RETURNS float8
 AS ’PGROOT/tutorial/funcs.so’,
 ’add_one_float8’
 LANGUAGE ’c’ WITH (isStrict);

CREATE FUNCTION makepoint(point, point) RETURNS point
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’
 WITH (isStrict);

CREATE FUNCTION copytext(text) RETURNS text
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’
 WITH (isStrict);

CREATE FUNCTION concat_text(text, text) RETURNS text
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’
 WITH (isStrict);

 Here PGROOT stands for the full path to the Postgres source tree. Note that depending on your system,
the filename for a shared object might not end in .so, but in .sl or something else; adapt accordingly.

 Notice that we have specified the functions as "strict", meaning that the system should automatically
assume a NULL result if any input value is NULL. By doing this, we avoid having to check for NULL
inputs in the function code. Without this, we’d have to check for NULLs explicitly, for example by
checking for a null pointer for each pass-by-reference argument. (For pass-by-value arguments, we don’t
even have a way to check!)

Chapter 13. Extending SQL: Functions

193

 Although this calling convention is simple to use, it is not very portable; on some architectures there are
problems with passing smaller-than-int data types this way. Also, there is no simple way to return a
NULL result, nor to cope with NULL arguments in any way other than making the function strict. The
version-1 convention, presented next, overcomes these objections.

13.4.3. Version-1 Calling Conventions for C-Language Functions

 The version-1 calling convention relies on macros to suppress most of the complexity of passing
arguments and results. The C declaration of a version-1 function is always

Datum funcname(PG_FUNCTION_ARGS)

 In addition, the macro call

PG_FUNCTION_INFO_V1(funcname);

 must appear in the same source file (conventionally it’s written just before the function itself). This
macro call is not needed for "internal"-language functions, since Postgres currently assumes all internal
functions are version-1. However, it is required for dynamically-loaded functions.

 In a version-1 function, each actual argument is fetched using a PG_GETARG_xxx() macro that
corresponds to the argument’s datatype, and the result is returned using a PG_RETURN_xxx() macro for
the return type.

 Here we show the same functions as above, coded in version-1 style:

#include "postgres.h"
#include <string.h>
#include "fmgr.h"

/* By Value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
 int32 arg = PG_GETARG_INT32(0);

 PG_RETURN_INT32(arg + 1);
}

/* By Reference, Fixed Length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
 /* The macros for FLOAT8 hide its pass-by-reference nature */
 float8 arg = PG_GETARG_FLOAT8(0);

Chapter 13. Extending SQL: Functions

194

 PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
 /* Here, the pass-by-reference nature of Point is not hidden */
 Point *pointx = PG_GETARG_POINT_P(0);
 Point *pointy = PG_GETARG_POINT_P(1);
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;
 new_point->y = pointy->y;

 PG_RETURN_POINT_P(new_point);
}

/* By Reference, Variable Length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
 text *t = PG_GETARG_TEXT_P(0);
 /*
 * VARSIZE is the total size of the struct in bytes.
 */
 text *new_t = (text *) palloc(VARSIZE(t));
 VARATT_SIZEP(new_t) = VARSIZE(t);
 /*
 * VARDATA is a pointer to the data region of the struct.
 */
 memcpy((void *) VARDATA(new_t), /* destination */
 (void *) VARDATA(t), /* source */
 VARSIZE(t)-VARHDRSZ); /* how many bytes */
 PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
 text *arg1 = PG_GETARG_TEXT_P(0);
 text *arg2 = PG_GETARG_TEXT_P(1);
 int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 VARATT_SIZEP(new_text) = new_text_size;
 memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);

Chapter 13. Extending SQL: Functions

195

 memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),
 VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
 PG_RETURN_TEXT_P(new_text);
}

 The CREATE FUNCTION commands are the same as for the version-0 equivalents.

 At first glance, the version-1 coding conventions may appear to be just pointless obscurantism.
However, they do offer a number of improvements, because the macros can hide unnecessary detail. An
example is that in coding add_one_float8, we no longer need to be aware that float8 is a
pass-by-reference type. Another example is that the GETARG macros for variable-length types hide the
need to deal with fetching "toasted" (compressed or out-of-line) values. The old-style copytext and
concat_text functions shown above are actually wrong in the presence of toasted values, because they
don’t call pg_detoast_datum() on their inputs. (The handler for old-style dynamically-loaded
functions currently takes care of this detail, but it does so less efficiently than is possible for a version-1
function.)

 One big improvement in version-1 functions is better handling of NULL inputs and results. The macro
PG_ARGISNULL(n) allows a function to test whether each input is NULL (of course, doing this is only
necessary in functions not declared �strict�). As with the PG_GETARG_xxx() macros, the input arguments
are counted beginning at zero. To return a NULL result, execute PG_RETURN_NULL(); this works in
both strict and non-strict functions.

 The version-1 function call conventions make it possible to return �set� results and implement trigger
functions and procedural-language call handlers. Version-1 code is also more portable than version-0,
because it does not break ANSI C restrictions on function call protocol. For more details see
src/backend/utils/fmgr/README in the source distribution.

13.4.4. Composite Types in C-Language Functions

 Composite types do not have a fixed layout like C structures. Instances of a composite type may contain
null fields. In addition, composite types that are part of an inheritance hierarchy may have different
fields than other members of the same inheritance hierarchy. Therefore, Postgres provides a procedural
interface for accessing fields of composite types from C. As Postgres processes a set of rows, each row
will be passed into your function as an opaque structure of type TUPLE. Suppose we want to write a
function to answer the query

SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = ’Bill’ OR name = ’Sam’;

 In the query above, we can define c_overpaid as:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

bool
c_overpaid(TupleTableSlot *t, /* the current row of EMP */
 int32 limit)
{

Chapter 13. Extending SQL: Functions

196

 bool isnull;
 int32 salary;

 salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
 if (isnull)
 return (false);
 return salary > limit;
}

/* In version-1 coding, the above would look like this: */

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
 TupleTableSlot *t = (TupleTableSlot *) PG_GETARG_POINTER(0);
 int32 limit = PG_GETARG_INT32(1);
 bool isnull;
 int32 salary;

 salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
 if (isnull)
 PG_RETURN_BOOL(false);
 /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary
*/

 PG_RETURN_BOOL(salary > limit);
}

 GetAttributeByName is the Postgres system function that returns attributes out of the current row. It
has three arguments: the argument of type TupleTableSlot* passed into the function, the name of the
desired attribute, and a return parameter that tells whether the attribute is null. GetAttributeByName
returns a Datum value that you can convert to the proper datatype by using the appropriate
DatumGetXXX() macro.

 The following query lets Postgres know about the c_overpaid function:

CREATE FUNCTION c_overpaid(emp, int4)
RETURNS bool
AS ’PGROOT/tutorial/obj/funcs.so’
LANGUAGE ’c’;

 While there are ways to construct new rows or modify existing rows from within a C function, these are
far too complex to discuss in this manual.

Chapter 13. Extending SQL: Functions

197

13.4.5. Writing Code

 We now turn to the more difficult task of writing programming language functions. Be warned: this
section of the manual will not make you a programmer. You must have a good understanding of C
(including the use of pointers and the malloc memory manager) before trying to write C functions for
use with Postgres. While it may be possible to load functions written in languages other than C into
Postgres, this is often difficult (when it is possible at all) because other languages, such as FORTRAN
and Pascal often do not follow the same calling convention as C. That is, other languages do not pass
argument and return values between functions in the same way. For this reason, we will assume that
your programming language functions are written in C.

 The basic rules for building C functions are as follows:

 The relevant header (include) files are installed under /usr/local/pgsql/include or equivalent.
You can use pg_config --includedir to find out where it is on your system (or the system that
your users will be running on). For very low-level work you might need to have a complete
PostgreSQL source tree available.

 When allocating memory, use the Postgres routines palloc and pfree instead of the corresponding
C library routines malloc and free. The memory allocated by palloc will be freed automatically at
the end of each transaction, preventing memory leaks.

 Always zero the bytes of your structures using memset or bzero. Several routines (such as the hash
access method, hash join and the sort algorithm) compute functions of the raw bits contained in your
structure. Even if you initialize all fields of your structure, there may be several bytes of alignment
padding (holes in the structure) that may contain garbage values.

 Most of the internal Postgres types are declared in postgres.h, while the function manager
interfaces (PG_FUNCTION_ARGS, etc.) are in fmgr.h, so you will need to include at least these
two files. For portability reasons it’s best to include postgres.h first, before any other system or
user header files. Including postgres.h will also include c.h, elog.h and palloc.h for you.

 Symbol names defined within object files must not conflict with each other or with symbols defined
in the PostgreSQL server executable. You will have to rename your functions or variables if you get
error messages to this effect.

 Compiling and linking your object code so that it can be dynamically loaded into Postgres always
requires special flags. See Section 13.4.6 for a detailed explanation of how to do it for your particular
operating system.

13.4.6. Compiling and Linking Dynamically-Loaded Functions

 Before you are able to use your PostgreSQL extension function written in C they need to be compiled
and linked in a special way in order to allow it to be dynamically loaded as needed by the server. To be
precise, a shared library needs to be created.

 For more information you should read the documentation of your operating system, in particular the
manual pages for the C compiler, cc, and the link editor, ld. In addition, the PostgreSQL source code
contains several working examples in the contrib directory. If you rely on these examples you will
make your modules dependent on the availability of the PostgreSQL source code, however.

Chapter 13. Extending SQL: Functions

198

 Creating shared libraries is generally analoguous to linking executables: first the source files are
compiled into object files, then the object files are linked together. The object files need to be created as
position-independent code (PIC), which conceptually means that they can be placed at an arbitrary
location in memory when they are loaded by the executable. (Object files intended for executables are
not compiled that way.) The command to link a shared library contains special flags to distinguish it
from linking an executable. --- At least this is the theory. On some systems the practice is much uglier.

 In the following examples we assume that your source code is in a file foo.c and we will create an
shared library foo.so. The intermediate object file will be called foo.o unless otherwise noted. A
shared library can contain more than one object file, but we only use one here.

BSD/OS

 The compiler flag to create PIC is -fpic. The linker flag to create shared libraries is -shared.

gcc -fpic -c foo.c
ld -shared -o foo.so foo.o

 This is applicable as of version 4.0 of BSD/OS.

FreeBSD

 The compiler flag to create PIC is -fpic. To create shared libraries the compiler flag is -shared.

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

 This is applicable as of version 3.0 of FreeBSD.

HP-UX

 The compiler flag of the system compiler to create PIC is +z. When using GCC it’s -fpic. The
linker flag for shared libraries is -b. So

cc +z -c foo.c

 or

gcc -fpic -c foo.c

 and then

ld -b -o foo.sl foo.o

 HP-UX uses the extension .sl for shared libraries, unlike most other systems.

Irix

 PIC is the default, no special compiler options are necessary. The linker option to produce shared
libraries is -shared.

cc -c foo.c
ld -shared -o foo.so foo.o

Chapter 13. Extending SQL: Functions

199

Linux

 The compiler flag to create PIC is -fpic. On some platforms in some situations -fPIC must be
used if -fpic does not work. Refer to the GCC manual for more information. The compiler flag to
create a shared library is -shared. A complete example looks like this:

cc -fpic -c foo.c
cc -shared -o foo.so foo.o

NetBSD

 The compiler flag to create PIC is -fpic. For ELF systems, the compiler with the flag -shared is
used to link shared libraries. On the older non-ELF systems, ld -Bshareable is used.

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

OpenBSD

 The compiler flag to create PIC is -fpic. ld -Bshareable is used to link shared libraries.

gcc -fpic -c foo.c
ld -Bshareable -o foo.so foo.o

Digital Unix/Tru64 UNIX

 PIC is the default, so the compilation command is the usual one. ld with special options is used to
do the linking:

cc -c foo.c
ld -shared -expect_unresolved ’*’ -o foo.so foo.o

 The same procedure is used with GCC instead of the system compiler; no special options are
required.

Solaris

 The compiler flag to create PIC is -KPIC with the Sun compiler and -fpic with GCC. To link
shared libraries, the compiler option is -G with either compiler or alternatively -shared with
GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

 or

gcc -fpic -c foo.c
gcc -G -o foo.so foo.o

Chapter 13. Extending SQL: Functions

200

Unixware

 The compiler flag to create PIC is -K PIC with the SCO compiler and -fpic with GCC. To link
shared libraries, the compiler option is -G with the SCO compiler and -shared with GCC.

cc -K PIC -c foo.c
cc -G -o foo.so foo.o

 or

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

Tip: If you want to package your extension modules for wide distribution you should consider using
GNU Libtool (http://www.gnu.org/software/libtool/) for building shared libraries. It encapsulates the
platform differences into a general and powerful interface. Serious packaging also requires
considerations about library versioning, symbol resolution methods, and other issues.

 The resulting shared library file can then be loaded into Postgres. When specifying the file name to the
CREATE FUNCTION command, one must give it the name of the shared library file (ending in .so)
rather than the simple object file.

Note: Actually, Postgres does not care what you name the file as long as it is a shared library file.

 Paths given to the CREATE FUNCTION command must be absolute paths (i.e., start with /) that
refer to directories visible on the machine on which the Postgres server is running. Relative paths do in
fact work, but are relative to the directory where the database resides (which is generally invisible to the
frontend application). Obviously, it makes no sense to make the path relative to the directory in which
the user started the frontend application, since the server could be running on a completely different
machine! The user id the Postgres server runs as must be able to traverse the path given to the CREATE
FUNCTION command and be able to read the shared library file. (Making the file or a higher-level
directory not readable and/or not executable by the �postgres� user is a common mistake.)

13.5. Function Overloading
 More than one function may be defined with the same name, so long as the arguments they take are
different. In other words, function names can be overloaded. A function may also have the same name
as an attribute. In the case that there is an ambiguity between a function on a complex type and an
attribute of the complex type, the attribute will always be used.

13.5.1. Name Space Conflicts

 As of Postgres 7.0, the alternative form of the AS clause for the SQL CREATE FUNCTION
command decouples the SQL function name from the function name in the C source code. This is now
the preferred technique to accomplish function overloading.

Chapter 13. Extending SQL: Functions

201

13.5.1.1. Pre-7.0

 For functions written in C, the SQL name declared in CREATE FUNCTION must be exactly the same
as the actual name of the function in the C code (hence it must be a legal C function name).

 There is a subtle implication of this restriction: while the dynamic loading routines in most operating
systems are more than happy to allow you to load any number of shared libraries that contain conflicting
(identically-named) function names, they may in fact botch the load in interesting ways. For example, if
you define a dynamically-loaded function that happens to have the same name as a function built into
Postgres, the DEC OSF/1 dynamic loader causes Postgres to call the function within itself rather than
allowing Postgres to call your function. Hence, if you want your function to be used on different
architectures, we recommend that you do not overload C function names.

 There is a clever trick to get around the problem just described. Since there is no problem overloading
SQL functions, you can define a set of C functions with different names and then define a set of
identically-named SQL function wrappers that take the appropriate argument types and call the
matching C function.

 Another solution is not to use dynamic loading, but to link your functions into the backend statically
and declare them as INTERNAL functions. Then, the functions must all have distinct C names but they
can be declared with the same SQL names (as long as their argument types differ, of course). This way
avoids the overhead of an SQL wrapper function, at the cost of more effort to prepare a custom backend
executable. (This option is only available in version 6.5 and later, since prior versions required internal
functions to have the same name in SQL as in the C code.)

202

Chapter 14. Extending SQL: Types
 As previously mentioned, there are two kinds of types in Postgres: base types (defined in a
programming language) and composite types. Examples in this section up to interfacing indices can be
found in complex.sql and complex.c. Composite examples are in funcs.sql.

14.1. User-Defined Types

14.1.1. Functions Needed for a User-Defined Type

 A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized in
memory. The input function takes a null-delimited character string as its input and returns the internal
(in memory) representation of the type. The output function takes the internal representation of the type
and returns a null delimited character string. Suppose we want to define a complex type which
represents complex numbers. Naturally, we choose to represent a complex in memory as the following C
structure:

typedef struct Complex {
 double x;
 double y;
} Complex;

 and a string of the form (x,y) as the external string representation. These functions are usually not hard
to write, especially the output function. However, there are a number of points to remember:

 When defining your external (string) representation, remember that you must eventually write a
complete and robust parser for that representation as your input function!

Complex *
complex_in(char *str)
{
 double x, y;
 Complex *result;
 if (sscanf(str, " (%lf , %lf)", &x, &y) != 2) {
 elog(ERROR, "complex_in: error in parsing %s", str);
 return NULL;
 }
 result = (Complex *)palloc(sizeof(Complex));
 result->x = x;
 result->y = y;
 return (result);
}

 The output function can simply be:

char *
complex_out(Complex *complex)

Chapter 14. Extending SQL: Types

203

{
 char *result;
 if (complex == NULL)
 return(NULL);
 result = (char *) palloc(60);
 sprintf(result, "(%g,%g)", complex->x, complex->y);
 return(result);
}

 You should try to make the input and output functions inverses of each other. If you do not, you will
have severe problems when you need to dump your data into a file and then read it back in (say, into
someone else’s database on another computer). This is a particularly common problem when
floating-point numbers are involved.

 To define the complex type, we need to create the two user-defined functions complex_in and
complex_out before creating the type:

CREATE FUNCTION complex_in(opaque)
 RETURNS complex
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

CREATE FUNCTION complex_out(opaque)
 RETURNS opaque
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

CREATE TYPE complex (
 internallength = 16,
 input = complex_in,
 output = complex_out
);

 As discussed earlier, Postgres fully supports arrays of base types. Additionally, Postgres supports arrays
of user-defined types as well. When you define a type, Postgres automatically provides support for
arrays of that type. For historical reasons, the array type has the same name as the user-defined type with
the underscore character _ prepended. Composite types do not need any function defined on them, since
the system already understands what they look like inside.

14.1.2. Large Objects

 If the values of your datatype might exceed a few hundred bytes in size (in internal form), you should
be careful to mark them TOASTable. To do this, the internal representation must follow the standard
layout for variable-length data: the first four bytes must be an int32 containing the total length in bytes
of the datum (including itself). Then, all your functions that accept values of the type must be careful to
call pg_detoast_datum() on the supplied values --- after checking that the value is not NULL, if your

Chapter 14. Extending SQL: Types

204

function is not strict. Finally, select the appropriate storage option when giving the CREATE TYPE
command.

205

Chapter 15. Extending SQL: Operators
 Postgres supports left unary, right unary and binary operators. Operators can be overloaded; that is, the
same operator name can be used for different operators that have different numbers and types of
arguments. If there is an ambiguous situation and the system cannot determine the correct operator to
use, it will return an error. You may have to typecast the left and/or right operands to help it understand
which operator you meant to use.

 Every operator is "syntactic sugar" for a call to an underlying function that does the real work; so you
must first create the underlying function before you can create the operator. However, an operator is not
merely syntactic sugar, because it carries additional information that helps the query planner optimize
queries that use the operator. Much of this chapter will be devoted to explaining that additional
information.

 Here is an example of creating an operator for adding two complex numbers. We assume we’ve already
created the definition of type complex. First we need a function that does the work; then we can define
the operator:

CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS ’$PWD/obj/complex.so’
 LANGUAGE ’c’;

CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 procedure = complex_add,
 commutator = +
);

 Now we can do:

SELECT (a + b) AS c FROM test_complex;

+----------------+
|c |
+----------------+
|(5.2,6.05) |
+----------------+
|(133.42,144.95) |
+----------------+

 We’ve shown how to create a binary operator here. To create unary operators, just omit one of leftarg
(for left unary) or rightarg (for right unary). The procedure clause and the argument clauses are the only
required items in CREATE OPERATOR. The COMMUTATOR clause shown in the example is an

Chapter 15. Extending SQL: Operators

206

optional hint to the query optimizer. Further details about COMMUTATOR and other optimizer hints
appear below.

15.1. Operator Optimization Information
Author: Written by Tom Lane.

 A Postgres operator definition can include several optional clauses that tell the system useful things
about how the operator behaves. These clauses should be provided whenever appropriate, because they
can make for considerable speedups in execution of queries that use the operator. But if you provide
them, you must be sure that they are right! Incorrect use of an optimization clause can result in backend
crashes, subtly wrong output, or other Bad Things. You can always leave out an optimization clause if
you are not sure about it; the only consequence is that queries might run slower than they need to.

 Additional optimization clauses might be added in future versions of Postgres. The ones described here
are all the ones that release 6.5 understands.

15.1.1. COMMUTATOR

 The COMMUTATOR clause, if provided, names an operator that is the commutator of the operator
being defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all
possible input values x,y. Notice that B is also the commutator of A. For example, operators ’<’ and ’>’
for a particular datatype are usually each others’ commutators, and operator ’+’ is usually commutative
with itself. But operator ’-’ is usually not commutative with anything.

 The left argument type of a commuted operator is the same as the right argument type of its
commutator, and vice versa. So the name of the commutator operator is all that Postgres needs to be
given to look up the commutator, and that’s all that need be provided in the COMMUTATOR clause.

 When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven’t defined yet? There are two solutions to this problem:

 One way is to omit the COMMUTATOR clause in the first operator that you define, and then provide
one in the second operator’s definition. Since Postgres knows that commutative operators come in
pairs, when it sees the second definition it will automatically go back and fill in the missing
COMMUTATOR clause in the first definition.

 The other, more straightforward way is just to include COMMUTATOR clauses in both definitions.
When Postgres processes the first definition and realizes that COMMUTATOR refers to a
non-existent operator, the system will make a dummy entry for that operator in the system’s
pg_operator table. This dummy entry will have valid data only for the operator name, left and right
argument types, and result type, since that’s all that Postgres can deduce at this point. The first
operator’s catalog entry will link to this dummy entry. Later, when you define the second operator,
the system updates the dummy entry with the additional information from the second definition. If
you try to use the dummy operator before it’s been filled in, you’ll just get an error message. (Note:
this procedure did not work reliably in Postgres versions before 6.5, but it is now the recommended
way to do things.)

Chapter 15. Extending SQL: Operators

207

15.1.2. NEGATOR

 The NEGATOR clause, if provided, names an operator that is the negator of the operator being defined.
We say that operator A is the negator of operator B if both return boolean results and (x A y) equals
NOT (x B y) for all possible inputs x,y. Notice that B is also the negator of A. For example, ’<’ and ’>=’
are a negator pair for most datatypes. An operator can never be validly be its own negator.

 Unlike COMMUTATOR, a pair of unary operators could validly be marked as each others’ negators;
that would mean (A x) equals NOT (B x) for all x, or the equivalent for right-unary operators.

 An operator’s negator must have the same left and/or right argument types as the operator itself, so just
as with COMMUTATOR, only the operator name need be given in the NEGATOR clause.

 Providing NEGATOR is very helpful to the query optimizer since it allows expressions like NOT (x =
y) to be simplified into x <> y. This comes up more often than you might think, because NOTs can be
inserted as a consequence of other rearrangements.

 Pairs of negator operators can be defined using the same methods explained above for commutator
pairs.

15.1.3. RESTRICT

 The RESTRICT clause, if provided, names a restriction selectivity estimation function for the operator
(note that this is a function name, not an operator name). RESTRICT clauses only make sense for binary
operators that return boolean. The idea behind a restriction selectivity estimator is to guess what fraction
of the rows in a table will satisfy a WHERE-clause condition of the form

 field OP constant

 for the current operator and a particular constant value. This assists the optimizer by giving it some idea
of how many rows will be eliminated by WHERE clauses that have this form. (What happens if the
constant is on the left, you may be wondering? Well, that’s one of the things that COMMUTATOR is
for...)

 Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but
fortunately you can usually just use one of the system’s standard estimators for many of your own
operators. These are the standard restriction estimators:

 eqsel for =
 neqsel for <>
 scalarltsel for < or <=
 scalargtsel for > or >=

 It might seem a little odd that these are the categories, but they make sense if you think about it. ’=’ will
typically accept only a small fraction of the rows in a table; ’<>’ will typically reject only a small
fraction. ’<’ will accept a fraction that depends on where the given constant falls in the range of values
for that table column (which, it just so happens, is information collected by VACUUM ANALYZE and
made available to the selectivity estimator). ’<=’ will accept a slightly larger fraction than ’<’ for the

Chapter 15. Extending SQL: Operators

208

same comparison constant, but they’re close enough to not be worth distinguishing, especially since
we’re not likely to do better than a rough guess anyhow. Similar remarks apply to ’>’ and ’>=’.

 You can frequently get away with using either eqsel or neqsel for operators that have very high or very
low selectivity, even if they aren’t really equality or inequality. For example, the approximate-equality
geometric operators use eqsel on the assumption that they’ll usually only match a small fraction of the
entries in a table.

 You can use scalarltsel and scalargtsel for comparisons on datatypes that have some sensible means of
being converted into numeric scalars for range comparisons. If possible, add the datatype to those
understood by the routine convert_to_scalar() in src/backend/utils/adt/selfuncs.c. (Eventually, this
routine should be replaced by per-datatype functions identified through a column of the pg_type table;
but that hasn’t happened yet.) If you do not do this, things will still work, but the optimizer’s estimates
won’t be as good as they could be.

 There are additional selectivity functions designed for geometric operators in
src/backend/utils/adt/geo_selfuncs.c: areasel, positionsel, and contsel. At this writing these are just
stubs, but you may want to use them (or even better, improve them) anyway.

15.1.4. JOIN

 The JOIN clause, if provided, names a join selectivity estimation function for the operator (note that
this is a function name, not an operator name). JOIN clauses only make sense for binary operators that
return boolean. The idea behind a join selectivity estimator is to guess what fraction of the rows in a pair
of tables will satisfy a WHERE-clause condition of the form

 table1.field1 OP table2.field2

 for the current operator. As with the RESTRICT clause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

 As before, this chapter will make no attempt to explain how to write a join selectivity estimator
function, but will just suggest that you use one of the standard estimators if one is applicable:

 eqjoinsel for =
 neqjoinsel for <>
 scalarltjoinsel for < or <=
 scalargtjoinsel for > or >=
 areajoinsel for 2D area-based comparisons
 positionjoinsel for 2D position-based comparisons
 contjoinsel for 2D containment-based comparisons

15.1.5. HASHES

 The HASHES clause, if present, tells the system that it is OK to use the hash join method for a join
based on this operator. HASHES only makes sense for binary operators that return boolean, and in
practice the operator had better be equality for some data type.

Chapter 15. Extending SQL: Operators

209

 The assumption underlying hash join is that the join operator can only return TRUE for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join will
never compare them at all, implicitly assuming that the result of the join operator must be FALSE. So it
never makes sense to specify HASHES for operators that do not represent equality.

 In fact, logical equality is not good enough either; the operator had better represent pure bitwise
equality, because the hash function will be computed on the memory representation of the values
regardless of what the bits mean. For example, equality of time intervals is not bitwise equality; the
interval equality operator considers two time intervals equal if they have the same duration, whether or
not their endpoints are identical. What this means is that a join using "=" between interval fields would
yield different results if implemented as a hash join than if implemented another way, because a large
fraction of the pairs that should match will hash to different values and will never be compared by the
hash join. But if the optimizer chose to use a different kind of join, all the pairs that the equality operator
says are equal will be found. We don’t want that kind of inconsistency, so we don’t mark interval
equality as hashable.

 There are also machine-dependent ways in which a hash join might fail to do the right thing. For
example, if your datatype is a structure in which there may be uninteresting pad bits, it’s unsafe to mark
the equality operator HASHES. (Unless, perhaps, you write your other operators to ensure that the
unused bits are always zero.) Another example is that the FLOAT datatypes are unsafe for hash joins.
On machines that meet the IEEE floating point standard, minus zero and plus zero are different values
(different bit patterns) but they are defined to compare equal. So, if float equality were marked
HASHES, a minus zero and a plus zero would probably not be matched up by a hash join, but they
would be matched up by any other join process.

 The bottom line is that you should probably only use HASHES for equality operators that are (or could
be) implemented by memcmp().

15.1.6. SORT1 and SORT2

 The SORT clauses, if present, tell the system that it is permissible to use the merge join method for a
join based on the current operator. Both must be specified if either is. The current operator must be
equality for some pair of data types, and the SORT1 and SORT2 clauses name the ordering operator (’<’
operator) for the left and right-side data types respectively.

 Merge join is based on the idea of sorting the left and righthand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator must
be one that can only succeed for pairs of values that fall at the "same place" in the sort order. In practice
this means that the join operator must behave like equality. But unlike hashjoin, where the left and right
data types had better be the same (or at least bitwise equivalent), it is possible to mergejoin two distinct
data types so long as they are logically compatible. For example, the int2-versus-int4 equality operator is
mergejoinable. We only need sorting operators that will bring both datatypes into a logically compatible
sequence.

 When specifying merge sort operators, the current operator and both referenced operators must return
boolean; the SORT1 operator must have both input datatypes equal to the current operator’s left
argument type, and the SORT2 operator must have both input datatypes equal to the current operator’s
right argument type. (As with COMMUTATOR and NEGATOR, this means that the operator name is
sufficient to specify the operator, and the system is able to make dummy operator entries if you happen
to define the equality operator before the other ones.)

Chapter 15. Extending SQL: Operators

210

 In practice you should only write SORT clauses for an ’=’ operator, and the two referenced operators
should always be named ’<’. Trying to use merge join with operators named anything else will result in
hopeless confusion, for reasons we’ll see in a moment.

 There are additional restrictions on operators that you mark mergejoinable. These restrictions are not
currently checked by CREATE OPERATOR, but a merge join may fail at runtime if any are not true:

 The mergejoinable equality operator must have a commutator (itself if the two data types are the
same, or a related equality operator if they are different).

 There must be ’<’ and ’>’ ordering operators having the same left and right input datatypes as the
mergejoinable operator itself. These operators must be named ’<’ and ’>’; you do not have any choice
in the matter, since there is no provision for specifying them explicitly. Note that if the left and right
data types are different, neither of these operators is the same as either SORT operator. But they had
better order the data values compatibly with the SORT operators, or mergejoin will fail to work.

211

Chapter 16. Extending SQL: Aggregates
 Aggregate functions in Postgres are expressed as state values and state transition functions. That is, an
aggregate can be defined in terms of state that is modified whenever an input item is processed. To
define a new aggregate function, one selects a datatype for the state value, an initial value for the state,
and a state transition function. The state transition function is just an ordinary function that could also be
used outside the context of the aggregate. A final function can also be specified, in case the desired
output of the aggregate is different from the data that needs to be kept in the running state value.

 Thus, in addition to the input and result datatypes seen by a user of the aggregate, there is an internal
state-value datatype that may be different from both the input and result types.

 If we define an aggregate that does not use a final function, we have an aggregate that computes a
running function of the column values from each row. "Sum" is an example of this kind of aggregate.
"Sum" starts at zero and always adds the current row’s value to its running total. For example, if we
want to make a Sum aggregate to work on a datatype for complex numbers, we only need the addition
function for that datatype. The aggregate definition is:

CREATE AGGREGATE complex_sum (
 sfunc = complex_add,
 basetype = complex,
 stype = complex,
 initcond = ’(0,0)’
);

SELECT complex_sum(a) FROM test_complex;

 +------------+
 |complex_sum |
 +------------+
 |(34,53.9) |
 +------------+

 (In practice, we’d just name the aggregate "sum", and rely on Postgres to figure out which kind of sum
to apply to a complex column.)

 The above definition of "Sum" will return zero (the initial state condition) if there are no non-null input
values. Perhaps we want to return NULL in that case instead --- SQL92 expects "Sum" to behave that
way. We can do this simply by omitting the "initcond" phrase, so that the initial state condition is
NULL. Ordinarily this would mean that the sfunc would need to check for a NULL state-condition
input, but for "Sum" and some other simple aggregates like "Max" and "Min", it’s sufficient to insert the
first non-null input value into the state variable and then start applying the transition function at the
second non-null input value. Postgres will do that automatically if the initial condition is NULL and the
transition function is marked "strict" (i.e., not to be called for NULL inputs).

 Another bit of default behavior for a "strict" transition function is that the previous state value is
retained unchanged whenever a NULL input value is encountered. Thus, NULLs are ignored. If you
need some other behavior for NULL inputs, just define your transition function as non-strict, and code it
to test for NULL inputs and do whatever is needed.

Chapter 16. Extending SQL: Aggregates

212

 "Average" is a more complex example of an aggregate. It requires two pieces of running state: the sum
of the inputs and the count of the number of inputs. The final result is obtained by dividing these
quantities. Average is typically implemented by using a two-element array as the transition state value.
For example, the built-in implementation of avg(float8) looks like:

CREATE AGGREGATE avg (
 sfunc = float8_accum,
 basetype = float8,
 stype = float8[],
 finalfunc = float8_avg,
 initcond = ’{0,0}’
);

 For further details see CREATE AGGREGATE in The PostgreSQL User’s Guide.

213

Chapter 17. The Postgres Rule System
Author: Written by Jan Wieck. Updates for 7.1 by Tom Lane.

 Production rule systems are conceptually simple, but there are many subtle points involved in actually
using them. Some of these points and the theoretical foundations of the Postgres rule system can be
found in [Stonebraker et al, ACM, 1990].

 Some other database systems define active database rules. These are usually stored procedures and
triggers and are implemented in Postgres as functions and triggers.

 The query rewrite rule system (the "rule system" from now on) is totally different from stored
procedures and triggers. It modifies queries to take rules into consideration, and then passes the
modified query to the query planner for planning and execution. It is very powerful, and can be used for
many things such as query language procedures, views, and versions. The power of this rule system is
discussed in [Ong and Goh, 1990] as well as [Stonebraker et al, ACM, 1990].

17.1. What is a Querytree?
 To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

 The rule system is located between the query parser and the planner. It takes the output of the parser,
one querytree, and the rewrite rules from the pg_rewrite catalog, which are querytrees too with some
extra information, and creates zero or many querytrees as result. So its input and output are always
things the parser itself could have produced and thus, anything it sees is basically representable as an
SQL statement.

 Now what is a querytree? It is an internal representation of an SQL statement where the single parts that
built it are stored separately. These querytrees are visible when starting the Postgres backend with
debuglevel 4 and typing queries into the interactive backend interface. The rule actions in the
pg_rewrite system catalog are also stored as querytrees. They are not formatted like the debug output,
but they contain exactly the same information.

 Reading a querytree requires some experience and it was a hard time when I started to work on the rule
system. I can remember that I was standing at the coffee machine and I saw the cup in a targetlist, water
and coffee powder in a rangetable and all the buttons in a qualification expression. Since SQL
representations of querytrees are sufficient to understand the rule system, this document will not teach
how to read them. It might help to learn it and the naming conventions are required in the later following
descriptions.

17.1.1. The Parts of a Querytree

 When reading the SQL representations of the querytrees in this document it is necessary to be able to
identify the parts the statement is broken into when it is in the querytree structure. The parts of a
querytree are

Chapter 17. The Postgres Rule System

214

 the commandtype

 This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) produced
the parsetree.

 the rangetable

 The rangetable is a list of relations that are used in the query. In a SELECT statement these are the
relations given after the FROM keyword.

 Every rangetable entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the querytree the rangetable entries are referenced by index rather than by
name, so here it doesn’t matter if there are duplicate names as it would in an SQL statement. This
can happen after the rangetables of rules have been merged in. The examples in this document will
not have this situation.

 the resultrelation

 This is an index into the rangetable that identifies the relation where the results of the query go.

 SELECT queries normally don’t have a result relation. The special case of a SELECT INTO is
mostly identical to a CREATE TABLE, INSERT ... SELECT sequence and is not discussed
separately here.

 On INSERT, UPDATE and DELETE queries the resultrelation is the table (or view!) where the
changes take effect.

 the targetlist

 The targetlist is a list of expressions that define the result of the query. In the case of a SELECT,
the expressions are what builds the final output of the query. They are the expressions between the
SELECT and the FROM keywords. (* is just an abbreviation for all the attribute names of a
relation. It is expanded by the parser into the individual attributes, so the rule system never sees it.)

 DELETE queries don’t need a targetlist because they don’t produce any result. In fact the planner
will add a special CTID entry to the empty targetlist. But this is after the rule system and will be
discussed later. For the rule system the targetlist is empty.

 In INSERT queries the targetlist describes the new rows that should go into the resultrelation. It is
the expressions in the VALUES clause or the ones from the SELECT clause in INSERT ...
SELECT. Missing columns of the resultrelation will be filled in by the planner with a constant
NULL expression.

 In UPDATE queries, the targetlist describes the new rows that should replace the old ones. In the
rule system, it contains just the expressions from the SET attribute = expression part of the query.
The planner will add missing columns by inserting expressions that copy the values from the old
row into the new one. And it will add the special CTID entry just as for DELETE too.

 Every entry in the targetlist contains an expression that can be a constant value, a variable pointing
to an attribute of one of the relations in the rangetable, a parameter, or an expression tree made of
function calls, constants, variables, operators etc.

Chapter 17. The Postgres Rule System

215

 the qualification

 The query’s qualification is an expression much like one of those contained in the targetlist entries.
The result value of this expression is a boolean that tells if the operation (INSERT, UPDATE,
DELETE or SELECT) for the final result row should be executed or not. It is the WHERE clause
of an SQL statement.

 the join tree

 The query’s join tree shows the structure of the FROM clause. For a simple query like SELECT
FROM a, b, c the join tree is just a list of the FROM items, because we are allowed to join them in
any order. But when JOIN expressions --- particularly outer joins --- are used, we have to join in
the order shown by the JOINs. The join tree shows the structure of the JOIN expressions. The
restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored as
qualification expressions attached to those join tree nodes. It turns out to be convenient to store the
top-level WHERE expression as a qualification attached to the top-level join tree item, too. So
really the join tree represents both the FROM and WHERE clauses of a SELECT.

 the others

 The other parts of the querytree like the ORDER BY clause aren’t of interest here. The rule system
substitutes entries there while applying rules, but that doesn’t have much to do with the
fundamentals of the rule system.

17.2. Views and the Rule System

17.2.1. Implementation of Views in Postgres

 Views in Postgres are implemented using the rule system. In fact there is absolutely no difference
between a

 CREATE VIEW myview AS SELECT * FROM mytab;

 compared against the two commands

 CREATE TABLE myview (same attribute list as for mytab);
 CREATE RULE "_RETmyview" AS ON SELECT TO myview DO INSTEAD
 SELECT * FROM mytab;

 because this is exactly what the CREATE VIEW command does internally. This has some side effects.
One of them is that the information about a view in the Postgres system catalogs is exactly the same as it
is for a table. So for the query parser, there is absolutely no difference between a table and a view. They
are the same thing - relations. That is the important one for now.

17.2.2. How SELECT Rules Work

 Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from the others in that they modify the
parsetree in place instead of creating a new one. So SELECT rules are described first.

Chapter 17. The Postgres Rule System

216

 Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional
SELECT action that is INSTEAD. This restriction was required to make rules safe enough to open them
for ordinary users and it restricts rules ON SELECT to real view rules.

 The examples for this document are two join views that do some calculations and some more views
using them in turn. One of the two first views is customized later by adding rules for INSERT,
UPDATE and DELETE operations so that the final result will be a view that behaves like a real table
with some magic functionality. It is not such a simple example to start from and this makes things
harder to get into. But it’s better to have one example that covers all the points discussed step by step
rather than having many different ones that might mix up in mind.

 The database needed to play with the examples is named al_bundy. You’ll see soon why this is the
database name. And it needs the procedural language PL/pgSQL installed, because we need a little
min() function returning the lower of 2 integer values. We create that as

 CREATE FUNCTION min(integer, integer) RETURNS integer AS
 ’BEGIN
 IF $1 < $2 THEN
 RETURN $1;
 END IF;
 RETURN $2;
 END;’
 LANGUAGE ’plpgsql’;

 The real tables we need in the first two rule system descriptions are these:

 CREATE TABLE shoe_data (
 shoename char(10), -- primary key
 sh_avail integer, -- available # of pairs
 slcolor char(10), -- preferred shoelace color
 slminlen float, -- miminum shoelace length
 slmaxlen float, -- maximum shoelace length
 slunit char(8) -- length unit
);

 CREATE TABLE shoelace_data (
 sl_name char(10), -- primary key
 sl_avail integer, -- available # of pairs
 sl_color char(10), -- shoelace color
 sl_len float, -- shoelace length
 sl_unit char(8) -- length unit
);

 CREATE TABLE unit (
 un_name char(8), -- the primary key
 un_fact float -- factor to transform to cm
);

 I think most of us wear shoes and can realize that this is really useful data. Well there are shoes out in
the world that don’t require shoelaces, but this doesn’t make Al’s life easier and so we ignore it.

 The views are created as

Chapter 17. The Postgres Rule System

217

 CREATE VIEW shoe AS
 SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name;

 CREATE VIEW shoelace AS
 SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

 CREATE VIEW shoe_ready AS
 SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

 The CREATE VIEW command for the shoelace view (which is the simplest one we have) will create
a relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that must be applied
whenever the relation shoelace is referenced in a query’s rangetable. The rule has no rule qualification
(discussed later, with the non SELECT rules, since SELECT rules currently cannot have them) and it is
INSTEAD. Note that rule qualifications are not the same as query qualifications! The rule’s action has a
query qualification.

 The rule’s action is one querytree that is a copy of the SELECT statement in the view creation
command.

Note: The two extra range table entries for NEW and OLD (named *NEW* and *CURRENT* for
historical reasons in the printed querytree) you can see in the pg_rewrite entry aren’t of interest for
SELECT rules.

 Now we populate unit, shoe_data and shoelace_data and Al types the first SELECT in his life:

 al_bundy=> INSERT INTO unit VALUES (’cm’, 1.0);
 al_bundy=> INSERT INTO unit VALUES (’m’, 100.0);
 al_bundy=> INSERT INTO unit VALUES (’inch’, 2.54);

Chapter 17. The Postgres Rule System

218

 al_bundy=>
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh1’, 2, ’black’, 70.0, 90.0, ’cm’);
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh2’, 0, ’black’, 30.0, 40.0, ’inch’);
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh3’, 4, ’brown’, 50.0, 65.0, ’cm’);
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh4’, 3, ’brown’, 40.0, 50.0, ’inch’);
 al_bundy=>
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl1’, 5, ’black’, 80.0, ’cm’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl2’, 6, ’black’, 100.0, ’cm’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl3’, 0, ’black’, 35.0 , ’inch’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl4’, 8, ’black’, 40.0 , ’inch’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl5’, 4, ’brown’, 1.0 , ’m’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl6’, 0, ’brown’, 0.9 , ’m’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl7’, 7, ’brown’, 60 , ’cm’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl8’, 1, ’brown’, 40 , ’inch’);
 al_bundy=>
 al_bundy=> SELECT * FROM shoelace;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 7|brown | 60|cm | 60
 sl3 | 0|black | 35|inch | 88.9
 sl4 | 8|black | 40|inch | 101.6
 sl8 | 1|brown | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 0|brown | 0.9|m | 90
 (8 rows)

 It’s the simplest SELECT Al can do on our views, so we take this to explain the basics of view rules.
The ’SELECT * FROM shoelace’ was interpreted by the parser and produced the parsetree

 SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace;

 and this is given to the rule system. The rule system walks through the rangetable and checks if there
are rules in pg_rewrite for any relation. When processing the rangetable entry for shoelace (the only
one up to now) it finds the rule ’_RETshoelace’ with the parsetree

 SELECT s.sl_name, s.sl_avail,

Chapter 17. The Postgres Rule System

219

 s.sl_color, s.sl_len, s.sl_unit,
 float8mul(s.sl_len, u.un_fact) AS sl_len_cm
 FROM shoelace *OLD*, shoelace *NEW*,
 shoelace_data s, unit u
 WHERE bpchareq(s.sl_unit, u.un_name);

 Note that the parser changed the calculation and qualification into calls to the appropriate functions. But
in fact this changes nothing.

 To expand the view, the rewriter simply creates a subselect rangetable entry containing the rule’s action
parsetree, and substitutes this rangetable entry for the original one that referenced the view. The
resulting rewritten parsetree is almost the same as if Al had typed

 SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) shoelace;

 There is one difference however: the sub-query’s rangetable has two extra entries shoelace *OLD*,
shoelace *NEW*. These entries don’t participate directly in the query, since they aren’t referenced by
the sub-query’s join tree or targetlist. The rewriter uses them to store the access permission check info
that was originally present in the rangetable entry that referenced the view. In this way, the executor will
still check that the user has proper permissions to access the view, even though there’s no direct use of
the view in the rewritten query.

 That was the first rule applied. The rule system will continue checking the remaining rangetable entries
in the top query (in this example there are no more), and it will recursively check the rangetable entries
in the added sub-query to see if any of them reference views. (But it won’t expand *OLD* or *NEW*
--- otherwise we’d have infinite recursion!) In this example, there are no rewrite rules for shoelace_data
or unit, so rewriting is complete and the above is the final result given to the planner.

 Now we face Al with the problem that the Blues Brothers appear in his shop and want to buy some new
shoes, and as the Blues Brothers are, they want to wear the same shoes. And they want to wear them
immediately, so they need shoelaces too.

 Al needs to know for which shoes currently in the store he has the matching shoelaces (color and size)
and where the total number of exactly matching pairs is greater or equal to two. We teach him what to
do and he asks his database:

 al_bundy=> SELECT * FROM shoe_ready WHERE total_avail >= 2;
 shoename |sh_avail|sl_name |sl_avail|total_avail
 ----------+--------+----------+--------+-----------
 sh1 | 2|sl1 | 5| 2
 sh3 | 4|sl7 | 7| 4
 (2 rows)

Chapter 17. The Postgres Rule System

220

 Al is a shoe guru and so he knows that only shoes of type sh1 would fit (shoelace sl7 is brown and
shoes that need brown shoelaces aren’t shoes the Blues Brothers would ever wear).

 The output of the parser this time is the parsetree

 SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM shoe_ready shoe_ready
 WHERE int4ge(shoe_ready.total_avail, 2);

 The first rule applied will be the one for the shoe_ready view and it results in the parsetree

 SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE int4ge(shoe_ready.total_avail, 2);

 Similarly, the rules for shoe and shoelace are substituted into the rangetable of the sub-query, leading
to a three-level final querytree:

 SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM (SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name) rsh,
 (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,

Chapter 17. The Postgres Rule System

221

 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE int4ge(shoe_ready.total_avail, 2);

 It turns out that the planner will collapse this tree into a two-level querytree: the bottommost selects
will be "pulled up" into the middle select since there’s no need to process them separately. But the
middle select will remain separate from the top, because it contains aggregate functions. If we pulled
those up it would change the behavior of the topmost select, which we don’t want. However, collapsing
the query tree is an optimization that the rewrite system doesn’t have to concern itself with.

Note: There is currently no recursion stopping mechanism for view rules in the rule system (only for
the other kinds of rules). This doesn’t hurt much, because the only way to push this into an endless
loop (blowing up the backend until it reaches the memory limit) is to create tables and then setup
the view rules by hand with CREATE RULE in such a way, that one selects from the other that
selects from the one. This could never happen if CREATE VIEW is used because for the first
CREATE VIEW, the second relation does not exist and thus the first view cannot select from the
second.

17.2.3. View Rules in Non-SELECT Statements

 Two details of the parsetree aren’t touched in the description of view rules above. These are the
commandtype and the resultrelation. In fact, view rules don’t need this information.

 There are only a few differences between a parsetree for a SELECT and one for any other command.
Obviously they have another commandtype and this time the resultrelation points to the rangetable entry
where the result should go. Everything else is absolutely the same. So having two tables t1 and t2 with
attributes a and b, the parsetrees for the two statements

 SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

 UPDATE t1 SET b = t2.b WHERE t1.a = t2.a;

 are nearly identical.

 The rangetables contain entries for the tables t1 and t2.

 The targetlists contain one variable that points to attribute b of the rangetable entry for table t2.

 The qualification expressions compare the attributes a of both ranges for equality.

 The jointrees show a simple join between t1 and t2.

 The consequence is, that both parsetrees result in similar execution plans. They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the targetlist by the planner and
the final parsetree will read as

 UPDATE t1 SET a = t1.a, b = t2.b WHERE t1.a = t2.a;

 and thus the executor run over the join will produce exactly the same result set as a

Chapter 17. The Postgres Rule System

222

 SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

 will do. But there is a little problem in UPDATE. The executor does not care what the results from the
join it is doing are meant for. It just produces a result set of rows. The difference that one is a SELECT
command and the other is an UPDATE is handled in the caller of the executor. The caller still knows
(looking at the parsetree) that this is an UPDATE, and he knows that this result should go into table t1.
But which of the rows that are there has to be replaced by the new row?

 To resolve this problem, another entry is added to the targetlist in UPDATE (and also in DELETE)
statements: the current tuple ID (ctid). This is a system attribute containing the file block number and
position in the block for the row. Knowing the table, the ctid can be used to retrieve the original t1 row
to be updated. After adding the ctid to the targetlist, the query actually looks like

 SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

 Now another detail of Postgres enters the stage. At this moment, table rows aren’t overwritten and this
is why ABORT TRANSACTION is fast. In an UPDATE, the new result row is inserted into the table
(after stripping ctid) and in the tuple header of the row that ctid pointed to the cmax and xmax entries
are set to the current command counter and current transaction ID. Thus the old row is hidden and after
the transaction commited the vacuum cleaner can really move it out.

 Knowing all that, we can simply apply view rules in absolutely the same way to any command. There is
no difference.

17.2.4. The Power of Views in Postgres

 The above demonstrates how the rule system incorporates view definitions into the original parsetree.
In the second example a simple SELECT from one view created a final parsetree that is a join of 4 tables
(unit is used twice with different names).

17.2.4.1. Benefits

 The benefit of implementing views with the rule system is, that the planner has all the information
about which tables have to be scanned plus the relationships between these tables plus the restrictive
qualifications from the views plus the qualifications from the original query in one single parsetree. And
this is still the situation when the original query is already a join over views. Now the planner has to
decide which is the best path to execute the query. The more information the planner has, the better this
decision can be. And the rule system as implemented in Postgres ensures, that this is all information
available about the query up to now.

17.2.5. What about updating a view?

 What happens if a view is named as the target relation for an INSERT, UPDATE, or DELETE? After
doing the substitutions described above, we will have a querytree in which the resultrelation points at a
subquery rangetable entry. This will not work, so the rewriter throws an error if it sees it has produced
such a thing.

 To change this we can define rules that modify the behaviour of non-SELECT queries. This is the topic
of the next section.

Chapter 17. The Postgres Rule System

223

17.3. Rules on INSERT, UPDATE and DELETE

17.3.1. Differences from View Rules

 Rules that are defined ON INSERT, UPDATE and DELETE are totally different from the view rules
described in the previous section. First, their CREATE RULE command allows more:

 They can have no action.

 They can have multiple actions.

 The keyword INSTEAD is optional.

 The pseudo relations NEW and OLD become useful.

 They can have rule qualifications.

 Second, they don’t modify the parsetree in place. Instead they create zero or many new parsetrees and
can throw away the original one.

17.3.2. How These Rules Work

 Keep the syntax

 CREATE RULE rule_name AS ON event
 TO object [WHERE rule_qualification]
 DO [INSTEAD] [action | (actions) | NOTHING];

 in mind. In the following, "update rules" means rules that are defined ON INSERT, UPDATE or
DELETE.

 Update rules get applied by the rule system when the result relation and the commandtype of a parsetree
are equal to the object and event given in the CREATE RULE command. For update rules, the rule
system creates a list of parsetrees. Initially the parsetree list is empty. There can be zero (NOTHING
keyword), one or multiple actions. To simplify, we look at a rule with one action. This rule can have a
qualification or not and it can be INSTEAD or not.

 What is a rule qualification? It is a restriction that tells when the actions of the rule should be done and
when not. This qualification can only reference the NEW and/or OLD pseudo relations which are
basically the relation given as object (but with a special meaning).

 So we have four cases that produce the following parsetrees for a one-action rule.

 No qualification and not INSTEAD:

 The parsetree from the rule action where the original parsetree’s qualification has been added.

 No qualification but INSTEAD:

 The parsetree from the rule action where the original parsetree’s qualification has been added.

Chapter 17. The Postgres Rule System

224

 Qualification given and not INSTEAD:

 The parsetree from the rule action where the rule qualification and the original parsetree’s
qualification have been added.

 Qualification given and INSTEAD:

 The parsetree from the rule action where the rule qualification and the original parsetree’s
qualification have been added.

 The original parsetree where the negated rule qualification has been added.

 Finally, if the rule is not INSTEAD, the unchanged original parsetree is added to the list. Since only
qualified INSTEAD rules already add the original parsetree, we end up with either one or two output
parsetrees for a rule with one action.

 The parsetrees generated from rule actions are thrown into the rewrite system again and maybe more
rules get applied resulting in more or less parsetrees. So the parsetrees in the rule actions must have
either another commandtype or another resultrelation. Otherwise this recursive process will end up in a
loop. There is a compiled in recursion limit of currently 10 iterations. If after 10 iterations there are still
update rules to apply the rule system assumes a loop over multiple rule definitions and aborts the
transaction.

 The parsetrees found in the actions of the pg_rewrite system catalog are only templates. Since they
can reference the rangetable entries for NEW and OLD, some substitutions have to be made before they
can be used. For any reference to NEW, the targetlist of the original query is searched for a
corresponding entry. If found, that entry’s expression replaces the reference. Otherwise NEW means the
same as OLD (for an UPDATE) or is replaced by NULL (for an INSERT). Any reference to OLD is
replaced by a reference to the rangetable entry which is the resultrelation.

 After we are done applying update rules, we apply view rules to the produced parsetree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view
rewriting.

17.3.2.1. A First Rule Step by Step

 We want to trace changes to the sl_avail column in the shoelace_data relation. So we setup a log
table and a rule that conditionally writes a log entry when an UPDATE is performed on
shoelace_data.

 CREATE TABLE shoelace_log (
 sl_name char(10), -- shoelace changed
 sl_avail integer, -- new available value
 log_who text, -- who did it
 log_when timestamp -- when
);

 CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
 WHERE NEW.sl_avail != OLD.sl_avail
 DO INSERT INTO shoelace_log VALUES (
 NEW.sl_name,

Chapter 17. The Postgres Rule System

225

 NEW.sl_avail,
 current_user,
 current_timestamp
);

 Now Al does

 al_bundy=> UPDATE shoelace_data SET sl_avail = 6
 al_bundy-> WHERE sl_name = ’sl7’;

 and we look at the logtable.

 al_bundy=> SELECT * FROM shoelace_log;
 sl_name |sl_avail|log_who|log_when
 ----------+--------+-------+--------------------------------
 sl7 | 6|Al |Tue Oct 20 16:14:45 1998 MET DST
 (1 row)

 That’s what we expected. What happened in the background is the following. The parser created the
parsetree (this time the parts of the original parsetree are highlighted because the base of operations is
the rule action for update rules).

 UPDATE shoelace_data SET sl_avail = 6
 FROM shoelace_data shoelace_data
 WHERE bpchareq(shoelace_data.sl_name, ’sl7’);

 There is a rule ’log_shoelace’ that is ON UPDATE with the rule qualification expression

 int4ne(NEW.sl_avail, OLD.sl_avail)

 and one action

 INSERT INTO shoelace_log VALUES(
 NEW.sl_name, *NEW*.sl_avail,
 current_user, current_timestamp
 FROM shoelace_data *NEW*, shoelace_data *OLD*;

 This is a little strange-looking since you can’t normally write INSERT ... VALUES ... FROM. The
FROM clause here is just to indicate that there are rangetable entries in the parsetree for *NEW* and
OLD. These are needed so that they can be referenced by variables in the INSERT command’s
querytree.

 The rule is a qualified non-INSTEAD rule, so the rule system has to return two parsetrees: the modified
rule action and the original parsetree. In the first step the rangetable of the original query is incorporated
into the rule’s action parsetree. This results in

 INSERT INTO shoelace_log VALUES(
 NEW.sl_name, *NEW*.sl_avail,
 current_user, current_timestamp
 FROM shoelace_data *NEW*, shoelace_data *OLD*,
 shoelace_data shoelace_data;

Chapter 17. The Postgres Rule System

226

 In step 2 the rule qualification is added to it, so the result set is restricted to rows where sl_avail
changes.

 INSERT INTO shoelace_log VALUES(
 NEW.sl_name, *NEW*.sl_avail,
 current_user, current_timestamp
 FROM shoelace_data *NEW*, shoelace_data *OLD*,
 shoelace_data shoelace_data
 WHERE int4ne(*NEW*.sl_avail, *OLD*.sl_avail);

 This is even stranger-looking, since INSERT ... VALUES doesn’t have a WHERE clause either, but the
planner and executor will have no difficulty with it. They need to support this same functionality
anyway for INSERT ... SELECT. In step 3 the original parsetree’s qualification is added, restricting the
resultset further to only the rows touched by the original parsetree.

 INSERT INTO shoelace_log VALUES(
 NEW.sl_name, *NEW*.sl_avail,
 current_user, current_timestamp
 FROM shoelace_data *NEW*, shoelace_data *OLD*,
 shoelace_data shoelace_data
 WHERE int4ne(*NEW*.sl_avail, *OLD*.sl_avail)
 AND bpchareq(shoelace_data.sl_name, ’sl7’);

 Step 4 substitutes NEW references by the targetlist entries from the original parsetree or with the
matching variable references from the result relation.

 INSERT INTO shoelace_log VALUES(
 shoelace_data.sl_name, 6,
 current_user, current_timestamp
 FROM shoelace_data *NEW*, shoelace_data *OLD*,
 shoelace_data shoelace_data
 WHERE int4ne(6, *OLD*.sl_avail)
 AND bpchareq(shoelace_data.sl_name, ’sl7’);

 Step 5 changes OLD references into resultrelation references.

 INSERT INTO shoelace_log VALUES(
 shoelace_data.sl_name, 6,
 current_user, current_timestamp
 FROM shoelace_data *NEW*, shoelace_data *OLD*,
 shoelace_data shoelace_data
 WHERE int4ne(6, shoelace_data.sl_avail)
 AND bpchareq(shoelace_data.sl_name, ’sl7’);

 That’s it. Since the rule is not INSTEAD, we also output the original parsetree. In short, the output from
the rule system is a list of two parsetrees that are the same as the statements:

 INSERT INTO shoelace_log VALUES(
 shoelace_data.sl_name, 6,
 current_user, current_timestamp
 FROM shoelace_data
 WHERE 6 != shoelace_data.sl_avail

Chapter 17. The Postgres Rule System

227

 AND shoelace_data.sl_name = ’sl7’;

 UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = ’sl7’;

 These are executed in this order and that is exactly what the rule defines. The substitutions and the
qualifications added ensure that if the original query would be, say,

 UPDATE shoelace_data SET sl_color = ’green’
 WHERE sl_name = ’sl7’;

 no log entry would get written. This time the original parsetree does not contain a targetlist entry for
sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail resulting in the extra query

 INSERT INTO shoelace_log VALUES(
 shoelace_data.sl_name, shoelace_data.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE shoelace_data.sl_avail != shoelace_data.sl_avail
 AND shoelace_data.sl_name = ’sl7’;

 and that qualification will never be true. It will also work if the original query modifies multiple rows.
So if Al would issue the command

 UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = ’black’;

 four rows in fact get updated (sl1, sl2, sl3 and sl4). But sl3 already has sl_avail = 0. This time, the
original parsetrees qualification is different and that results in the extra parsetree

 INSERT INTO shoelace_log SELECT
 shoelace_data.sl_name, 0,
 current_user, current_timestamp
 FROM shoelace_data
 WHERE 0 != shoelace_data.sl_avail
 AND shoelace_data.sl_color = ’black’;

 This parsetree will surely insert three new log entries. And that’s absolutely correct.

 It is important, that the original parsetree is executed last. The Postgres "traffic cop" does a command
counter increment between the execution of the two parsetrees so the second one can see changes made
by the first. If the UPDATE would have been executed first, all the rows are already set to zero, so the
logging INSERT would not find any row where 0 != shoelace_data.sl_avail.

17.3.3. Cooperation with Views

 A simple way to protect view relations from the mentioned possibility that someone can try to INSERT,
UPDATE and DELETE on them is to let those parsetrees get thrown away. We create the rules

 CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
 DO INSTEAD NOTHING;
 CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
 DO INSTEAD NOTHING;

Chapter 17. The Postgres Rule System

228

 CREATE RULE shoe_del_protect AS ON DELETE TO shoe
 DO INSTEAD NOTHING;

 If Al now tries to do any of these operations on the view relation shoe, the rule system will apply the
rules. Since the rules have no actions and are INSTEAD, the resulting list of parsetrees will be empty
and the whole query will become nothing because there is nothing left to be optimized or executed after
the rule system is done with it.

Note: This way might irritate frontend applications because absolutely nothing happened on the
database and thus, the backend will not return anything for the query. Not even a
PGRES_EMPTY_QUERY will be available in libpq. In psql, nothing happens. This might change in
the future.

 A more sophisticated way to use the rule system is to create rules that rewrite the parsetree into one that
does the right operation on the real tables. To do that on the shoelace view, we create the following
rules:

 CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit);

 CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
 DO INSTEAD
 UPDATE shoelace_data SET
 sl_name = NEW.sl_name,
 sl_avail = NEW.sl_avail,
 sl_color = NEW.sl_color,
 sl_len = NEW.sl_len,
 sl_unit = NEW.sl_unit
 WHERE sl_name = OLD.sl_name;

 CREATE RULE shoelace_del AS ON DELETE TO shoelace
 DO INSTEAD
 DELETE FROM shoelace_data
 WHERE sl_name = OLD.sl_name;

 Now there is a pack of shoelaces arriving in Al’s shop and it has a big partlist. Al is not that good in
calculating and so we don’t want him to manually update the shoelace view. Instead we setup two little
tables, one where he can insert the items from the partlist and one with a special trick. The create
commands for these are:

 CREATE TABLE shoelace_arrive (
 arr_name char(10),
 arr_quant integer
);

 CREATE TABLE shoelace_ok (

Chapter 17. The Postgres Rule System

229

 ok_name char(10),
 ok_quant integer
);

 CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
 DO INSTEAD
 UPDATE shoelace SET
 sl_avail = sl_avail + NEW.ok_quant
 WHERE sl_name = NEW.ok_name;

 Now Al can sit down and do whatever until

 al_bundy=> SELECT * FROM shoelace_arrive;
 arr_name |arr_quant
 ----------+---------
 sl3 | 10
 sl6 | 20
 sl8 | 20
 (3 rows)

 is exactly what’s on the part list. We take a quick look at the current data,

 al_bundy=> SELECT * FROM shoelace ORDER BY sl_name;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 6|brown | 60|cm | 60
 sl3 | 0|black | 35|inch | 88.9
 sl4 | 8|black | 40|inch | 101.6
 sl8 | 1|brown | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 0|brown | 0.9|m | 90
 (8 rows)

 move the arrived shoelaces in

 al_bundy=> INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

 and check the results

 al_bundy=> SELECT * FROM shoelace ORDER BY sl_name;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 6|brown | 60|cm | 60
 sl4 | 8|black | 40|inch | 101.6
 sl3 | 10|black | 35|inch | 88.9
 sl8 | 21|brown | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 20|brown | 0.9|m | 90
 (8 rows)

Chapter 17. The Postgres Rule System

230

 al_bundy=> SELECT * FROM shoelace_log;
 sl_name |sl_avail|log_who|log_when
 ----------+--------+-------+--------------------------------
 sl7 | 6|Al |Tue Oct 20 19:14:45 1998 MET DST
 sl3 | 10|Al |Tue Oct 20 19:25:16 1998 MET DST
 sl6 | 20|Al |Tue Oct 20 19:25:16 1998 MET DST
 sl8 | 21|Al |Tue Oct 20 19:25:16 1998 MET DST
 (4 rows)

 It’s a long way from the one INSERT ... SELECT to these results. And its description will be the last in
this document (but not the last example :-). First there was the parsers output

 INSERT INTO shoelace_ok SELECT
 shoelace_arrive.arr_name, shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

 Now the first rule ’shoelace_ok_ins’ is applied and turns it into

 UPDATE shoelace SET
 sl_avail = int4pl(shoelace.sl_avail, shoelace_arrive.arr_quant)
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace
 WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name);

 and throws away the original INSERT on shoelace_ok. This rewritten query is passed to the rule
system again and the second applied rule ’shoelace_upd’ produced

 UPDATE shoelace_data SET
 sl_name = shoelace.sl_name,
 sl_avail = int4pl(shoelace.sl_avail, shoelace_arrive.arr_quant),
 sl_color = shoelace.sl_color,
 sl_len = shoelace.sl_len,
 sl_unit = shoelace.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data showlace_data
 WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name)
 AND bpchareq(shoelace_data.sl_name, shoelace.sl_name);

 Again it’s an INSTEAD rule and the previous parsetree is trashed. Note that this query still uses the
view shoelace. But the rule system isn’t finished with this loop so it continues and applies the rule
’_RETshoelace’ on it and we get

 UPDATE shoelace_data SET
 sl_name = s.sl_name,
 sl_avail = int4pl(s.sl_avail, shoelace_arrive.arr_quant),
 sl_color = s.sl_color,
 sl_len = s.sl_len,
 sl_unit = s.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,

Chapter 17. The Postgres Rule System

231

 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data showlace_data,
 shoelace *OLD*, shoelace *NEW*,
 shoelace_data s, unit u
 WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
 AND bpchareq(shoelace_data.sl_name, s.sl_name);

 Again an update rule has been applied and so the wheel turns on and we are in rewrite round 3. This
time rule ’log_shoelace’ gets applied what produces the extra parsetree

 INSERT INTO shoelace_log SELECT
 s.sl_name,
 int4pl(s.sl_avail, shoelace_arrive.arr_quant),
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data showlace_data,
 shoelace *OLD*, shoelace *NEW*,
 shoelace_data s, unit u,
 shoelace_data *OLD*, shoelace_data *NEW*
 shoelace_log shoelace_log
 WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
 AND bpchareq(shoelace_data.sl_name, s.sl_name);
 AND int4ne(int4pl(s.sl_avail, shoelace_arrive.arr_quant),
 s.sl_avail);

 After that the rule system runs out of rules and returns the generated parsetrees. So we end up with two
final parsetrees that are equal to the SQL statements

 INSERT INTO shoelace_log SELECT
 s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND s.sl_avail + shoelace_arrive.arr_quant != s.sl_avail;

 UPDATE shoelace_data SET
 sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive,
 shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
 AND shoelace_data.sl_name = s.sl_name;

 The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

Chapter 17. The Postgres Rule System

232

 There is a little detail that’s a bit ugly. Looking at the two queries turns out, that the shoelace_data
relation appears twice in the rangetable where it could definitely be reduced to one. The planner does
not handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop
 -> Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive
 -> Seq Scan on shoelace_data

 while omitting the extra rangetable entry would result in a

Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive

 that totally produces the same entries in the log relation. Thus, the rule system caused one extra scan on
the shoelace_data relation that is absolutely not necessary. And the same obsolete scan is done once
more in the UPDATE. But it was a really hard job to make that all possible at all.

 A final demonstration of the Postgres rule system and its power. There is a cute blonde that sells
shoelaces. And what Al could never realize, she’s not only cute, she’s smart too - a little too smart.
Thus, it happens from time to time that Al orders shoelaces that are absolutely not sellable. This time he
ordered 1000 pairs of magenta shoelaces and since another kind is currently not available but he
committed to buy some, he also prepared his database for pink ones.

 al_bundy=> INSERT INTO shoelace VALUES
 al_bundy-> (’sl9’, 0, ’pink’, 35.0, ’inch’, 0.0);
 al_bundy=> INSERT INTO shoelace VALUES
 al_bundy-> (’sl10’, 1000, ’magenta’, 40.0, ’inch’, 0.0);

 Since this happens often, we must lookup for shoelace entries, that fit for absolutely no shoe sometimes.
We could do that in a complicated statement every time, or we can setup a view for it. The view for this
is

 CREATE VIEW shoelace_obsolete AS
 SELECT * FROM shoelace WHERE NOT EXISTS
 (SELECT shoename FROM shoe WHERE slcolor = sl_color);

 Its output is

 al_bundy=> SELECT * FROM shoelace_obsolete;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------

Chapter 17. The Postgres Rule System

233

 sl9 | 0|pink | 35|inch | 88.9
 sl10 | 1000|magenta | 40|inch | 101.6

 For the 1000 magenta shoelaces we must debt Al before we can throw ’em away, but that’s another
problem. The pink entry we delete. To make it a little harder for Postgres, we don’t delete it directly.
Instead we create one more view

 CREATE VIEW shoelace_candelete AS
 SELECT * FROM shoelace_obsolete WHERE sl_avail = 0;

 and do it this way:

 DELETE FROM shoelace WHERE EXISTS
 (SELECT * FROM shoelace_candelete
 WHERE sl_name = shoelace.sl_name);

 Voila:

 al_bundy=> SELECT * FROM shoelace;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 6|brown | 60|cm | 60
 sl4 | 8|black | 40|inch | 101.6
 sl3 | 10|black | 35|inch | 88.9
 sl8 | 21|brown | 40|inch | 101.6
 sl10 | 1000|magenta | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 20|brown | 0.9|m | 90
 (9 rows)

 A DELETE on a view, with a subselect qualification that in total uses 4 nesting/joined views, where
one of them itself has a subselect qualification containing a view and where calculated view columns are
used, gets rewritten into one single parsetree that deletes the requested data from a real table.

 I think there are only a few situations out in the real world, where such a construct is necessary. But it
makes me feel comfortable that it works.

The truth is: Doing this I found one more bug while writing this document. But after fixing that I was
a little amazed that it works at all.

17.4. Rules and Permissions
 Due to rewriting of queries by the Postgres rule system, other tables/views than those used in the
original query get accessed. Using update rules, this can include write access to tables.

 Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The Postgres rule system changes the behaviour of the
default access control system. Relations that are used due to rules get checked against the permissions of
the rule owner, not the user invoking the rule. This means, that a user does only need the required
permissions for the tables/views he names in his queries.

Chapter 17. The Postgres Rule System

234

 For example: A user has a list of phone numbers where some of them are private, the others are of
interest for the secretary of the office. He can construct the following:

 CREATE TABLE phone_data (person text, phone text, private bool);
 CREATE VIEW phone_number AS
 SELECT person, phone FROM phone_data WHERE NOT private;
 GRANT SELECT ON phone_number TO secretary;

 Nobody except him (and the database superusers) can access the phone_data table. But due to the
GRANT, the secretary can SELECT from the phone_number view. The rule system will rewrite the
SELECT from phone_number into a SELECT from phone_data and add the qualification that only
entries where private is false are wanted. Since the user is the owner of phone_number, the read access
to phone_data is now checked against his permissions and the query is considered granted. The check
for accessing phone_number is also performed, but this is done against the invoking user, so nobody but
the user and the secretary can use it.

 The permissions are checked rule by rule. So the secretary is for now the only one who can see the
public phone numbers. But the secretary can setup another view and grant access to that to public. Then,
anyone can see the phone_number data through the secretaries view. What the secretary cannot do is to
create a view that directly accesses phone_data (actually he can, but it will not work since every access
aborts the transaction during the permission checks). And as soon as the user will notice, that the
secretary opened his phone_number view, he can REVOKE his access. Immediately any access to the
secretaries view will fail.

 Someone might think that this rule by rule checking is a security hole, but in fact it isn’t. If this would
not work, the secretary could setup a table with the same columns as phone_number and copy the data to
there once per day. Then it’s his own data and he can grant access to everyone he wants. A GRANT
means "I trust you". If someone you trust does the thing above, it’s time to think it over and then
REVOKE.

 This mechanism does also work for update rules. In the examples of the previous section, the owner of
the tables in Al’s database could GRANT SELECT, INSERT, UPDATE and DELETE on the shoelace
view to al. But only SELECT on shoelace_log. The rule action to write log entries will still be executed
successfully. And Al could see the log entries. But he cannot create fake entries, nor could he
manipulate or remove existing ones.

Warning: GRANT ALL currently includes RULE permission. This means the granted user could
drop the rule, do the changes and reinstall it. I think this should get changed quickly.

17.5. Rules versus Triggers
 Many things that can be done using triggers can also be implemented using the Postgres rule system.
What currently cannot be implemented by rules are some kinds of constraints. It is possible, to place a
qualified rule that rewrites a query to NOTHING if the value of a column does not appear in another
table. But then the data is silently thrown away and that’s not a good idea. If checks for valid values are
required, and in the case of an invalid value an error message should be generated, it must be done by a
trigger for now.

 On the other hand a trigger that is fired on INSERT on a view can do the same as a rule, put the data
somewhere else and suppress the insert in the view. But it cannot do the same thing on UPDATE or

Chapter 17. The Postgres Rule System

235

DELETE, because there is no real data in the view relation that could be scanned and thus the trigger
would never get called. Only a rule will help.

 For the things that can be implemented by both, it depends on the usage of the database, which is the
best. A trigger is fired for any row affected once. A rule manipulates the parsetree or generates an
additional one. So if many rows are affected in one statement, a rule issuing one extra query would
usually do a better job than a trigger that is called for any single row and must execute his operations
this many times.

 For example: There are two tables

 CREATE TABLE computer (
 hostname text -- indexed
 manufacturer text -- indexed
);

 CREATE TABLE software (
 software text, -- indexed
 hostname text -- indexed
);

 Both tables have many thousands of rows and the index on hostname is unique. The hostname column
contains the full qualified domain name of the computer. The rule/trigger should constraint delete rows
from software that reference the deleted host. Since the trigger is called for each individual row deleted
from computer, it can use the statement

 DELETE FROM software WHERE hostname = $1;

 in a prepared and saved plan and pass the hostname in the parameter. The rule would be written as

 CREATE RULE computer_del AS ON DELETE TO computer
 DO DELETE FROM software WHERE hostname = OLD.hostname;

 Now we look at different types of deletes. In the case of a

 DELETE FROM computer WHERE hostname = ’mypc.local.net’;

 the table computer is scanned by index (fast) and the query issued by the trigger would also be an index
scan (fast too). The extra query from the rule would be a

 DELETE FROM software WHERE computer.hostname = ’mypc.local.net’
 AND software.hostname = computer.hostname;

 Since there are appropriate indices setup, the planner will create a plan of

 Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

 So there would be not that much difference in speed between the trigger and the rule implementation.
With the next delete we want to get rid of all the 2000 computers where the hostname starts with ’old’.
There are two possible queries to do that. One is

 DELETE FROM computer WHERE hostname >= ’old’

Chapter 17. The Postgres Rule System

236

 AND hostname < ’ole’

 Where the plan for the rule query will be a

 Hash Join
 -> Seq Scan on software
 -> Hash
 -> Index Scan using comp_hostidx on computer

 The other possible query is a

 DELETE FROM computer WHERE hostname ~ ’^old’;

 with the execution plan

 Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

 This shows, that the planner does not realize that the qualification for the hostname on computer could
also be used for an index scan on software when there are multiple qualification expressions combined
with AND, what he does in the regexp version of the query. The trigger will get invoked once for any of
the 2000 old computers that have to be deleted and that will result in one index scan over computer and
2000 index scans for the software. The rule implementation will do it with two queries over indices. And
it depends on the overall size of the software table if the rule will still be faster in the seqscan situation.
2000 query executions over the SPI manager take some time, even if all the index blocks to look them
up will soon appear in the cache.

 The last query we look at is a

 DELETE FROM computer WHERE manufacurer = ’bim’;

 Again this could result in many rows to be deleted from computer. So the trigger will again fire many
queries into the executor. But the rule plan will again be the Nestloop over two IndexScan’s. Only using
another index on computer:

 Nestloop
 -> Index Scan using comp_manufidx on computer
 -> Index Scan using soft_hostidx on software

 resulting from the rules query

 DELETE FROM software WHERE computer.manufacurer = ’bim’
 AND software.hostname = computer.hostname;

 In any of these cases, the extra queries from the rule system will be more or less independent from the
number of affected rows in a query.

 Another situation is cases on UPDATE where it depends on the change of an attribute if an action
should be performed or not. In Postgres version 6.4, the attribute specification for rule events is disabled
(it will have its comeback latest in 6.5, maybe earlier - stay tuned). So for now the only way to create a
rule as in the shoelace_log example is to do it with a rule qualification. That results in an extra query
that is performed always, even if the attribute of interest cannot change at all because it does not appear

Chapter 17. The Postgres Rule System

237

in the targetlist of the initial query. When this is enabled again, it will be one more advantage of rules
over triggers. Optimization of a trigger must fail by definition in this case, because the fact that its
actions will only be done when a specific attribute is updated is hidden in its functionality. The
definition of a trigger only allows to specify it on row level, so whenever a row is touched, the trigger
must be called to make its decision. The rule system will know it by looking up the targetlist and will
suppress the additional query completely if the attribute isn’t touched. So the rule, qualified or not, will
only do its scans if there ever could be something to do.

 Rules will only be significantly slower than triggers if their actions result in large and bad qualified
joins, a situation where the planner fails. They are a big hammer. Using a big hammer without caution
can cause big damage. But used with the right touch, they can hit any nail on the head.

238

Chapter 18. Interfacing Extensions To Indices
 The procedures described thus far let you define a new type, new functions and new operators.
However, we cannot yet define a secondary index (such as a B-tree, R-tree or hash access method) over
a new type or its operators.

 Look back at Figure 12-1. The right half shows the catalogs that we must modify in order to tell
Postgres how to use a user-defined type and/or user-defined operators with an index (i.e., pg_am,
pg_amop, pg_amproc, pg_operator and pg_opclass). Unfortunately, there is no simple
command to do this. We will demonstrate how to modify these catalogs through a running example: a
new operator class for the B-tree access method that stores and sorts complex numbers in ascending
absolute value order.

 The pg_am table contains one row for every user defined access method. Support for the heap access
method is built into Postgres, but every other access method is described here. The schema is

Table 18-1. Index Schema

Column Description

amname name of the access method

amowner user id of the owner

amstrategies number of strategies for this access method (see below)

amsupport number of support routines for this access method (see below)

amorderstrategy zero if the index offers no sort order, otherwise the strategy number of the
strategy operator that describes the sort order

amgettuple

aminsert

... procedure identifiers for interface routines to the access method. For
example, regproc ids for opening, closing, and getting rows from the access
method appear here.

 The object ID of the row in pg_am is used as a foreign key in a lot of other tables. You do not need to
add a new rows to this table; all that you are interested in is the object ID of the access method row you
want to extend:

SELECT oid FROM pg_am WHERE amname = ’btree’;

 oid

 403
(1 row)

Chapter 18. Interfacing Extensions To Indices

239

 We will use that SELECT in a WHERE clause later.

 The amstrategies column exists to standardize comparisons across data types. For example, B-trees
impose a strict ordering on keys, lesser to greater. Since Postgres allows the user to define operators,
Postgres cannot look at the name of an operator (e.g., ">" or "<") and tell what kind of comparison it is.
In fact, some access methods don’t impose any ordering at all. For example, R-trees express a
rectangle-containment relationship, whereas a hashed data structure expresses only bitwise similarity
based on the value of a hash function. Postgres needs some consistent way of taking a qualification in
your query, looking at the operator and then deciding if a usable index exists. This implies that Postgres
needs to know, for example, that the "<=" and ">" operators partition a B-tree. Postgres uses strategies
to express these relationships between operators and the way they can be used to scan indices.

 Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain how B-tree
strategies work because you’ll need to know that to add a new operator class. In the pg_am table, the
amstrategies column is the number of strategies defined for this access method. For B-trees, this number
is 5. These strategies correspond to

Table 18-2. B-tree Strategies

Operation Index

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

 The idea is that you’ll need to add procedures corresponding to the comparisons above to the pg_amop
relation (see below). The access method code can use these strategy numbers, regardless of data type, to
figure out how to partition the B-tree, compute selectivity, and so on. Don’t worry about the details of
adding procedures yet; just understand that there must be a set of these procedures for int2, int4,
oid, and every other data type on which a B-tree can operate.

 Sometimes, strategies aren’t enough information for the system to figure out how to use an index. Some
access methods require other support routines in order to work. For example, the B-tree access method
must be able to compare two keys and determine whether one is greater than, equal to, or less than the
other. Similarly, the R-tree access method must be able to compute intersections, unions, and sizes of
rectangles. These operations do not correspond to user qualifications in SQL queries; they are
administrative routines used by the access methods, internally.

 In order to manage diverse support routines consistently across all Postgres access methods, pg_am
includes a column called amsupport. This column records the number of support routines used by an
access method. For B-trees, this number is one -- the routine to take two keys and return -1, 0, or +1,
depending on whether the first key is less than, equal to, or greater than the second.

Note: Strictly speaking, this routine can return a negative number (< 0), 0, or a non-zero positive
number (> 0).

Chapter 18. Interfacing Extensions To Indices

240

 The amstrategies entry in pg_am is just the number of strategies defined for the access method in
question. The procedures for less than, less equal, and so on don’t appear in pg_am. Similarly,
amsupport is just the number of support routines required by the access method. The actual routines
are listed elsewhere.

 By the way, the amorderstrategy entry tells whether the access method supports ordered scan. Zero
means it doesn’t; if it does, amorderstrategy is the number of the strategy routine that corresponds to
the ordering operator. For example, btree has amorderstrategy = 1 which is its "less than" strategy
number.

 The next table of interest is pg_opclass. This table exists only to associate an operator class name and
perhaps a default type with an operator class oid. Some existing opclasses are int2_ops, int4_ops,
and oid_ops. You need to add a row with your opclass name (for example, complex_abs_ops) to
pg_opclass. The oid of this row will be a foreign key in other tables, notably pg_amop.

INSERT INTO pg_opclass (opcname, opcdeftype)
 SELECT ’complex_abs_ops’, oid FROM pg_type WHERE typname = ’complex’;

SELECT oid, opcname, opcdeftype
 FROM pg_opclass
 WHERE opcname = ’complex_abs_ops’;

 oid | opcname | opcdeftype
--------+-----------------+------------
 277975 | complex_abs_ops | 277946
(1 row)

 Note that the oid for your pg_opclass row will be different! Don’t worry about this though. We’ll get
this number from the system later just like we got the oid of the type here.

 The above example assumes that you want to make this new opclass the default index opclass for the
complex datatype. If you don’t, just insert zero into opcdeftype, rather than inserting the datatype’s
oid:

INSERT INTO pg_opclass (opcname, opcdeftype) VALUES (’complex_abs_ops’, 0);

 So now we have an access method and an operator class. We still need a set of operators. The procedure
for defining operators was discussed earlier in this manual. For the complex_abs_ops operator class
on Btrees, the operators we require are:

 absolute value less-than
 absolute value less-than-or-equal
 absolute value equal
 absolute value greater-than-or-equal
 absolute value greater-than

Chapter 18. Interfacing Extensions To Indices

241

 Suppose the code that implements the functions defined is stored in the file
PGROOT/src/tutorial/complex.c

 Part of the C code looks like this: (note that we will only show the equality operator for the rest of the
examples. The other four operators are very similar. Refer to complex.c or complex.source for the
details.)

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

 bool
 complex_abs_eq(Complex *a, Complex *b)
 {
 double amag = Mag(a), bmag = Mag(b);
 return (amag==bmag);
 }

 We make the function known to Postgres like this:

CREATE FUNCTION complex_abs_eq(complex, complex)
 RETURNS bool
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

 There are some important things that are happening here.

 First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal, and greater-than
for complex are being defined. We can only have one operator named, say, = and taking type complex
for both operands. In this case we don’t have any other operator = for complex, but if we were building
a practical datatype we’d probably want = to be the ordinary equality operation for complex numbers. In
that case, we’d need to use some other operator name for complex_abs_eq.

 Second, although Postgres can cope with operators having the same name as long as they have different
input datatypes, C can only cope with one global routine having a given name, period. So we shouldn’t
name the C function something simple like abs_eq. Usually it’s a good practice to include the datatype
name in the C function name, so as not to conflict with functions for other datatypes.

 Third, we could have made the Postgres name of the function abs_eq, relying on Postgres to
distinguish it by input datatypes from any other Postgres function of the same name. To keep the
example simple, we make the function have the same names at the C level and Postgres level.

 Finally, note that these operator functions return Boolean values. The access methods rely on this fact.
(On the other hand, the support function returns whatever the particular access method expects -- in this
case, a signed integer.) The final routine in the file is the "support routine" mentioned when we
discussed the amsupport column of the pg_am table. We will use this later on. For now, ignore it.

 Now we are ready to define the operators:

Chapter 18. Interfacing Extensions To Indices

242

CREATE OPERATOR = (
 leftarg = complex, rightarg = complex,
 procedure = complex_abs_eq,
 restrict = eqsel, join = eqjoinsel
)

 The important things here are the procedure names (which are the C functions defined above) and the
restriction and join selectivity functions. You should just use the selectivity functions used in the
example (see complex.source). Note that there are different such functions for the less-than, equal,
and greater-than cases. These must be supplied, or the optimizer will be unable to make effective use of
the index.

 The next step is to add entries for these operators to the pg_amop relation. To do this, we’ll need the
oids of the operators we just defined. We’ll look up the names of all the operators that take two
complexes, and pick ours out:

 SELECT o.oid AS opoid, o.oprname
 INTO TABLE complex_ops_tmp
 FROM pg_operator o, pg_type t
 WHERE o.oprleft = t.oid and o.oprright = t.oid
 and t.typname = ’complex’;

 opoid | oprname
--------+---------
 277963 | +
 277970 | <
 277971 | <=
 277972 | =
 277973 | >=
 277974 | >
(6 rows)

 (Again, some of your oid numbers will almost certainly be different.) The operators we are interested
in are those with oids 277970 through 277974. The values you get will probably be different, and you
should substitute them for the values below. We will do this with a select statement.

 Now we are ready to update pg_amop with our new operator class. The most important thing in this
entire discussion is that the operators are ordered, from less than through greater than, in pg_amop. We
add the rows we need:

 INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy)
 SELECT am.oid, opcl.oid, c.opoid, 1
 FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
 WHERE amname = ’btree’ AND
 opcname = ’complex_abs_ops’ AND
 c.oprname = ’<’;

Chapter 18. Interfacing Extensions To Indices

243

 Now do this for the other operators substituting for the "1" in the third line above and the "<" in the last
line. Note the order: "less than" is 1, "less than or equal" is 2, "equal" is 3, "greater than or equal" is 4,
and "greater than" is 5.

 The next step is registration of the "support routine" previously described in our discussion of pg_am.
The oid of this support routine is stored in the pg_amproc table, keyed by the access method oid and
the operator class oid. First, we need to register the function in Postgres (recall that we put the C code
that implements this routine in the bottom of the file in which we implemented the operator routines):

 CREATE FUNCTION complex_abs_cmp(complex, complex)
 RETURNS int4
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

 SELECT oid, proname FROM pg_proc
 WHERE proname = ’complex_abs_cmp’;

 oid | proname
--------+-----------------
 277997 | complex_abs_cmp
(1 row)

 (Again, your oid number will probably be different.) We can add the new row as follows:

 INSERT INTO pg_amproc (amid, amopclaid, amproc, amprocnum)
 SELECT a.oid, b.oid, c.oid, 1
 FROM pg_am a, pg_opclass b, pg_proc c
 WHERE a.amname = ’btree’ AND
 b.opcname = ’complex_abs_ops’ AND
 c.proname = ’complex_abs_cmp’;

 And we’re done! (Whew.) It should now be possible to create and use btree indexes on complex
columns.

244

Chapter 19. Index Cost Estimation Functions
Author: Written by Tom Lane (<tgl@sss.pgh.pa.us>) on 2000-01-24

Note: This must eventually become part of a much larger chapter about writing new index access
methods.

 Every index access method must provide a cost estimation function for use by the planner/optimizer.
The procedure OID of this function is given in the amcostestimate field of the access method’s
pg_am entry.

Note: Prior to Postgres 7.0, a different scheme was used for registering index-specific cost
estimation functions.

 The amcostestimate function is given a list of WHERE clauses that have been determined to be usable
with the index. It must return estimates of the cost of accessing the index and the selectivity of the
WHERE clauses (that is, the fraction of main-table tuples that will be retrieved during the index scan).
For simple cases, nearly all the work of the cost estimator can be done by calling standard routines in the
optimizer; the point of having an amcostestimate function is to allow index access methods to provide
index-type-specific knowledge, in case it is possible to improve on the standard estimates.

 Each amcostestimate function must have the signature:

void
amcostestimate (Query *root,
 RelOptInfo *rel,
 IndexOptInfo *index,
 List *indexQuals,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity);

 The first four parameters are inputs:

root

 The query being processed.

rel

 The relation the index is on.

index

 The index itself.

indexQuals

 List of index qual clauses (implicitly ANDed); a NIL list indicates no qualifiers are available.

Chapter 19. Index Cost Estimation Functions

245

 The last three parameters are pass-by-reference outputs:

*indexStartupCost

 Set to cost of index start-up processing

*indexTotalCost

 Set to total cost of index processing

*indexSelectivity

 Set to index selectivity

 Note that cost estimate functions must be written in C, not in SQL or any available procedural
language, because they must access internal data structures of the planner/optimizer.

 The index access costs should be computed in the units used by src/backend/optimizer/path/costsize.c: a
sequential disk block fetch has cost 1.0, a nonsequential fetch has cost random_page_cost, and the cost
of processing one index tuple should usually be taken as cpu_index_tuple_cost (which is a
user-adjustable optimizer parameter). In addition, an appropriate multiple of cpu_operator_cost should
be charged for any comparison operators invoked during index processing (especially evaluation of the
indexQuals themselves).

 The access costs should include all disk and CPU costs associated with scanning the index itself, but
NOT the costs of retrieving or processing the main-table tuples that are identified by the index.

 The "start-up cost" is the part of the total scan cost that must be expended before we can begin to fetch
the first tuple. For most indexes this can be taken as zero, but an index type with a high start-up cost
might want to set it nonzero.

 The indexSelectivity should be set to the estimated fraction of the main table tuples that will be
retrieved during the index scan. In the case of a lossy index, this will typically be higher than the
fraction of tuples that actually pass the given qual conditions.

Cost Estimation

 A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of main-table tuples that will be visited based on the given qual
conditions. In the absence of any index-type-specific knowledge, use the standard optimizer
function clauselist_selectivity():

*indexSelectivity = clauselist_selectivity(root, indexQuals,
 lfirsti(rel->relids));

2. Estimate the number of index tuples that will be visited during the scan. For many index types this
is the same as indexSelectivity times the number of tuples in the index, but it might be more. (Note
that the index’s size in pages and tuples is available from the IndexOptInfo struct.)

Chapter 19. Index Cost Estimation Functions

246

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index’s size in pages.

4. Compute the index access cost. A generic estimator might do this:

 /*
 * Our generic assumption is that the index pages will be read
 * sequentially, so they have cost 1.0 each, not random_page_cost.
 * Also, we charge for evaluation of the indexquals at each index
tuple.
 * All the costs are assumed to be paid incrementally during the scan.
 */
 *indexStartupCost = 0;
 *indexTotalCost = numIndexPages +
 (cpu_index_tuple_cost + cost_qual_eval(indexQuals)) *
numIndexTuples;

 Examples of cost estimator functions can be found in src/backend/utils/adt/selfuncs.c.

 By convention, the pg_proc entry for an amcostestimate function should show

prorettype = 0
pronargs = 7
proargtypes = 0 0 0 0 0 0 0

 We use zero ("opaque") for all the arguments since none of them have types that are known in pg_type.

247

Chapter 20. GiST Indices
The information about GIST is at http://GiST.CS.Berkeley.EDU:8000/gist/ with more on different
indexing and sorting schemes at http://s2k-ftp.CS.Berkeley.EDU:8000/personal/jmh/. And there is more
interesting reading at http://epoch.cs.berkeley.edu:8000/ and
http://www.sai.msu.su/~megera/postgres/gist/.

Author: This extraction from an email sent by Eugene Selkov, Jr. (<selkovjr@mcs.anl.gov>)
contains good information on GiST. Hopefully we will learn more in the future and update this
information. - thomas 1998-03-01

Well, I can’t say I quite understand what’s going on, but at least I (almost) succeeded in porting GiST
examples to linux. The GiST access method is already in the postgres tree
(src/backend/access/gist).

Examples at Berkeley (ftp://s2k-ftp.cs.berkeley.edu/pub/gist/pggist/pggist.tgz) come with an overview
of the methods and demonstrate spatial index mechanisms for 2D boxes, polygons, integer intervals and
text (see also GiST at Berkeley (http://gist.cs.berkeley.edu:8000/gist/)). In the box example, we are
supposed to see a performance gain when using the GiST index; it did work for me but I do not have a
reasonably large collection of boxes to check that. Other examples also worked, except polygons: I got
an error doing

test=> create index pix on polytmp
test-> using gist (p:box gist_poly_ops) with (islossy);
ERROR: cannot open pix

(PostgreSQL 6.3 Sun Feb 1 14:57:30 EST 1998)

I could not get sense of this error message; it appears to be something we’d rather ask the developers
about (see also Note 4 below). What I would suggest here is that someone of you linux guys
(linux==gcc?) fetch the original sources quoted above and apply my patch (see attachment) and tell us
what you feel about it. Looks cool to me, but I would not like to hold it up while there are so many
competent people around.

A few notes on the sources:

1. I failed to make use of the original (HPUX) Makefile and rearranged the Makefile from the ancient
postgres95 tutorial to do the job. I tried to keep it generic, but I am a very poor makefile writer -- just
did some monkey work. Sorry about that, but I guess it is now a little more portable that the original
makefile.

2. I built the example sources right under pgsql/src (just extracted the tar file there). The aforementioned
Makefile assumes it is one level below pgsql/src (in our case, in pgsql/src/pggist).

3. The changes I made to the *.c files were all about #include’s, function prototypes and typecasting.
Other than that, I just threw away a bunch of unused vars and added a couple parentheses to please gcc.
I hope I did not screw up too much :)

Chapter 20. GiST Indices

248

4. There is a comment in polyproc.sql:

-- -- there’s a memory leak in rtree poly_ops!!
-- -- create index pix2 on polytmp using rtree (p poly_ops);

 Roger that!! I thought it could be related to a number of Postgres versions back and tried the query. My
system went nuts and I had to shoot down the postmaster in about ten minutes.

I will continue to look into GiST for a while, but I would also appreciate more examples of R-tree usage.

249

Chapter 21. Triggers
 Postgres has various server-side function interfaces. Server-side functions can be written in SQL,
PLPGSQL, TCL, or C. Trigger functions can be written in any of these languages except SQL. Note that
STATEMENT-level trigger events are not supported in the current version. You can currently specify
BEFORE or AFTER on INSERT, DELETE or UPDATE of a tuple as a trigger event.

21.1. Trigger Creation
 If a trigger event occurs, the trigger manager (called by the Executor) sets up a TriggerData information
structure (described below) and calls the trigger function to handle the event.

 The trigger function must be created before the trigger is created as a function taking no arguments and
returning opaque. If the function is written in C, it must use the "version 1" function manager interface.

 The syntax for creating triggers is as follows:

CREATE TRIGGER trigger [BEFORE | AFTER] [INSERT | DELETE | UPDATE [OR ...
]]
 ON relation FOR EACH [ROW | STATEMENT]
 EXECUTE PROCEDURE procedure
 (args);

 where the arguments are:

 trigger

 The name of the trigger is used if you ever have to delete the trigger. It is used as an argument to
the DROP TRIGGER command.

BEFORE
AFTER

 Determines whether the function is called before or after the event.

INSERT
DELETE
UPDATE

 The next element of the command determines on what event(s) will trigger the function. Multiple
events can be specified separated by OR.

relation

 The relation name determines which table the event applies to.

Chapter 21. Triggers

250

ROW
STATEMENT

 The FOR EACH clause determines whether the trigger is fired for each affected row or before (or
after) the entire statement has completed.

procedure

 The procedure name is the function called.

args

 The arguments passed to the function in the TriggerData structure. The purpose of passing
arguments to the function is to allow different triggers with similar requirements to call the same
function.

 Also, procedure may be used for triggering different relations (these functions are named as
"general trigger functions").

 As example of using both features above, there could be a general function that takes as its
arguments two field names and puts the current user in one and the current timestamp in the other.
This allows triggers to be written on INSERT events to automatically track creation of records in a
transaction table for example. It could also be used as a "last updated" function if used in an
UPDATE event.

 Trigger functions return HeapTuple to the calling Executor. This is ignored for triggers fired after an
INSERT, DELETE or UPDATE operation but it allows BEFORE triggers to:

 Return NULL to skip the operation for the current tuple (and so the tuple will not be
inserted/updated/deleted).

 Return a pointer to another tuple (INSERT and UPDATE only) which will be inserted (as the new
version of the updated tuple if UPDATE) instead of original tuple.

 Note that there is no initialization performed by the CREATE TRIGGER handler. This will be changed
in the future. Also, if more than one trigger is defined for the same event on the same relation, the order
of trigger firing is unpredictable. This may be changed in the future.

 If a trigger function executes SQL-queries (using SPI) then these queries may fire triggers again. This is
known as cascading triggers. There is no explicit limitation on the number of cascade levels.

 If a trigger is fired by INSERT and inserts a new tuple in the same relation then this trigger will be fired
again. Currently, there is nothing provided for synchronization (etc) of these cases but this may change.
At the moment, there is function funny_dup17() in the regress tests which uses some techniques to stop
recursion (cascading) on itself...

21.2. Interaction with the Trigger Manager
 This section describes the low-level details of the interface to a trigger function. This information is
only needed when writing a trigger function in C. If you are using a higher-level function language then
these details are handled for you.

Chapter 21. Triggers

251

Note: The interface described here applies for Postgres 7.1 and later. Earlier versions passed the
TriggerData pointer in a global variable CurrentTriggerData.

 When a function is called by the trigger manager, it is not passed any normal parameters, but it is
passed a "context" pointer pointing to a TriggerData structure. C functions can check whether they were
called from the trigger manager or not by executing the macro CALLED_AS_TRIGGER(fcinfo), which
expands to

 ((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

 If this returns TRUE, then it is safe to cast fcinfo->context to type TriggerData * and make use of
the pointed-to TriggerData structure. The function must not alter the TriggerData structure or any of the
data it points to.

 struct TriggerData is defined in src/include/commands/trigger.h:

typedef struct TriggerData
{
 NodeTag type;
 TriggerEvent tg_event;
 Relation tg_relation;
 HeapTuple tg_trigtuple;
 HeapTuple tg_newtuple;
 Trigger *tg_trigger;
} TriggerData;

 where the members are defined as follows:

type

 Always T_TriggerData if this is a trigger event.

tg_event

 describes the event for which the function is called. You may use the following macros to examine
tg_event:

TRIGGER_FIRED_BEFORE(tg_event)

 returns TRUE if trigger fired BEFORE.

TRIGGER_FIRED_AFTER(tg_event)

 Returns TRUE if trigger fired AFTER.

TRIGGER_FIRED_FOR_ROW(event)

 Returns TRUE if trigger fired for a ROW-level event.

TRIGGER_FIRED_FOR_STATEMENT(event)

 Returns TRUE if trigger fired for STATEMENT-level event.

Chapter 21. Triggers

252

TRIGGER_FIRED_BY_INSERT(event)

 Returns TRUE if trigger fired by INSERT.

TRIGGER_FIRED_BY_DELETE(event)

 Returns TRUE if trigger fired by DELETE.

TRIGGER_FIRED_BY_UPDATE(event)

 Returns TRUE if trigger fired by UPDATE.

tg_relation

 is a pointer to structure describing the triggered relation. Look at src/include/utils/rel.h for details
about this structure. The most interest things are tg_relation->rd_att (descriptor of the relation
tuples) and tg_relation->rd_rel->relname (relation’s name. This is not char*, but NameData. Use
SPI_getrelname(tg_relation) to get char* if you need a copy of name).

tg_trigtuple

 is a pointer to the tuple for which the trigger is fired. This is the tuple being inserted (if INSERT),
deleted (if DELETE) or updated (if UPDATE). If INSERT/DELETE then this is what you are to
return to Executor if you don’t want to replace tuple with another one (INSERT) or skip the
operation.

tg_newtuple

 is a pointer to the new version of tuple if UPDATE and NULL if this is for an INSERT or a
DELETE. This is what you are to return to Executor if UPDATE and you don’t want to replace this
tuple with another one or skip the operation.

tg_trigger

 is pointer to structure Trigger defined in src/include/utils/rel.h:

typedef struct Trigger
{
 Oid tgoid;
 char *tgname;
 Oid tgfoid;
 FmgrInfo tgfunc;
 int16 tgtype;
 bool tgenabled;
 bool tgisconstraint;
 bool tgdeferrable;
 bool tginitdeferred;
 int16 tgnargs;
 int16 tgattr[FUNC_MAX_ARGS];
 char **tgargs;
} Trigger;

Chapter 21. Triggers

253

 where tgname is the trigger’s name, tgnargs is number of arguments in tgargs, tgargs is an array of
pointers to the arguments specified in the CREATE TRIGGER statement. Other members are for
internal use only.

21.3. Visibility of Data Changes
 Postgres data changes visibility rule: during a query execution, data changes made by the query itself
(via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in query

INSERT INTO a SELECT * FROM a;

 tuples inserted are invisible for SELECT scan. In effect, this duplicates the database table within itself
(subject to unique index rules, of course) without recursing.

 But keep in mind this notice about visibility in the SPI documentation:

Changes made by query Q are visible by queries that are started after query Q, no matter whether they are
started inside Q (during the execution of Q) or after Q is done.

 This is true for triggers as well so, though a tuple being inserted (tg_trigtuple) is not visible to queries in
a BEFORE trigger, this tuple (just inserted) is visible to queries in an AFTER trigger, and to queries in
BEFORE/AFTER triggers fired after this!

21.4. Examples
 There are more complex examples in src/test/regress/regress.c and in contrib/spi.

 Here is a very simple example of trigger usage. Function trigf reports the number of tuples in the
triggered relation ttest and skips the operation if the query attempts to insert NULL into x (i.e - it acts as
a NOT NULL constraint but doesn’t abort the transaction).

#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* -"- and triggers */

extern Datum trigf(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{
 TriggerData *trigdata = (TriggerData *) fcinfo->context;
 TupleDesc tupdesc;
 HeapTuple rettuple;
 char *when;
 bool checknull = false;
 bool isnull;
 int ret, i;

Chapter 21. Triggers

254

 /* Make sure trigdata is pointing at what I expect */
 if (!CALLED_AS_TRIGGER(fcinfo))
 elog(ERROR, "trigf: not fired by trigger manager");

 /* tuple to return to Executor */
 if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
 rettuple = trigdata->tg_newtuple;
 else
 rettuple = trigdata->tg_trigtuple;

 /* check for NULLs ? */
 if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event) &&
 TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 checknull = true;

 if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 when = "before";
 else
 when = "after ";

 tupdesc = trigdata->tg_relation->rd_att;

 /* Connect to SPI manager */
 if ((ret = SPI_connect()) < 0)
 elog(NOTICE, "trigf (fired %s): SPI_connect returned %d",
when, ret);

 /* Get number of tuples in relation */
 ret = SPI_exec("select count(*) from ttest", 0);

 if (ret < 0)
 elog(NOTICE, "trigf (fired %s): SPI_exec returned %d", when,
ret);

 i = SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 1,
&isnull);

 elog (NOTICE, "trigf (fired %s): there are %d tuples in ttest", when,
i);

 SPI_finish();

 if (checknull)
 {
 i = SPI_getbinval(rettuple, tupdesc, 1, &isnull);
 if (isnull)
 rettuple = NULL;
 }

 return PointerGetDatum(rettuple);
}

Chapter 21. Triggers

255

 Now, compile and create the trigger function:

create function trigf () returns opaque as
’...path_to_so’ language ’C’;

create table ttest (x int4);

vac=> create trigger tbefore before insert or update or delete on ttest
for each row execute procedure trigf();
CREATE
vac=> create trigger tafter after insert or update or delete on ttest
for each row execute procedure trigf();
CREATE
vac=> insert into ttest values (null);
NOTICE:trigf (fired before): there are 0 tuples in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

vac=> select * from ttest;
x
-
(0 rows)

vac=> insert into ttest values (1);
NOTICE:trigf (fired before): there are 0 tuples in ttest
NOTICE:trigf (fired after): there are 1 tuples in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167793 1
vac=> select * from ttest;
x
-
1
(1 row)

vac=> insert into ttest select x * 2 from ttest;
NOTICE:trigf (fired before): there are 1 tuples in ttest
NOTICE:trigf (fired after): there are 2 tuples in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167794 1
vac=> select * from ttest;
x
-
1
2

Chapter 21. Triggers

256

(2 rows)

vac=> update ttest set x = null where x = 2;
NOTICE:trigf (fired before): there are 2 tuples in ttest
UPDATE 0
vac=> update ttest set x = 4 where x = 2;
NOTICE:trigf (fired before): there are 2 tuples in ttest
NOTICE:trigf (fired after): there are 2 tuples in ttest
UPDATE 1
vac=> select * from ttest;
x
-
1
4
(2 rows)

vac=> delete from ttest;
NOTICE:trigf (fired before): there are 2 tuples in ttest
NOTICE:trigf (fired after): there are 1 tuples in ttest
NOTICE:trigf (fired before): there are 1 tuples in ttest
NOTICE:trigf (fired after): there are 0 tuples in ttest
 ^^^^^^^^
 remember what we said about visibility.
DELETE 2
vac=> select * from ttest;
x
-
(0 rows)

257

Chapter 22. Server Programming Interface
The Server Programming Interface (SPI) gives users the ability to run SQL queries inside user-defined
C functions. The available Procedural Languages (PL) give an alternate means to access these
capabilities.

In fact, SPI is just a set of native interface functions to simplify access to the Parser, Planner, Optimizer
and Executor. SPI also does some memory management.

To avoid misunderstanding we’ll use function to mean SPI interface functions and procedure for
user-defined C-functions using SPI.

Procedures which use SPI are called by the Executor. The SPI calls recursively invoke the Executor in
turn to run queries. When the Executor is invoked recursively, it may itself call procedures which may
make SPI calls.

Note, that if during execution of a query from a procedure the transaction is aborted then control will not
be returned to your procedure. Rather, all work will be rolled back and the server will wait for the next
command from the client. This will be changed in future versions.

Other restrictions are the inability to execute BEGIN, END and ABORT (transaction control statements)
and cursor operations. This will also be changed in the future.

If successful, SPI functions return a non-negative result (either via a returned integer value or in
SPI_result global variable, as described below). On error, a negative or NULL result will be returned.

Chapter 22. Server Programming Interface

258

22.1. Interface Functions

SPI_connect

Name

SPI_connect � Connects your procedure to the SPI manager.

Synopsis

int SPI_connect(void)

Inputs

None

Outputs

int

 Return status

SPI_OK_CONNECT

 if connected

SPI_ERROR_CONNECT

 if not connected

Description

SPI_connect opens a connection to the Postgres backend. You should call this function if you will
need to execute queries. Some utility SPI functions may be called from un-connected procedures.

 If your procedure is already connected, SPI_connect will return an SPI_ERROR_CONNECT error.
Note that this may happen if a procedure which has called SPI_connect directly calls another
procedure which itself calls SPI_connect. While recursive calls to the SPI manager are permitted
when an SPI query invokes another function which uses SPI, directly nested calls to SPI_connect and
SPI_finish are forbidden.

Usage

Algorithm

SPI_connect performs the following:

 Initializes the SPI internal structures for query execution and memory management.

Chapter 22. Server Programming Interface

259

SPI_finish

Name

SPI_finish � Disconnects your procedure from the SPI manager.

Synopsis

SPI_finish(void)

Inputs

None

Outputs

int

SPI_OK_FINISH if properly disconnected
SPI_ERROR_UNCONNECTED if called from an un-connected procedure

Description

SPI_finish closes an existing connection to the Postgres backend. You should call this function after
completing operations through the SPI manager.

 You may get the error return SPI_ERROR_UNCONNECTED if SPI_finish is called without having
a current valid connection. There is no fundamental problem with this; it means that nothing was done
by the SPI manager.

Usage

 SPI_finish must be called as a final step by a connected procedure or you may get unpredictable
results! Note that you can safely skip the call to SPI_finish if you abort the transaction (via
elog(ERROR)).

Algorithm

SPI_finish performs the following:

 Disconnects your procedure from the SPI manager and frees all memory allocations made by your
procedure via palloc since the SPI_connect. These allocations can’t be used any more! See
Memory management.

Chapter 22. Server Programming Interface

260

SPI_exec

Name

SPI_exec � Creates an execution plan (parser+planner+optimizer) and executes a query.

Synopsis

SPI_exec(query, tcount)

Inputs

char *query

 String containing query plan

int tcount

 Maximum number of tuples to return

Outputs

int

 SPI_OK_EXEC if properly disconnected
 SPI_ERROR_UNCONNECTED if called from an un-connected procedure
 SPI_ERROR_ARGUMENT if query is NULL or tcount < 0.
 SPI_ERROR_UNCONNECTED if procedure is unconnected.
 SPI_ERROR_COPY if COPY TO/FROM stdin.
 SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
 SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
 SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

 If execution of your query was successful then one of the following (non-negative) values will be
returned:

 SPI_OK_UTILITY if some utility (e.g. CREATE TABLE ...) was executed
 SPI_OK_SELECT if SELECT (but not SELECT ... INTO!) was executed
 SPI_OK_SELINTO if SELECT ... INTO was executed
 SPI_OK_INSERT if INSERT (or INSERT ... SELECT) was executed
 SPI_OK_DELETE if DELETE was executed
 SPI_OK_UPDATE if UPDATE was executed

Chapter 22. Server Programming Interface

261

Description

SPI_exec creates an execution plan (parser+planner+optimizer) and executes the query for tcount
tuples.

Usage

 This should only be called from a connected procedure. If tcount is zero then it executes the query
for all tuples returned by the query scan. Using tcount > 0 you may restrict the number of tuples for
which the query will be executed. For example,

SPI_exec ("insert into table select * from table", 5);

will allow at most 5 tuples to be inserted into table. If execution of your query was successful then a
non-negative value will be returned.

Note: You may pass many queries in one string or query string may be re-written by RULEs.
SPI_exec returns the result for the last query executed.

 The actual number of tuples for which the (last) query was executed is returned in the global variable
SPI_processed (if not SPI_OK_UTILITY). If SPI_OK_SELECT returned and SPI_processed > 0 then
you may use global pointer SPITupleTable *SPI_tuptable to access the selected tuples: Also NOTE, that
SPI_finish frees and makes all SPITupleTables unusable! (See Memory management).

 SPI_exec may return one of the following (negative) values:

 SPI_ERROR_ARGUMENT if query is NULL or tcount < 0.
 SPI_ERROR_UNCONNECTED if procedure is unconnected.
 SPI_ERROR_COPY if COPY TO/FROM stdin.
 SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
 SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
 SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

Algorithm

SPI_exec performs the following:

 Disconnects your procedure from the SPI manager and frees all memory allocations made by your
procedure via palloc since the SPI_connect. These allocations can’t be used any more! See
Memory management.

Chapter 22. Server Programming Interface

262

SPI_prepare

Name

SPI_prepare � Connects your procedure to the SPI manager.

Synopsis

SPI_prepare(query, nargs, argtypes)

Inputs

query

 Query string

nargs

 Number of input parameters ($1 ... $nargs - as in SQL-functions)

argtypes

 Pointer list of type OIDs to input arguments

Outputs

void *

 Pointer to an execution plan (parser+planner+optimizer)

Description

SPI_prepare creates and returns an execution plan (parser+planner+optimizer) but doesn’t execute the
query. Should only be called from a connected procedure.

Usage

 nargs is number of parameters ($1 ... $nargs - as in SQL-functions), and nargs may be 0 only if there is
not any $1 in query.

 Execution of prepared execution plans is sometimes much faster so this feature may be useful if the
same query will be executed many times.

The plan returned by SPI_prepare may be used only in current invocation of the procedure since
SPI_finish frees memory allocated for a plan. See SPI_saveplan.

 If successful, a non-null pointer will be returned. Otherwise, you’ll get a NULL plan. In both cases
SPI_result will be set like the value returned by SPI_exec, except that it is set to
SPI_ERROR_ARGUMENT if query is NULL or nargs < 0 or nargs > 0 && argtypes is NULL.

Chapter 22. Server Programming Interface

263

SPI_saveplan

Name

SPI_saveplan � Saves a passed plan

Synopsis

SPI_saveplan(plan)

Inputs

void *query

 Passed plan

Outputs

void *

 Execution plan location. NULL if unsuccessful.

SPI_result

 SPI_ERROR_ARGUMENT if plan is NULL
 SPI_ERROR_UNCONNECTED if procedure is un-connected

Description

SPI_saveplan stores a plan prepared by SPI_prepare in safe memory protected from freeing by
SPI_finish or the transaction manager.

 In the current version of Postgres there is no ability to store prepared plans in the system catalog and
fetch them from there for execution. This will be implemented in future versions. As an alternative,
there is the ability to reuse prepared plans in the consequent invocations of your procedure in the current
session. Use SPI_execp to execute this saved plan.

Usage

 SPI_saveplan saves a passed plan (prepared by SPI_prepare) in memory protected from freeing by
SPI_finish and by the transaction manager and returns a pointer to the saved plan. You may save the
pointer returned in a local variable. Always check if this pointer is NULL or not either when preparing a
plan or using an already prepared plan in SPI_execp (see below).

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is dropped
during your session (by your backend or another process) then the results of SPI_execp for this
plan will be unpredictable.

Chapter 22. Server Programming Interface

264

SPI_execp

Name

SPI_execp � Executes a plan from SPI_saveplan

Synopsis

SPI_execp(plan,
values,
nulls,
tcount)

Inputs

void *plan

 Execution plan

Datum *values

 Actual parameter values

char *nulls

 Array describing what parameters get NULLs

’n’ indicates NULL allowed
’ ’ indicates NULL not allowed

int tcount

 Number of tuples for which plan is to be executed

Outputs

int

 Returns the same value as SPI_exec as well as

 SPI_ERROR_ARGUMENT if plan is NULL or tcount < 0
 SPI_ERROR_PARAM if values is NULL and plan was prepared with some parameters.

Chapter 22. Server Programming Interface

265

SPI_tuptable

 initialized as in SPI_exec if successful

SPI_processed

 initialized as in SPI_exec if successful

Description

SPI_execp stores a plan prepared by SPI_prepare in safe memory protected from freeing by
SPI_finish or the transaction manager.

 In the current version of Postgres there is no ability to store prepared plans in the system catalog and
fetch them from there for execution. This will be implemented in future versions. As a work arround,
there is the ability to reuse prepared plans in the consequent invocations of your procedure in the current
session. Use SPI_execp to execute this saved plan.

Usage

 If nulls is NULL then SPI_execp assumes that all values (if any) are NOT NULL.

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is dropped
during your session (by your backend or another process) then the results of SPI_execp for this
plan will be unpredictable.

22.2. Interface Support Functions
All functions described below may be used by connected and unconnected procedures.

Chapter 22. Server Programming Interface

266

SPI_copytuple

Name

SPI_copytuple � Makes copy of tuple in upper Executor context

Synopsis

SPI_copytuple(tuple)

Inputs

HeapTuple tuple

 Input tuple to be copied

Outputs

HeapTuple

 Copied tuple

 non-NULL if tuple is not NULL and the copy was successful
 NULL only if tuple is NULL

Description

SPI_copytuple makes a copy of tuple in upper Executor context. See the section on Memory
Management.

Usage

TBD

SPI_modifytuple

Name

SPI_modifytuple � Modifies tuple of relation

Synopsis

SPI_modifytuple(rel, tuple , nattrs

Chapter 22. Server Programming Interface

267

, attnum , Values , Nulls)

Inputs

Relation rel

HeapTuple tuple

 Input tuple to be modified

int nattrs

 Number of attribute numbers in attnum

int * attnum

 Array of numbers of the attributes that are to be changed

Datum * Values

 New values for the attributes specified

char * Nulls

 Which attributes are NULL, if any

Outputs

HeapTuple

 New tuple with modifications

 non-NULL if tuple is not NULL and the modify was successful
 NULL only if tuple is NULL

SPI_result

 SPI_ERROR_ARGUMENT if rel is NULL or tuple is NULL or natts ≤ 0 or attnum is NULL or
Values is NULL.

 SPI_ERROR_NOATTRIBUTE if there is an invalid attribute number in attnum (attnum ≤ 0 or >
number of attributes in tuple)

Description

SPI_modifytuple Modifies a tuple in upper Executor context. See the section on Memory
Management.

Usage

If successful, a pointer to the new tuple is returned. The new tuple is allocated in upper Executor context
(see Memory management). Passed tuple is not changed.

Chapter 22. Server Programming Interface

268

SPI_fnumber

Name

SPI_fnumber � Finds the attribute number for specified attribute

Synopsis

SPI_fnumber(tupdesc, fname)

Inputs

TupleDesc tupdesc

 Input tuple description

char * fname

 Field name

Outputs

int

 Attribute number

Valid one-based index number of attribute
SPI_ERROR_NOATTRIBUTE if the named attribute is not found

Description

SPI_fnumber returns the attribute number for the attribute with name in fname.

Usage

Attribute numbers are 1 based.

Chapter 22. Server Programming Interface

269

SPI_fname

Name

SPI_fname � Finds the attribute name for the specified attribute

Synopsis

SPI_fname(tupdesc, fname)

Inputs

TupleDesc tupdesc

 Input tuple description

char * fnumber

 Attribute number

Outputs

char *

 Attribute name

NULL if fnumber is out of range
SPI_result set to SPI_ERROR_NOATTRIBUTE on error

Description

SPI_fname returns the attribute name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the attribute name.

Chapter 22. Server Programming Interface

270

SPI_getvalue

Name

SPI_getvalue � Returns the string value of the specified attribute

Synopsis

SPI_getvalue(tuple, tupdesc, fnumber)

Inputs

HeapTuple tuple

 Input tuple to be examined

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

char *

 Attribute value or NULL if

attribute is NULL
fnumber is out of range (SPI_result set to SPI_ERROR_NOATTRIBUTE)
no output function available (SPI_result set to SPI_ERROR_NOOUTFUNC)

Description

SPI_getvalue returns an external (string) representation of the value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Allocates memory as required by the value.

Chapter 22. Server Programming Interface

271

SPI_getbinval

Name

SPI_getbinval � Returns the binary value of the specified attribute

Synopsis

SPI_getbinval(tuple, tupdesc, fnumber, isnull)

Inputs

HeapTuple tuple

 Input tuple to be examined

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

Datum

 Attribute binary value

bool * isnull

 flag for null value in attribute

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_getbinval returns the binary value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Does not allocate new space for the binary value.

Chapter 22. Server Programming Interface

272

SPI_gettype

Name

SPI_gettype � Returns the type name of the specified attribute

Synopsis

SPI_gettype(tupdesc, fnumber)

Inputs

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

char *

 The type name for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_gettype returns a copy of the type name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Does not allocate new space for the binary value.

Chapter 22. Server Programming Interface

273

SPI_gettypeid

Name

SPI_gettypeid � Returns the type OID of the specified attribute

Synopsis

SPI_gettypeid(tupdesc, fnumber)

Inputs

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

OID

 The type OID for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_gettypeid returns the type OID for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

TBD

Chapter 22. Server Programming Interface

274

SPI_getrelname

Name

SPI_getrelname � Returns the name of the specified relation

Synopsis

SPI_getrelname(rel)

Inputs

Relation rel

 Input relation

Outputs

char *

 The name of the specified relation

Description

SPI_getrelname returns the name of the specified relation.

Usage

TBD

Algorithm

Copies the relation name into new storage.

Chapter 22. Server Programming Interface

275

SPI_palloc

Name

SPI_palloc � Allocates memory in upper Executor context

Synopsis

SPI_palloc(size)

Inputs

Size size

 Octet size of storage to allocate

Outputs

void *

 New storage space of specified size

Description

SPI_palloc allocates memory in upper Executor context. See section on memory management.

Usage

TBD

Chapter 22. Server Programming Interface

276

SPI_repalloc

Name

SPI_repalloc � Re-allocates memory in upper Executor context

Synopsis

SPI_repalloc(pointer, size)

Inputs

void * pointer

 Pointer to existing storage

Size size

 Octet size of storage to allocate

Outputs

void *

 New storage space of specified size with contents copied from existing area

Description

SPI_repalloc re-allocates memory in upper Executor context. See section on memory management.

Usage

TBD

Chapter 22. Server Programming Interface

277

SPI_pfree

Name

SPI_pfree � Frees memory from upper Executor context

Synopsis

SPI_pfree(pointer)

Inputs

void * pointer

 Pointer to existing storage

Outputs

None

Description

SPI_pfree frees memory in upper Executor context. See section on memory management.

Usage

TBD

22.3. Memory Management
 Server allocates memory in memory contexts in such way that allocations made in one context may be
freed by context destruction without affecting allocations made in other contexts. All allocations (via
palloc, etc) are made in the context that is chosen as the current one. You’ll get unpredictable results if
you’ll try to free (or reallocate) memory allocated not in current context.

 Creation and switching between memory contexts are subject of SPI manager memory management.

 SPI procedures deal with two memory contexts: upper Executor memory context and procedure
memory context (if connected).

 Before a procedure is connected to the SPI manager, current memory context is upper Executor context
so all allocation made by the procedure itself via palloc/repalloc or by SPI utility functions before
connecting to SPI are made in this context.

 After SPI_connect is called current context is the procedure’s one. All allocations made via
palloc/repalloc or by SPI utility functions (except for SPI_copytuple, SPI_modifytuple,
SPI_palloc and SPI_repalloc) are made in this context.

Chapter 22. Server Programming Interface

278

 When a procedure disconnects from the SPI manager (via SPI_finish) the current context is restored
to the upper Executor context and all allocations made in the procedure memory context are freed and
can’t be used any more!

 If you want to return something to the upper Executor then you have to allocate memory for this in the
upper context!

 SPI has no ability to automatically free allocations in the upper Executor context!

 SPI automatically frees memory allocated during execution of a query when this query is done!

22.4. Visibility of Data Changes
Postgres data changes visibility rule: during a query execution, data changes made by the query itself
(via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in query
INSERT INTO a SELECT * FROM a tuples inserted are invisible for SELECT’s scan. In effect, this
duplicates the database table within itself (subject to unique index rules, of course) without recursing.

 Changes made by query Q are visible to queries that are started after query Q, no matter whether they
are started inside Q (during the execution of Q) or after Q is done.

22.5. Examples
 This example of SPI usage demonstrates the visibility rule. There are more complex examples in
src/test/regress/regress.c and in contrib/spi.

 This is a very simple example of SPI usage. The procedure execq accepts an SQL-query in its first
argument and tcount in its second, executes the query using SPI_exec and returns the number of tuples
for which the query executed:

#include "executor/spi.h" /* this is what you need to work with SPI */

int execq(text *sql, int cnt);

int
execq(text *sql, int cnt)
{
 char *query;
 int ret;
 int proc;

 /* Convert given TEXT object to a C string */
 query = DatumGetCString(DirectFunctionCall1(textout,
 PointerGetDatum(sql)));

 SPI_connect();

 ret = SPI_exec(query, cnt);

 proc = SPI_processed;
 /*
 * If this is SELECT and some tuple(s) fetched -

Chapter 22. Server Programming Interface

279

 * returns tuples to the caller via elog (NOTICE).
 */
 if (ret == SPI_OK_SELECT && SPI_processed > 0)
 {
 TupleDesc tupdesc = SPI_tuptable->tupdesc;
 SPITupleTable *tuptable = SPI_tuptable;
 char buf[8192];
 int i,j;

 for (j = 0; j < proc; j++)
 {
 HeapTuple tuple = tuptable->vals[j];

 for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
 sprintf(buf + strlen (buf), " %s%s",
 SPI_getvalue(tuple, tupdesc, i),
 (i == tupdesc->natts) ? " " : " |");
 elog (NOTICE, "EXECQ: %s", buf);
 }
 }

 SPI_finish();

 pfree(query);

 return (proc);
}

 Now, compile and create the function:

create function execq (text, int4) returns int4 as ’...path_to_so’ language
’c’;

vac=> select execq(’create table a (x int4)’, 0);
execq

 0
(1 row)

vac=> insert into a values (execq(’insert into a values (0)’,0));
INSERT 167631 1
vac=> select execq(’select * from a’,0);
NOTICE:EXECQ: 0 <<< inserted by execq

NOTICE:EXECQ: 1 <<< value returned by execq and inserted by upper INSERT

execq

 2
(1 row)

vac=> select execq(’insert into a select x + 2 from a’,1);
execq

Chapter 22. Server Programming Interface

280

 1
(1 row)

vac=> select execq(’select * from a’, 10);
NOTICE:EXECQ: 0

NOTICE:EXECQ: 1

NOTICE:EXECQ: 2 <<< 0 + 2, only one tuple inserted - as specified

execq

 3 <<< 10 is max value only, 3 is real # of tuples
(1 row)

vac=> delete from a;
DELETE 3
vac=> insert into a values (execq(’select * from a’, 0) + 1);
INSERT 167712 1
vac=> select * from a;
x
-
1 <<< no tuples in a (0) + 1
(1 row)

vac=> insert into a values (execq(’select * from a’, 0) + 1);
NOTICE:EXECQ: 0
INSERT 167713 1
vac=> select * from a;
x
-
1
2 <<< there was single tuple in a + 1
(2 rows)

-- This demonstrates data changes visibility rule:

vac=> insert into a select execq(’select * from a’, 0) * x from a;
NOTICE:EXECQ: 1
NOTICE:EXECQ: 2
NOTICE:EXECQ: 1
NOTICE:EXECQ: 2
NOTICE:EXECQ: 2
INSERT 0 2
vac=> select * from a;
x
-
1
2
2 <<< 2 tuples * 1 (x in first tuple)
6 <<< 3 tuples (2 + 1 just inserted) * 2 (x in second tuple)
(4 rows) ^^^^^^^^

Chapter 22. Server Programming Interface

281

 tuples visible to execq() in different invocations

III. Procedural Languages

283

Chapter 23. Procedural Languages
 Postgres allows users to add new programming languages to be available for writing functions and
procedures. These are called procedural languages (PL). In the case of a function or trigger procedure
written in a procedural language, the database server has no built-in knowledge about how to interpret
the function’s source text. Instead, the task is passed to a special handler that knows the details of the
language. The handler could either do all the work of parsing, syntax analysis, execution, etc. itself, or it
could serve as �glue� between Postgres and an existing implementation of a programming language. The
handler itself is a special programming language function compiled into a shared object and loaded on
demand.

 Writing a handler for a new procedural language is outside the scope of this manual, although some
information is provided in the CREATE LANGUAGE reference page. Several procedural languages are
available in the standard Postgres distribution.

23.1. Installing Procedural Languages
 A procedural language must be �installed� into each database where it is to be used. But procedural
languages installed in the template1 database are automatically available in all subsequently created
databases. So the database administrator can decide which languages are available in which databases,
and can make some languages available by default if he chooses.

 For the languages supplied with the standard distribution, the shell script createlang may be used
instead of carrying out the details by hand. For example, to install PL/pgSQL into the template1
database, use

createlang plpgsql template1

 The manual procedure described below is only recommended for installing custom languages that
createlang does not know about.

 Manual Procedural Language Installation

 A procedural language is installed in the database in three steps, which must be carried out by a
database superuser.

1. The shared object for the language handler must be compiled and installed into an appropriate
library directory. This works in the same way as building and installing modules with regular
user-defined C functions does; see Section 13.4.6.

2. The handler must be declared with the command

CREATE FUNCTION handler_function_name ()
 RETURNS OPAQUE AS
 ’path-to-shared-object’ LANGUAGE ’C’;

 The special return type of OPAQUE tells the database that this function does not return one of the
defined SQL data types and is not directly usable in SQL statements.

Chapter 23. Procedural Languages

284

3. The PL must be declared with the command

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE ’language-name’
 HANDLER handler_function_name
 LANCOMPILER ’description’;

 The optional key word TRUSTED tells whether ordinary database users that have no superuser
privileges should be allowed to use this language to create functions and trigger procedures. Since
PL functions are executed inside the database backend, the TRUSTED flag should only be given for
languages that do not allow access to database backends internals or the filesystem. The languages
PL/pgSQL, PL/Tcl, and PL/Perl are known to be trusted; the language PL/TclU should not be
marked trusted.

 In a default Postgres installation, the handler for the PL/pgSQL language is built and installed into the
�library� directory. If Tcl/Tk support is configured in, the handlers for PL/Tcl and PL/TclU are also built
and installed in the same location. Likewise, the PL/Perl handler is built and installed if Perl support is
configured. The createlang script automates the two CREATE steps described above.

Example

1. The following command tells the database where to find the shared object for the PL/pgSQL
language’s call handler function.

CREATE FUNCTION plpgsql_call_handler () RETURNS OPAQUE AS
 ’/usr/local/pgsql/lib/plpgsql.so’ LANGUAGE ’C’;

2. The command

CREATE TRUSTED PROCEDURAL LANGUAGE ’plpgsql’
 HANDLER plpgsql_call_handler
 LANCOMPILER ’PL/pgSQL’;

 then defines that the previously declared call handler function should be invoked for functions and
trigger procedures where the language attribute is ’plpgsql’.

285

Chapter 24. PL/pgSQL - SQL Procedural
Language

 PL/pgSQL is a loadable procedural language for the Postgres database system.

 This package was originally written by Jan Wieck. This documentation was in part written by Roberto
Mello (<rmello@fslc.usu.edu>).

24.1. Overview
 The design goals of PL/pgSQL were to create a loadable procedural language that

 can be used to create functions and trigger procedures,

 adds control structures to the SQL language,

 can perform complex computations,

 inherits all user defined types, functions and operators,

 can be defined to be trusted by the server,

 is easy to use.

 The PL/pgSQL call handler parses the function’s source text and produces an internal binary instruction
tree the first time the function is called. The produced bytecode is identified in the call handler by the
object ID of the function. This ensures that changing a function by a DROP/CREATE sequence will
take effect without establishing a new database connection.

 For all expressions and SQL statements used in the function, the PL/pgSQL bytecode interpreter creates
a prepared execution plan using the SPI manager’s SPI_prepare() and SPI_saveplan() functions.
This is done the first time the individual statement is processed in the PL/pgSQL function. Thus, a
function with conditional code that contains many statements for which execution plans would be
required, will only prepare and save those plans that are really used during the lifetime of the database
connection.

 This means that you have to be careful about your user-defined functions. For example:

CREATE FUNCTION populate() RETURNS INTEGER AS ’
DECLARE
 -- Declarations
BEGIN
 PERFORM my_function();
END;
’ LANGUAGE ’plpgsql’;

 If you create the above function, it will reference the OID for my_function() in its bytecode. Later, if
you drop and re-create my_function(), then populate() will not be able to find my_function()
anymore. You would then have to re-create populate().

Chapter 24. PL/pgSQL - SQL Procedural Language

286

 Because PL/pgSQL saves execution plans in this way, queries that appear directly in a PL/pgSQL
function must refer to the same tables and fields on every execution; that is, you cannot use a parameter
as the name of a table or field in a query. To get around this restriction, you can construct dynamic
queries using the PL/pgSQL EXECUTE statement --- at the price of constructing a new query plan on
every execution.

 Except for input/output conversion and calculation functions for user defined types, anything that can
be defined in C language functions can also be done with PL/pgSQL. It is possible to create complex
conditional computation functions and later use them to define operators or use them in functional
indices.

24.1.1. Advantages of Using PL/pgSQL

 Better performance (see Section 24.1.1.1)

 SQL support (see Section 24.1.1.2)

 Portability (see Section 24.1.1.3)

24.1.1.1. Better Performance

 SQL is the language PostgreSQL (and most other Relational Databases) use as query language. It’s
portable and easy to learn. But every SQL statement must be executed individually by the database
server.

 That means that your client application must send each query to the database server, wait for it to
process it, receive the results, do some computation, then send other queries to the server. All this incurs
inter process communication and may also incur network overhead if your client is on a different
machine than the database server.

 With PL/pgSQL you can group a block of computation and a series of queries inside the database
server, thus having the power of a procedural language and the ease of use of SQL, but saving lots of
time because you don’t have the whole client/server communication overhead. Your application will
enjoy a considerable performance increase by using PL/pgSQL.

24.1.1.2. SQL Support

 PL/pgSQL adds the power of a procedural language to the flexibility and ease of SQL. With PL/pgSQL
you can use all the datatypes, columns, operators and functions of SQL.

24.1.1.3. Portability

 Because PL/pgSQL functions run inside PostgreSQL, these functions will run on any platform where
PostgreSQL runs. Thus you can reuse code and have less development costs.

24.1.2. Developing in PL/pgSQL

 Developing in PL/pgSQL is pretty straight forward, especially if you have developed in other database
procedural languages, such as Oracle’s PL/SQL. Two good ways of developing in PL/pgSQL are:

 Using a text editor and reloading the file with psql

 Using PostgreSQL’s GUI Tool: pgaccess

Chapter 24. PL/pgSQL - SQL Procedural Language

287

 One good way to develop in PL/pgSQL is to simply use the text editor of your choice to create your
functions, and in another console, use psql (PostgreSQL’s interactive monitor) to load those functions.
If you are doing it this way (and if you are a PL/pgSQL novice or in debugging stage), it is a good idea
to always DROP your function before creating it. That way when you reload the file, it’ll drop your
functions and then re-create them. For example:

drop function testfunc(integer);
create function testfunc(integer) return integer as ’

end;
’ language ’plpgsql’;

 When you load the file for the first time, PostgreSQL will raise a warning saying this function doesn’t
exist and go on to create it. To load an SQL file (filename.sql) into a database named "dbname", use the
command:

psql -f filename.sql dbname

 Another good way to develop in PL/pgSQL is using PostgreSQL’s GUI tool: pgaccess. It does some
nice things for you, like escaping single-quotes, and making it easy to recreate and debug functions.

24.2. Description

24.2.1. Structure of PL/pgSQL

 PL/pgSQL is a block structured language. All keywords and identifiers can be used in mixed upper and
lower-case. A block is defined as:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
END;

 There can be any number of sub-blocks in the statement section of a block. Sub-blocks can be used to
hide variables from outside a block of statements.

 The variables declared in the declarations section preceding a block are initialized to their default
values every time the block is entered, not only once per function call. For example:

CREATE FUNCTION somefunc() RETURNS INTEGER AS ’
DECLARE
 quantity INTEGER := 30;
BEGIN

Chapter 24. PL/pgSQL - SQL Procedural Language

288

 RAISE NOTICE ’’Quantity here is %’’,quantity; -- Quantity here is 30
 quantity := 50;
 --
 -- Create a sub-block
 --
 DECLARE
 quantity INTEGER := 80;
 BEGIN
 RAISE NOTICE ’’Quantity here is %’’,quantity; -- Quantity here is 80
 END;

 RAISE NOTICE ’’Quantity here is %’’,quantity; -- Quantity here is 50
END;
’ LANGUAGE ’plpgsql’;

 It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the
database commands for transaction control. PL/pgSQL’s BEGIN/END are only for grouping; they do
not start or end a transaction. Functions and trigger procedures are always executed within a transaction
established by an outer query --- they cannot start or commit transactions, since Postgres does not have
nested transactions.

24.2.2. Comments

 There are two types of comments in PL/pgSQL. A double dash -- starts a comment that extends to the
end of the line. A /* starts a block comment that extends to the next occurrence of */. Block comments
cannot be nested, but double dash comments can be enclosed into a block comment and a double dash
can hide the block comment delimiters /* and */.

24.2.3. Variables and Constants

 All variables, rows and records used in a block or its sub-blocks must be declared in the declarations
section of a block. The exception being the loop variable of a FOR loop iterating over a range of integer
values.

 PL/pgSQL variables can have any SQL datatype, such as INTEGER, VARCHAR and CHAR. All variables
have as default value the SQL NULL value.

 Here are some examples of variable declarations:

user_id INTEGER;
quantity NUMBER(5);
url VARCHAR;

24.2.3.1. Constants and Variables With Default Values

 The declarations have the following syntax:

name [CONSTANT] type [NOT NULL] [{ DEFAULT | := } value];

Chapter 24. PL/pgSQL - SQL Procedural Language

289

 The value of variables declared as CONSTANT cannot be changed. If NOT NULL is specified, an
assignment of a NULL value results in a runtime error. Since the default value of all variables is the
SQL NULL value, all variables declared as NOT NULL must also have a default value specified.

 The default value is evaluated every time the function is called. So assigning ’now’ to a variable of type
timestamp causes the variable to have the time of the actual function call, not when the function was
precompiled into its bytecode.

 Examples:

quantity INTEGER := 32;
url varchar := ’’http://mysite.com’’;
user_id CONSTANT INTEGER := 10;

24.2.3.2. Variables Passed to Functions

 Variables passed to functions are named with the identifiers $1, $2, etc. (maximum is 16). Some
examples:

CREATE FUNCTION sales_tax(REAL) RETURNS REAL AS ’
DECLARE
 subtotal ALIAS FOR $1;
BEGIN
 return subtotal * 0.06;
END;
’ LANGUAGE ’plpgsql’;

CREATE FUNCTION instr(VARCHAR,INTEGER) RETURNS INTEGER AS ’
DECLARE
 v_string ALIAS FOR $1;
 index ALIAS FOR $2;
BEGIN
 -- Some computations here
END;
’ LANGUAGE ’plpgsql’;

24.2.3.3. Attributes

 Using the %TYPE and %ROWTYPE attributes, you can declare variables with the same datatype or
structure of another database item (e.g: a table field).

 %TYPE

 %TYPE provides the datatype of a variable or database column. You can use this to declare
variables that will hold database values. For example, let’s say you have a column named user_id
in your users table. To declare a variable with the same datatype as users you do:

Chapter 24. PL/pgSQL - SQL Procedural Language

290

user_id users.user_id%TYPE;

 By using %TYPE you don’t need to know the datatype of the structure you are referencing, and
most important, if the datatype of the referenced item changes in the future (e.g: you change your
table definition of user_id to become a REAL), you won’t need to change your function definition.

 name table%ROWTYPE;

 Declares a row with the structure of the given table. table must be an existing table or view
name of the database. The fields of the row are accessed in the dot notation. Parameters to a
function can be composite types (complete table rows). In that case, the corresponding identifier $n
will be a rowtype, but it must be aliased using the ALIAS command described above.

 Only the user attributes of a table row are accessible in the row, no OID or other system attributes
(because the row could be from a view). The fields of the rowtype inherit the table’s field sizes or
precision for char() etc. data types.

DECLARE
 users_rec users%ROWTYPE;
 user_id users%TYPE;
BEGIN
 user_id := users_rec.user_id;
 ...

create function cs_refresh_one_mv(integer) returns integer as ’
 DECLARE
 key ALIAS FOR $1;
 table_data cs_materialized_views%ROWTYPE;
 BEGIN
 SELECT INTO table_data * FROM cs_materialized_views
 WHERE sort_key=key;

 IF NOT FOUND THEN
 RAISE EXCEPTION ’’View ’’ || key || ’’ not found’’;
 RETURN 0;
 END IF;

 -- The mv_name column of cs_materialized_views stores view
 -- names.

 TRUNCATE TABLE table_data.mv_name;
 INSERT INTO table_data.mv_name || ’’ ’’ || table_data.mv_query;

 return 1;
end;
’ LANGUAGE ’plpgsql’;

24.2.3.4. RENAME

 Using RENAME you can change the name of a variable, record or row. This is useful if NEW or OLD
should be referenced by another name inside a trigger procedure.

Chapter 24. PL/pgSQL - SQL Procedural Language

291

 Syntax and examples:

RENAME oldname TO newname;

RENAME id TO user_id;
RENAME this_var TO that_var;

24.2.4. Expressions

 All expressions used in PL/pgSQL statements are processed using the backend’s executor. Expressions
that appear to contain constants may in fact require run-time evaluation (e.g. ’now’ for the timestamp
type) so it is impossible for the PL/pgSQL parser to identify real constant values other than the NULL
keyword. All expressions are evaluated internally by executing a query

SELECT expression

 using the SPI manager. In the expression, occurrences of variable identifiers are substituted by
parameters and the actual values from the variables are passed to the executor in the parameter array. All
expressions used in a PL/pgSQL function are only prepared and saved once. The only exception to this
rule is an EXECUTE statement if parsing of a query is needed each time it is encountered.

 The type checking done by the Postgres main parser has some side effects to the interpretation of
constant values. In detail there is a difference between what these two functions do:

CREATE FUNCTION logfunc1 (text) RETURNS timestamp AS ’
 DECLARE
 logtxt ALIAS FOR $1;
 BEGIN
 INSERT INTO logtable VALUES (logtxt, ’’now’’);
 RETURN ’’now’’;
 END;
’ LANGUAGE ’plpgsql’;

 and

CREATE FUNCTION logfunc2 (text) RETURNS timestamp AS ’
 DECLARE
 logtxt ALIAS FOR $1;
 curtime timestamp;
 BEGIN
 curtime := ’’now’’;
 INSERT INTO logtable VALUES (logtxt, curtime);
 RETURN curtime;
 END;
’ LANGUAGE ’plpgsql’;

 In the case of logfunc1(), the Postgres main parser knows when preparing the plan for the INSERT,
that the string ’now’ should be interpreted as timestamp because the target field of logtable is of that
type. Thus, it will make a constant from it at this time and this constant value is then used in all

Chapter 24. PL/pgSQL - SQL Procedural Language

292

invocations of logfunc1() during the lifetime of the backend. Needless to say that this isn’t what the
programmer wanted.

 In the case of logfunc2(), the Postgres main parser does not know what type ’now’ should become
and therefore it returns a data type of text containing the string ’now’. During the assignment to the
local variable curtime, the PL/pgSQL interpreter casts this string to the timestamp type by calling the
text_out() and timestamp_in() functions for the conversion.

 This type checking done by the Postgres main parser got implemented after PL/pgSQL was nearly
done. It is a difference between 6.3 and 6.4 and affects all functions using the prepared plan feature of
the SPI manager. Using a local variable in the above manner is currently the only way in PL/pgSQL to
get those values interpreted correctly.

 If record fields are used in expressions or statements, the data types of fields should not change between
calls of one and the same expression. Keep this in mind when writing trigger procedures that handle
events for more than one table.

24.2.5. Statements

 Anything not understood by the PL/pgSQL parser as specified below will be put into a query and sent
down to the database engine to execute. The resulting query should not return any data.

24.2.5.1. Assignment

 An assignment of a value to a variable or row/record field is written as:

identifier := expression;

 If the expressions result data type doesn’t match the variables data type, or the variable has a
size/precision that is known (as for char(20)), the result value will be implicitly casted by the
PL/pgSQL bytecode interpreter using the result types output- and the variables type input-functions.
Note that this could potentially result in runtime errors generated by the types input functions.

user_id := 20;
tax := subtotal * 0.06;

24.2.5.2. Calling another function

 All functions defined in a Postgres database return a value. Thus, the normal way to call a function is to
execute a SELECT query or doing an assignment (resulting in a PL/pgSQL internal SELECT).

 But there are cases where someone is not interested in the function’s result. In these cases, use the
PERFORM statement.

PERFORM query

 This executes a SELECT query over the SPI manager and discards the result. Identifiers like local
variables are still substituted into parameters.

PERFORM create_mv(’’cs_session_page_requests_mv’’,’’
 select session_id, page_id, count(*) as n_hits,
 sum(dwell_time) as dwell_time, count(dwell_time) as dwell_count
 from cs_fact_table

Chapter 24. PL/pgSQL - SQL Procedural Language

293

 group by session_id, page_id ’’);

24.2.5.3. Executing dynamic queries

 Often times you will want to generate dynamic queries inside your PL/pgSQL functions. Or you have
functions that will generate other functions. PL/pgSQL provides the EXECUTE statement for these
occasions.

EXECUTE query-string

 where query-string is a string of type text containing the query to be executed.

 When working with dynamic queries you will have to face escaping of single quotes in PL/pgSQL.
Please refer to the table available at the "Porting from Oracle PL/SQL" chapter for a detailed
explanation that will save you some effort.

 Unlike all other queries in PL/pgSQL, a query run by an EXECUTE statement is not prepared and
saved just once during the life of the server. Instead, the query is prepared each time the statement is
run. The query-string can be dynamically created within the procedure to perform actions on
variable tables and fields.

 The results from SELECT queries are discarded by EXECUTE, and SELECT INTO is not currently
supported within EXECUTE. So, the only way to extract a result from a dynamically-created SELECT
is to use the FOR ... EXECUTE form described later.

 An example:

EXECUTE ’’UPDATE tbl SET ’’
 || quote_ident(fieldname)
 || ’’ = ’’
 || quote_literal(newvalue)
 || ’’ WHERE ...’’;

 This example shows use of the functions quote_ident(TEXT) and quote_literal(TEXT). Variables
containing field and table identifiers should be passed to function quote_ident(). Variables
containing literal elements of the dynamic query string should be passed to quote_literal(). Both
take the appropriate steps to return the input text enclosed in single or double quotes and with any
embedded special characters.

 Here is a much larger example of a dynamic query and EXECUTE:

CREATE FUNCTION cs_update_referrer_type_proc() RETURNS INTEGER AS ’
DECLARE
 referrer_keys RECORD; -- Declare a generic record to be used in a FOR
 a_output varchar(4000);
BEGIN
 a_output := ’’CREATE FUNCTION
cs_find_referrer_type(varchar,varchar,varchar)
 RETURNS varchar AS ’’’’
 DECLARE
 v_host ALIAS FOR $1;
 v_domain ALIAS FOR $2;
 v_url ALIAS FOR $3; ’’;

Chapter 24. PL/pgSQL - SQL Procedural Language

294

 --
 -- Notice how we scan through the results of a query in a FOR loop
 -- using the FOR <record> construct.
 --

 FOR referrer_keys IN select * from cs_referrer_keys order by try_order
LOOP
 a_output := a_output || ’’ if v_’’ || referrer_keys.kind || ’’ like
’’’’’’’’’’
 || referrer_keys.key_string || ’’’’’’’’’’ then return ’’’’’’
 || referrer_keys.referrer_type || ’’’’’’; end if;’’;
 END LOOP;

 a_output := a_output || ’’ return null; end; ’’’’ language
’’’’plpgsql’’’’;’’;

 -- This works because we are not substituting any variables
 -- Otherwise it would fail. Look at PERFORM for another way to run
functions

 EXECUTE a_output;
end;
’ LANGUAGE ’plpgsql’;

24.2.5.4. Obtaining other results status

GET DIAGNOSTICS variable = item [, ...]

 This command allows retrieval of system status indicators. Each item is a keyword identifying a state
value to be assigned to the specified variable (which should be of the right datatype to receive it). The
currently available status items are ROW_COUNT, the number of rows processed by the last SQL query
sent down to the SQL engine; and RESULT_OID, the Oid of the last row inserted by the most recent SQL
query. Note that RESULT_OID is only useful after an INSERT query.

24.2.5.5. Returning from a function

RETURN expression

 The function terminates and the value of expression will be returned to the upper executor. The
return value of a function cannot be undefined. If control reaches the end of the top-level block of the
function without hitting a RETURN statement, a runtime error will occur.

 The expressions result will be automatically casted into the function’s return type as described for
assignments.

24.2.6. Control Structures

 Control structures are probably the most useful (and important) part of PL/SQL. With PL/pgSQL’s
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

Chapter 24. PL/pgSQL - SQL Procedural Language

295

24.2.6.1. Conditional Control: IF statements

 IF statements let you take action according to certain conditions. PL/pgSQL has three forms of IF:
IF-THEN, IF-THEN-ELSE, IF-THEN-ELSE IF. NOTE: All PL/pgSQL IF statements need a
corresponding END IF statement. In ELSE-IF statements you need two: one for the first IF and one for
the second (ELSE IF).

 IF-THEN

 IF-THEN statements is the simplest form of an IF. The statements between THEN and END IF
will be executed if the condition is true. Otherwise, the statements following END IF will be
executed.

IF v_user_id <> 0 THEN
 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

 IF-THEN-ELSE

 IF-THEN-ELSE statements adds to IF-THEN by letting you specify the statements that should be
executed if the condition evaluates to FALSE.

IF parentid IS NULL or parentid = ’’’’
THEN
 return fullname;
ELSE
 return hp_true_filename(parentid) || ’’/’’ || fullname;
END IF;

IF v_count > 0 THEN
 INSERT INTO users_count(count) VALUES(v_count);
 return ’’t’’;
ELSE
 return ’’f’’;
END IF;

 IF statements can be nested and in the following example:

IF demo_row.sex = ’’m’’ THEN
 pretty_sex := ’’man’’;
ELSE
 IF demo_row.sex = ’’f’’ THEN
 pretty_sex := ’’woman’’;
 END IF;
END IF;

Chapter 24. PL/pgSQL - SQL Procedural Language

296

 IF-THEN-ELSE IF

 When you use the "ELSE IF" statement, you are actually nesting an IF statement inside the ELSE
statement. Thus you need one END IF statement for each nested IF and one for the parent
IF-ELSE.

 For example:

IF demo_row.sex = ’’m’’ THEN
 pretty_sex := ’’man’’;
ELSE IF demo_row.sex = ’’f’’ THEN
 pretty_sex := ’’woman’’;
 END IF;
END IF;

24.2.6.2. Iterative Control: LOOP, WHILE, FOR and EXIT

 With the LOOP, WHILE, FOR and EXIT statements, you can control the flow of execution of your
PL/pgSQL program iteratively.

 LOOP

[<<label>>]
LOOP
 statements
END LOOP;

 An unconditional loop that must be terminated explicitly by an EXIT statement. The optional label
can be used by EXIT statements of nested loops to specify which level of nesting should be
terminated.

 EXIT

EXIT [label] [WHEN expression];

 If no label is given, the innermost loop is terminated and the statement following END LOOP is
executed next. If label is given, it must be the label of the current or an upper level of nested
loop blocks. Then the named loop or block is terminated and control continues with the statement
after the loops/blocks corresponding END.

 Examples:

LOOP
 -- some computations
 IF count > 0 THEN
 EXIT; -- exit loop
 END IF;
END LOOP;

Chapter 24. PL/pgSQL - SQL Procedural Language

297

LOOP
 -- some computations
 EXIT WHEN count > 0;
END LOOP;

BEGIN
 -- some computations
 IF stocks > 100000 THEN
 EXIT; -- illegal. Can’t use EXIT outside of a LOOP
 END IF;
END;

 WHILE

 With the WHILE statement, you can loop through a sequence of statements as long as the
evaluation of the condition expression is true.

[<<label>>]
WHILE expression LOOP
 statements
END LOOP;

 For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
 -- some computations here
END LOOP;

WHILE NOT boolean_expression LOOP
 -- some computations here
END LOOP;

 FOR

[<<label>>]
FOR name IN [REVERSE] expression .. expression LOOP
 statements
END LOOP;

 A loop that iterates over a range of integer values. The variable name is automatically created as
type integer and exists only inside the loop. The two expressions giving the lower and upper bound
of the range are evaluated only when entering the loop. The iteration step is always 1.

 Some examples of FOR loops (see Section 24.2.7 for iterating over records in FOR loops):

FOR i IN 1..10 LOOP
 -- some expressions here

 RAISE NOTICE ’i is %’,i;
END LOOP;

Chapter 24. PL/pgSQL - SQL Procedural Language

298

FOR i IN REVERSE 1..10 LOOP
 -- some expressions here
END LOOP;

24.2.7. Working with RECORDs

 Records are similar to rowtypes, but they have no predefined structure. They are used in selections and
FOR loops to hold one actual database row from a SELECT operation.

24.2.7.1. Declaration

 One variables of type RECORD can be used for different selections. Accessing a record or an attempt
to assign a value to a record field when there is no actual row in it results in a runtime error. They can be
declared like this:

name RECORD;

24.2.7.2. Assignments

 An assignment of a complete selection into a record or row can be done by:

SELECT INTO target expressions FROM ...;

 target can be a record, a row variable or a comma separated list of variables and record-/row-fields.
Note that this is quite different from Postgres’ normal interpretation of SELECT INTO, which is that the
INTO target is a newly created table. (If you want to create a table from a SELECT result inside a
PL/pgSQL function, use the equivalent syntax CREATE TABLE AS SELECT.)

 If a row or a variable list is used as target, the selected values must exactly match the structure of the
target(s) or a runtime error occurs. The FROM keyword can be followed by any valid qualification,
grouping, sorting etc. that can be given for a SELECT statement.

 Once a record or row has been assigned to a RECORD variable, you can use the "." (dot) notation to
access fields in that record:

DECLARE
 users_rec RECORD;
 full_name varchar;
BEGIN
 SELECT INTO users_rec * FROM users WHERE user_id=3;

 full_name := users_rec.first_name || ’’ ’’ || users_rec.last_name;

 There is a special variable named FOUND of type boolean that can be used immediately after a
SELECT INTO to check if an assignment had success.

Chapter 24. PL/pgSQL - SQL Procedural Language

299

SELECT INTO myrec * FROM EMP WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION ’’employee % not found’’, myname;
END IF;

 You can also use the IS NULL (or ISNULL) conditionals to test for NULLity of a RECORD/ROW. If
the selection returns multiple rows, only the first is moved into the target fields. All others are silently
discarded.

DECLARE
 users_rec RECORD;
 full_name varchar;
BEGIN
 SELECT INTO users_rec * FROM users WHERE user_id=3;

 IF users_rec.homepage IS NULL THEN
 -- user entered no homepage, return "http://"

 return ’’http://’’;
 END IF;
END;

24.2.7.3. Iterating Through Records

 Using a special type of FOR loop, you can iterate through the results of a query and manipulate that
data accordingly. The syntax is as follow:

[<<label>>]
FOR record | row IN select_clause LOOP
 statements
END LOOP;

 The record or row is assigned all the rows resulting from the select clause and the loop body executed
for each. Here is an example:

create function cs_refresh_mviews () returns integer as ’
DECLARE
 mviews RECORD;

 -- Instead, if you did:
 -- mviews cs_materialized_views%ROWTYPE;
 -- this record would ONLY be usable for the cs_materialized_views table

BEGIN
 PERFORM cs_log(’’Refreshing materialized views...’’);

 FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

 -- Now "mviews" has one record from cs_materialized_views

Chapter 24. PL/pgSQL - SQL Procedural Language

300

 PERFORM cs_log(’’Refreshing materialized view ’’
 || mview.mv_name || ’’...’’);
 TRUNCATE TABLE mview.mv_name;
 INSERT INTO mview.mv_name || ’’ ’’ || mview.mv_query;
 END LOOP;

 PERFORM cs_log(’’Done refreshing materialized views.’’);
 return 1;
end;
’ language ’plpgsql’;

 If the loop is terminated with an EXIT statement, the last assigned row is still accessible after the loop.

 The FOR-IN EXECUTE statement is another way to iterate over records:

[<<label>>]
FOR record | row IN EXECUTE text_expression LOOP
 statements
END LOOP;

 This is like the previous form, except that the source SELECT statement is specified as a string
expression, which is evaluated and re-planned on each entry to the FOR loop. This allows the
programmer to choose the speed of a pre-planned query or the flexibility of a dynamic query, just as
with a plain EXECUTE statement.

24.2.8. Aborting and Messages

 Use the RAISE statement to throw messages into the Postgres elog mechanism.

RAISE level ’format’ [, identifier [...]];

 Inside the format, % is used as a placeholder for the subsequent comma-separated identifiers. Possible
levels are DEBUG (silently suppressed in production running databases), NOTICE (written into the
database log and forwarded to the client application) and EXCEPTION (written into the database log
and aborting the transaction).

RAISE NOTICE ’’Id number ’’ || key || ’’ not found!’’;
RAISE NOTICE ’’Calling cs_create_job(%)’’,v_job_id;

 In this last example, v_job_id will replace the % in the string.

RAISE EXCEPTION ’’Inexistent ID --> %’’,user_id;

 This will abort the transaction and write to the database log.

24.2.9. Exceptions

 Postgres does not have a very smart exception handling model. Whenever the parser, planner/optimizer
or executor decide that a statement cannot be processed any longer, the whole transaction gets aborted
and the system jumps back into the main loop to get the next query from the client application.

 It is possible to hook into the error mechanism to notice that this happens. But currently it is impossible
to tell what really caused the abort (input/output conversion error, floating point error, parse error). And

Chapter 24. PL/pgSQL - SQL Procedural Language

301

it is possible that the database backend is in an inconsistent state at this point so returning to the upper
executor or issuing more commands might corrupt the whole database. And even if, at this point the
information, that the transaction is aborted, is already sent to the client application, so resuming
operation does not make any sense.

 Thus, the only thing PL/pgSQL currently does when it encounters an abort during execution of a
function or trigger procedure is to write some additional DEBUG level log messages telling in which
function and where (line number and type of statement) this happened.

24.3. Trigger Procedures
 PL/pgSQL can be used to define trigger procedures. They are created with the usual CREATE
FUNCTION command as a function with no arguments and a return type of OPAQUE.

 There are some Postgres specific details in functions used as trigger procedures.

 First they have some special variables created automatically in the top-level blocks declaration section.
They are

NEW

 Data type RECORD; variable holding the new database row on INSERT/UPDATE operations on
ROW level triggers.

OLD

 Data type RECORD; variable holding the old database row on UPDATE/DELETE operations on
ROW level triggers.

TG_NAME

 Data type name; variable that contains the name of the trigger actually fired.

TG_WHEN

 Data type text; a string of either BEFORE or AFTER depending on the triggers definition.

TG_LEVEL

 Data type text; a string of either ROW or STATEMENT depending on the triggers definition.

TG_OP

 Data type text; a string of INSERT, UPDATE or DELETE telling for which operation the trigger is
actually fired.

TG_RELID

 Data type oid; the object ID of the table that caused the trigger invocation.

TG_RELNAME

 Data type name; the name of the table that caused the trigger invocation.

Chapter 24. PL/pgSQL - SQL Procedural Language

302

TG_NARGS

 Data type integer; the number of arguments given to the trigger procedure in the CREATE
TRIGGER statement.

TG_ARGV[]

 Data type array of text; the arguments from the CREATE TRIGGER statement. The index
counts from 0 and can be given as an expression. Invalid indices (< 0 or >= tg_nargs) result in a
NULL value.

 Second they must return either NULL or a record/row containing exactly the structure of the table the
trigger was fired for. Triggers fired AFTER might always return a NULL value with no effect. Triggers
fired BEFORE signal the trigger manager to skip the operation for this actual row when returning
NULL. Otherwise, the returned record/row replaces the inserted/updated row in the operation. It is
possible to replace single values directly in NEW and return that or to build a complete new record/row
to return.

Example 24-1. A PL/pgSQL Trigger Procedure Example

 This trigger ensures, that any time a row is inserted or updated in the table, the current user name and
time are stamped into the row. And it ensures that an employees name is given and that the salary is a
positive value.
CREATE TABLE emp (
 empname text,
 salary integer,
 last_date timestamp,
 last_user text
);

CREATE FUNCTION emp_stamp () RETURNS OPAQUE AS ’
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname ISNULL THEN
 RAISE EXCEPTION ’’empname cannot be NULL value’’;
 END IF;
 IF NEW.salary ISNULL THEN
 RAISE EXCEPTION ’’% cannot have NULL salary’’, NEW.empname;
 END IF;

 -- Who works for us when she must pay for?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION ’’% cannot have a negative salary’’, NEW.empname;
 END IF;

 -- Remember who changed the payroll when
 NEW.last_date := ’’now’’;
 NEW.last_user := current_user;
 RETURN NEW;
 END;
’ LANGUAGE ’plpgsql’;

Chapter 24. PL/pgSQL - SQL Procedural Language

303

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

24.4. Examples
 Here are only a few functions to demonstrate how easy it is to write PL/pgSQL functions. For more
complex examples the programmer might look at the regression test for PL/pgSQL.

 One painful detail in writing functions in PL/pgSQL is the handling of single quotes. The function’s
source text on CREATE FUNCTION must be a literal string. Single quotes inside of literal strings
must be either doubled or quoted with a backslash. We are still looking for an elegant alternative. In the
meantime, doubling the single quotes as in the examples below should be used. Any solution for this in
future versions of Postgres will be forward compatible.

 For a detailed explanation and examples of how to escape single quotes in different situations, please
see Section 24.5.1.1.

Example 24-2. A Simple PL/pgSQL Function to Increment an Integer

 The following two PL/pgSQL functions are identical to their counterparts from the C language function
discussion. This function receives an integer and increments it by one, returning the incremented
value.

CREATE FUNCTION add_one (integer) RETURNS integer AS ’
 BEGIN
 RETURN $1 + 1;
 END;
’ LANGUAGE ’plpgsql’;

Example 24-3. A Simple PL/pgSQL Function to Concatenate Text

 This function receives two text parameters and returns the result of concatenating them.

CREATE FUNCTION concat_text (text, text) RETURNS text AS ’
 BEGIN
 RETURN $1 || $2;
 END;
’ LANGUAGE ’plpgsql’;

Example 24-4. A PL/pgSQL Function on Composite Type

 In this example, we take EMP (a table) and an integer as arguments to our function, which returns a
boolean. If the "salary" field of the EMP table is NULL, we return "f". Otherwise we compare with that
field with the integer passed to the function and return the boolean result of the comparison (t or f).
This is the PL/pgSQL equivalent to the example from the C functions.

CREATE FUNCTION c_overpaid (EMP, integer) RETURNS boolean AS ’
 DECLARE
 emprec ALIAS FOR $1;
 sallim ALIAS FOR $2;
 BEGIN
 IF emprec.salary ISNULL THEN
 RETURN ’’f’’;

Chapter 24. PL/pgSQL - SQL Procedural Language

304

 END IF;
 RETURN emprec.salary > sallim;
 END;
’ LANGUAGE ’plpgsql’;

24.5. Porting from Oracle PL/SQL
Author: Roberto Mello (<rmello@fslc.usu.edu>)

 This section explains differences between Oracle’s PL/SQL and PostgreSQL’s PL/pgSQL languages in
the hopes of helping developers port applications from Oracle to PostgreSQL. Most of the code here is
from the ArsDigita (http://www.arsdigita.com) Clickstream module
(http://www.arsdigita.com/asj/clickstream) that I ported to PostgreSQL when I took an internship with
OpenForce Inc. (http://www.openforce.net) in the Summer of 2000.

 PL/pgSQL is similar to PL/SQL in many aspects. It is a block structured, imperative language (all
variables have to be declared). PL/SQL has many more features than its PostgreSQL counterpart, but
PL/pgSQL allows for a great deal of functionality and it is being improved constantly.

24.5.1. Main Differences

 Some things you should keep in mind when porting from Oracle to PostgreSQL:

 No default parameters in PostgreSQL.

 You can overload functions in PostgreSQL. This is often used to work around the lack of default
parameters.

 Assignments, loops and conditionals are similar.

 No need for cursors in PostgreSQL, just put the query in the FOR statement (see example below)

 In PostgreSQL you need to escape single quotes. See Section 24.5.1.1.

24.5.1.1. Quote Me on That: Escaping Single Quotes

 In PostgreSQL you need to escape single quotes inside your function definition. This can lead to quite
amusing code at times, especially if you are creating a function that generates other function(s), as in
Example 24-6. One thing to keep in mind when escaping lots of single quotes is that, except for the
beginning/ending quotes, all the others will come in even quantity.

 Table 24-1 gives the scoop. (You’ll love this little chart.)

Table 24-1. Single Quotes Escaping Chart

No. of Quotes Usage Example Result

1 To begin/terminate
function bodies

CREATE FUNCTION foo()
RETURNS INTEGER AS ’...’
LANGUAGE ’plpgsql’;

as is

Chapter 24. PL/pgSQL - SQL Procedural Language

305

No. of Quotes Usage Example Result

2 In assignments,
SELECTs, to
delimit strings,
etc.

a_output := ’’Blah’’;
SELECT * FROM users WHERE
f_name=’’foobar’’;

SELECT * FROM users

WHERE

f_name=’foobar’;

4 When you need
two single quotes
in your resulting
string without
terminating that
string.

a_output := a_output || ’’
AND name
 LIKE ’’’’foobar’’’’
AND ...’’

AND name LIKE

’foobar’ AND ...

6 When you want
double quotes in
your resulting
string and
terminate that
string.

a_output := a_output || ’’
AND name
 LIKE ’’’’foobar’’’’’’

 AND name LIKE
’foobar’

10 When you want
two single quotes
in the resulting
string (which
accounts for 8
quotes) and
terminate that
string (2 more).
You will probably
only need that if
you were using a
function to
generate other
functions (like in
Example 24-6).

a_output := a_output || ’’
if v_’’ ||
 referrer_keys.kind ||
’’ like ’’’’’’’’’’
 ||
referrer_keys.key_string
|| ’’’’’’’’’’
 then return ’’’’’’ ||
referrer_keys.referrer_ty-
pe
 || ’’’’’’; end if;’’;

 if v_<...> like
’’<...>’’ then

return ’’<...>’’;

end if;

24.5.2. Porting Functions

Example 24-5. A Simple Function

 Here is an Oracle function:
CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name IN varchar,
v_version IN varchar)
RETURN varchar IS
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || ’/’ || v_version;
END;
/
SHOW ERRORS;

Chapter 24. PL/pgSQL - SQL Procedural Language

306

 Let’s go through this function and see the differences to PL/pgSQL:

 The OR REPLACE clause is not allowed. You will have to explicitly drop the function before creating
it to achieve similar results.

 PostgreSQL does not have named parameters. You have to explicitly alias them inside your function.

 Oracle can have IN, OUT, and INOUT parameters passed to functions. The INOUT, for example, means
that the parameter will receive a value and return another. PostgreSQL only has �IN� parameters and
functions can return only a single value.

 The RETURN key word in the function prototype (not the function body) becomes RETURNS in
PostgreSQL.

 On PostgreSQL functions are created using single quotes as delimiters, so you have to escape single
quotes inside your functions (which can be quite annoying at times; see Section 24.5.1.1).

 The /show errors command does not exist in PostgreSQL.

 So let’s see how this function would be look like ported to PostgreSQL:
DROP FUNCTION cs_fmt_browser_version(varchar, varchar);
CREATE FUNCTION cs_fmt_browser_version(varchar, varchar)
RETRUNS varchar AS ’
DECLARE
 v_name ALIAS FOR $1;
 v_version ALIAS FOR $2;
BEGIN
 IF v_version IS NULL THEN
 return v_name;
 END IF;
 RETURN v_name || ’’/’’ || v_version;
END;
’ LANGUAGE ’plpgsql’;

Example 24-6. A Function that Creates Another Function

 The following procedure grabs rows from a SELECT statement and builds a large function with the
results in IF statements, for the sake of efficiency. Notice particularly the differences in cursors, FOR
loops, and the need to escape single quotes in PostgreSQL.
create or replace procedure cs_update_referrer_type_proc is
 cursor referrer_keys is
 select * from cs_referrer_keys
 order by try_order;

 a_output varchar(4000);
begin
 a_output := ’create or replace function cs_find_referrer_type(v_host IN
varchar, v_domain IN varchar,
v_url IN varchar) return varchar is begin’;

 for referrer_key in referrer_keys loop

Chapter 24. PL/pgSQL - SQL Procedural Language

307

 a_output := a_output || ’ if v_’ || referrer_key.kind || ’ like ’’’
||
referrer_key.key_string || ’’’ then return ’’’ || referrer_key.referrer_type
||
’’’; end if;’;
 end loop;

 a_output := a_output || ’ return null; end;’;
 execute immediate a_output;
end;
/
show errors

 Here is how this function would end up in PostgreSQL:
CREATE FUNCTION cs_update_referrer_type_proc() RETURNS integer AS ’
DECLARE
 referrer_keys RECORD; -- Declare a generic record to be used in a FOR
 a_output varchar(4000);
BEGIN
 a_output := ’’CREATE FUNCTION
cs_find_referrer_type(varchar,varchar,varchar)
 RETURNS varchar AS ’’’’
 DECLARE
 v_host ALIAS FOR $1;
 v_domain ALIAS FOR $2;
 v_url ALIAS FOR $3; ’’;

 --
 -- Notice how we scan through the results of a query in a FOR loop
 -- using the FOR <record> construct.
 --

 FOR referrer_keys IN select * from cs_referrer_keys order by try_order
LOOP
 a_output := a_output || ’’ if v_’’ || referrer_keys.kind || ’’ like
’’’’’’’’’’
 || referrer_keys.key_string || ’’’’’’’’’’ then return ’’’’’’
 || referrer_keys.referrer_type || ’’’’’’; end if;’’;
 END LOOP;

 a_output := a_output || ’’ return null; end; ’’’’ language
’’’’plpgsql’’’’;’’;

 -- This works because we are not substituting any variables
 -- Otherwise it would fail. Look at PERFORM for another way to run
functions

 EXECUTE a_output;
end;
’ LANGUAGE ’plpgsql’;

Chapter 24. PL/pgSQL - SQL Procedural Language

308

Example 24-7. A Procedure with a lot of String Manipulation and OUT Parameters

 The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host, path
and query). It is an procedure because in PL/pgSQL functions only one value can be returned (see
Section 24.5.3). In PostgreSQL, one way to work around this is to split the procedure in three different
functions: one to return the host, another for the path and another for the query.

create or replace procedure cs_parse_url(
 v_url IN varchar,
 v_host OUT varchar, -- This will be passed back
 v_path OUT varchar, -- This one too
 v_query OUT varchar) -- And this one
is
 a_pos1 integer;
 a_pos2 integer;
begin
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, ’//’); -- PostgreSQL doesn’t have an instr
function

 if a_pos1 = 0 then
 return;
 end if;
 a_pos2 := instr(v_url, ’/’, a_pos1 + 2);
 if a_pos2 = 0 then
 v_host := substr(v_url, a_pos1 + 2);
 v_path := ’/’;
 return;
 end if;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, ’?’, a_pos2 + 1);

 if a_pos1 = 0 then
 v_path := substr(v_url, a_pos2);
 return;
 end if;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
end;
/
show errors;

 Here is how this procedure could be translated for PostgreSQL:
drop function cs_parse_url_host(varchar);
create function cs_parse_url_host(varchar) returns varchar as ’
declare
 v_url ALIAS FOR $1;
 v_host varchar;
 v_path varchar;

Chapter 24. PL/pgSQL - SQL Procedural Language

309

 a_pos1 integer;
 a_pos2 integer;
 a_pos3 integer;
begin
 v_host := NULL;
 a_pos1 := instr(v_url,’’//’’);

 if a_pos1 = 0 then
 return ’’’’; -- Return a blank
 end if;

 a_pos2 := instr(v_url,’’/’’,a_pos1 + 2);
 if a_pos2 = 0 then
 v_host := substr(v_url, a_pos1 + 2);
 v_path := ’’/’’;
 return v_host;
 end if;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 return v_host;
end;
’ language ’plpgsql’;

Note: PostgreSQL does not have an instr function, so you can work around it using a combination
of other functions. I got tired of doing this and created my own instr functions that behave exactly
like Oracle’s (it makes life easier). See the Section 24.5.6 for the code.

24.5.3. Procedures

 Oracle procedures give a little more flexibility to the developer because nothing needs to be explicitly
returned, but it can be through the use of INOUT or OUT parameters.

 An example:

create or replace procedure cs_create_job(v_job_id in integer)
is
 a_running_job_count integer;
 pragma autonomous_transaction;

begin
 lock table cs_jobs in exclusive mode;

 select count(*) into a_running_job_count from cs_jobs
 where end_stamp is null;

 if a_running_job_count > 0 then
 commit; -- free lock

 raise_application_error(-20000, ’Unable to create a new job: a job is
currently running.’);
 end if;

 delete from cs_active_job;
 insert into cs_active_job(job_id) values(v_job_id);

Chapter 24. PL/pgSQL - SQL Procedural Language

310

 begin
 insert into cs_jobs(job_id, start_stamp) values(v_job_id, sysdate);
 exception when dup_val_on_index then null; -- don’t worry if it
already exists

 end;
 commit;
end;
/
show errors

 Procedures like this can be easily converted into PostgreSQL functions returning an INTEGER. This
procedure in particular is interesting because it can teach us some things:

 There is no pragma statement in PostgreSQL.

 If you do a LOCK TABLE in PL/pgSQL, the lock will not be released until the calling transaction is
finished.

 You also cannot have transactions in PL/pgSQL procedures. The entire function (and other
functions called from therein) is executed in a transaction and PostgreSQL rolls back the results if
something goes wrong. Therefore only one BEGIN statement is allowed.

 The exception when would have to be replaced by an IF statement.

 So let’s see one of the ways we could port this procedure to PL/pgSQL:

drop function cs_create_job(integer);
create function cs_create_job(integer) returns integer as ’ declare
 v_job_id alias for $1;
 a_running_job_count integer;
 a_num integer;
 -- pragma autonomous_transaction;
begin
 lock table cs_jobs in exclusive mode;
 select count(*) into a_running_job_count from cs_jobs where end_stamp is
null;

 if a_running_job_count > 0 then
 -- commit; -- free lock
 raise exception ’’Unable to create a new job: a job is currently
running.’’;
 end if;

 delete from cs_active_job;
 insert into cs_active_job(job_id) values(v_job_id);

 SELECT count(*) into a_num FROM cs_jobs WHERE job_id=v_job_id;
 IF NOT FOUND THEN -- If nothing was returned in the last query
 -- This job is not in the table so lets insert it.
 insert into cs_jobs(job_id, start_stamp) values(v_job_id, sysdate());
 return 1;

Chapter 24. PL/pgSQL - SQL Procedural Language

311

 ELSE
 raise NOTICE ’’Job already running.’’;

 END IF;

 return 0;
end;
’ language ’plpgsql’;

 Notice how you can raise notices (or errors) in PL/pgSQL.

24.5.4. Packages

Note: I haven’t done much with packages myself, so if there are mistakes here, please let me know.

 Packages are a way Oracle gives you to encapsulate PL/SQL statements and functions into one entity,
like Java classes, where you define methods and objects. You can access these objects/methods with a .�
(dot). Here is an example of an Oracle package from ACS 4 (the ArsDigita Community System
(http://www.arsdigita.com/doc/)):

create or replace package body acs
as
 function add_user (
 user_id in users.user_id%TYPE default null,
 object_type in acs_objects.object_type%TYPE
 default ’user’,
 creation_date in acs_objects.creation_date%TYPE
 default sysdate,
 creation_user in acs_objects.creation_user%TYPE
 default null,
 creation_ip in acs_objects.creation_ip%TYPE default null,
 ...
) return users.user_id%TYPE
 is
 v_user_id users.user_id%TYPE;
 v_rel_id membership_rels.rel_id%TYPE;
 begin
 v_user_id := acs_user.new (user_id, object_type, creation_date,
 creation_user, creation_ip, email,
 ...
 return v_user_id;
 end;
end acs;
/
show errors

Chapter 24. PL/pgSQL - SQL Procedural Language

312

 We port this to PostgreSQL by creating the different objects of the Oracle package as functions with a
standard naming convention. We have to pay attention to some other details, like the lack of default
parameters in PostgreSQL functions. The above package would become something like this:

CREATE FUNCTION
acs__add_user(integer,integer,varchar,datetime,integer,integer,...)
RETURNS integer AS ’
DECLARE
 user_id ALIAS FOR $1;
 object_type ALIAS FOR $2;
 creation_date ALIAS FOR $3;
 creation_user ALIAS FOR $4;
 creation_ip ALIAS FOR $5;
 ...
 v_user_id users.user_id%TYPE;
 v_rel_id membership_rels.rel_id%TYPE;
BEGIN
 v_user_id :=
acs_user__new(user_id,object_type,creation_date,creation_user,creation_ip,
...);
 ...

 return v_user_id;
END;
’ LANGUAGE ’plpgsql’;

24.5.5. Other Things to Watch For

24.5.5.1. EXECUTE

 The PostgreSQL version of EXECUTE works nicely, but you have to remember to use
quote_literal(TEXT) and quote_string(TEXT) as described in Section 24.2.5.3. Constructs of
the type EXECUTE ’’SELECT * from $1’’; will not work unless you use these functions.

24.5.5.2. Optimizing PL/pgSQL Functions

 PostgreSQL gives you two function creation modifiers to optimize execution: iscachable (function
always returns the same result when given the same arguments) and isstrict (function returns NULL
if any argument is NULL). Consult the CREATE FUNCTION reference for details.

 To make use of these optimization attributes, you have to use the WITH modifier in your CREATE
FUNCTION statement. Something like:

CREATE FUNCTION foo(...) RETURNS integer AS ’
...
’ LANGUAGE ’plpgsql’
WITH (isstrict, iscachable);

Chapter 24. PL/pgSQL - SQL Procedural Language

313

24.5.6. Appendix

24.5.6.1. Code for my instr functions

* This function should probably be integrated into the core.

--
-- instr functions that mimic Oracle’s counterpart
-- Syntax: instr(string1,string2,[n],[m]) where [] denotes optional params.
--
-- Searches string1 beginning at the nth character for the mth
-- occurrence of string2. If n is negative, search backwards. If m is
-- not passed, assume 1 (search starts at first character).
--
-- by Roberto Mello (rmello@fslc.usu.edu)
-- modified by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.
--

DROP FUNCTION instr(varchar,varchar);
CREATE FUNCTION instr(varchar,varchar) RETURNS integer AS ’
DECLARE
 pos integer;
BEGIN
 pos:= instr($1,$2,1);
 RETURN pos;
END;
’ language ’plpgsql’;

DROP FUNCTION instr(varchar,varchar,integer);
CREATE FUNCTION instr(varchar,varchar,integer) RETURNS integer AS ’
DECLARE
 string ALIAS FOR $1;
 string_to_search ALIAS FOR $2;
 beg_index ALIAS FOR $3;
 pos integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 length integer;
 ss_length integer;
BEGIN
 IF beg_index > 0 THEN

 temp_str := substring(string FROM beg_index);
 pos := position(string_to_search IN temp_str);

 IF pos = 0 THEN
 RETURN 0;
 ELSE
 RETURN pos + beg_index - 1;

Chapter 24. PL/pgSQL - SQL Procedural Language

314

 END IF;
 ELSE
 ss_length := char_length(string_to_search);
 length := char_length(string);
 beg := length + beg_index - ss_length + 2;

 WHILE beg > 0 LOOP

 temp_str := substring(string FROM beg FOR ss_length);
 pos := position(string_to_search IN temp_str);

 IF pos > 0 THEN
 RETURN beg;
 END IF;

 beg := beg - 1;
 END LOOP;
 RETURN 0;
 END IF;
END;
’ language ’plpgsql’;

--
-- Written by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.
--
DROP FUNCTION instr(varchar,varchar,integer,integer);
CREATE FUNCTION instr(varchar,varchar,integer,integer) RETURNS integer AS ’
DECLARE
 string ALIAS FOR $1;
 string_to_search ALIAS FOR $2;
 beg_index ALIAS FOR $3;
 occur_index ALIAS FOR $4;
 pos integer NOT NULL DEFAULT 0;
 occur_number integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 i integer;
 length integer;
 ss_length integer;
BEGIN
 IF beg_index > 0 THEN
 beg := beg_index;
 temp_str := substring(string FROM beg_index);

 FOR i IN 1..occur_index LOOP
 pos := position(string_to_search IN temp_str);

 IF i = 1 THEN
 beg := beg + pos - 1;
 ELSE
 beg := beg + pos;
 END IF;

Chapter 24. PL/pgSQL - SQL Procedural Language

315

 temp_str := substring(string FROM beg + 1);
 END LOOP;

 IF pos = 0 THEN
 RETURN 0;
 ELSE
 RETURN beg;
 END IF;
 ELSE
 ss_length := char_length(string_to_search);
 length := char_length(string);
 beg := length + beg_index - ss_length + 2;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 pos := position(string_to_search IN temp_str);

 IF pos > 0 THEN
 occur_number := occur_number + 1;

 IF occur_number = occur_index THEN
 RETURN beg;
 END IF;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 END IF;
END;
’ language ’plpgsql’;

316

Chapter 25. PL/Tcl - TCL Procedural Language
 PL/Tcl is a loadable procedural language for the Postgres database system that enables the Tcl language
to be used to create functions and trigger procedures.

 This package was originally written by Jan Wieck.

25.1. Overview
 PL/Tcl offers most of the capabilities a function writer has in the C language, except for some
restrictions.

 The good restriction is that everything is executed in a safe Tcl interpreter. In addition to the limited
command set of safe Tcl, only a few commands are available to access the database via SPI and to raise
messages via elog(). There is no way to access internals of the database backend or to gain OS-level
access under the permissions of the Postgres user ID, as a C function can do. Thus, any unprivileged
database user may be permitted to use this language.

 The other, implementation restriction is that Tcl procedures cannot be used to create input/output
functions for new data types.

 Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl --- for example, one
might want a Tcl function that sends mail. To handle these cases, there is a variant of PL/Tcl called
PL/TclU (for untrusted Tcl). This is the exact same language except that a full Tcl interpreter is used. If
PL/TclU is used, it must be installed as an untrusted procedural language so that only database
superusers can create functions in it. The writer of a PL/TclU function must take care that the function
cannot be used to do anything unwanted, since it will be able to do anything that could be done by a user
logged in as the database administrator.

 The shared object for the PL/Tcl and PL/TclU call handlers is automatically built and installed in the
Postgres library directory if Tcl/Tk support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, use the createlang script.

25.2. Description

25.2.1. Postgres Functions and Tcl Procedure Names

 In Postgres, one and the same function name can be used for different functions as long as the number
of arguments or their types differ. This would collide with Tcl procedure names. To offer the same
flexibility in PL/Tcl, the internal Tcl procedure names contain the object ID of the procedure’s pg_proc
row as part of their name. Thus, different argtype versions of the same Postgres function are different for
Tcl too.

25.2.2. Defining Functions in PL/Tcl

 To create a function in the PL/Tcl language, use the standard syntax

CREATE FUNCTION funcname (argument-types) RETURNS return-type AS ’

Chapter 25. PL/Tcl - TCL Procedural Language

317

 # PL/Tcl function body
’ LANGUAGE ’pltcl’;

 When the function is called, the arguments are given as variables $1 ... $n to the Tcl procedure body.
For example, a function returning the higher of two int4 values could be defined as:

CREATE FUNCTION tcl_max (int4, int4) RETURNS int4 AS ’
 if {$1 > $2} {return $1}
 return $2
’ LANGUAGE ’pltcl’;

 Composite type arguments are given to the procedure as Tcl arrays. The element names in the array are
the attribute names of the composite type. If an attribute in the actual row has the NULL value, it will
not appear in the array! Here is an example that defines the overpaid_2 function (as found in the older
Postgres documentation) in PL/Tcl

CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS ’
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
’ LANGUAGE ’pltcl’;

25.2.3. Global Data in PL/Tcl

 Sometimes (especially when using the SPI functions described later) it is useful to have some global
status data that is held between two calls to a procedure. This is easily done since all PL/Tcl procedures
executed in one backend share the same safe Tcl interpreter.

 To help protect PL/Tcl procedures from unwanted side effects, an array is made available to each
procedure via the upvar command. The global name of this variable is the procedure’s internal name and
the local name is GD. It is recommended that GD be used for private status data of a procedure. Use
regular Tcl global variables only for values that you specifically intend to be shared among multiple
procedures.

25.2.4. Trigger Procedures in PL/Tcl

 Trigger procedures are defined in Postgres as functions without arguments and a return type of opaque.
And so are they in the PL/Tcl language.

 The information from the trigger manager is given to the procedure body in the following variables:

$TG_name

 The name of the trigger from the CREATE TRIGGER statement.

Chapter 25. PL/Tcl - TCL Procedural Language

318

$TG_relid

 The object ID of the table that caused the trigger procedure to be invoked.

$TG_relatts

 A Tcl list of the tables field names prefixed with an empty list element. So looking up an element
name in the list with the lsearch Tcl command returns the same positive number starting from 1 as
the fields are numbered in the pg_attribute system catalog.

$TG_when

 The string BEFORE or AFTER depending on the event of the trigger call.

$TG_level

 The string ROW or STATEMENT depending on the event of the trigger call.

$TG_op

 The string INSERT, UPDATE or DELETE depending on the event of the trigger call.

$NEW

 An array containing the values of the new table row on INSERT/UPDATE actions, or empty on
DELETE.

$OLD

 An array containing the values of the old table row on UPDATE/DELETE actions, or empty on
INSERT.

$GD

 The global status data array as described above.

$args

 A Tcl list of the arguments to the procedure as given in the CREATE TRIGGER statement. The
arguments are also accessible as $1 ... $n in the procedure body.

 The return value from a trigger procedure is one of the strings OK or SKIP, or a list as returned by the
’array get’ Tcl command. If the return value is OK, the normal operation (INSERT/UPDATE/DELETE)
that fired this trigger will take place. Obviously, SKIP tells the trigger manager to silently suppress the
operation. The list from ’array get’ tells PL/Tcl to return a modified row to the trigger manager that will
be inserted instead of the one given in $NEW (INSERT/UPDATE only). Needless to say that all this is
only meaningful when the trigger is BEFORE and FOR EACH ROW.

 Here’s a little example trigger procedure that forces an integer value in a table to keep track of the
number of updates that are performed on the row. For new rows inserted, the value is initialized to 0 and
then incremented on every update operation:

CREATE FUNCTION trigfunc_modcount() RETURNS OPAQUE AS ’
 switch $TG_op {

Chapter 25. PL/Tcl - TCL Procedural Language

319

 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
’ LANGUAGE ’pltcl’;

CREATE TABLE mytab (num int4, modcnt int4, description text);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
 FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount(’modcnt’);

25.2.5. Database Access from PL/Tcl

 The following commands are available to access the database from the body of a PL/Tcl procedure:

elog level msg

 Fire a log message. Possible levels are NOTICE, ERROR, FATAL, DEBUG and NOIND as for
the elog C function.

quote string

 Duplicates all occurrences of single quote and backslash characters. It should be used when
variables are used in the query string given to spi_exec or spi_prepare (not for the value list on
spi_execp). Think about a query string like

"SELECT ’$val’ AS ret"

 where the Tcl variable val actually contains "doesn’t". This would result in the final query string

"SELECT ’doesn’t’ AS ret"

 which would cause a parse error during spi_exec or spi_prepare. It should contain

"SELECT ’doesn’’t’ AS ret"

 and has to be written as

"SELECT ’[quote $val]’ AS ret"

Chapter 25. PL/Tcl - TCL Procedural Language

320

spi_exec ?-count n? ?-array name? query ?loop-body?

 Call parser/planner/optimizer/executor for query. The optional -count value tells spi_exec the
maximum number of rows to be processed by the query.

 If the query is a SELECT statement and the optional loop-body (a body of Tcl commands like in a
foreach statement) is given, it is evaluated for each row selected and behaves like expected on
continue/break. The values of selected fields are put into variables named as the column names. So
a

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

 will set the variable $cnt to the number of rows in the pg_proc system catalog. If the option -array
is given, the column values are stored in the associative array named ’name’ indexed by the column
name instead of individual variables.

spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
}

 will print a DEBUG log message for every row of pg_class. The return value of spi_exec is the
number of rows affected by the query as found in the global variable SPI_processed.

spi_prepare query typelist

 Prepares AND SAVES a query plan for later execution. It is a bit different from the C level
SPI_prepare in that the plan is automatically copied to the toplevel memory context. Thus, there is
currently no way of preparing a plan without saving it.

 If the query references arguments, the type names must be given as a Tcl list. The return value
from spi_prepare is a query ID to be used in subsequent calls to spi_execp. See spi_execp for a
sample.

spi_exec ?-count n? ?-arrayname? ?-nullsstring? queryid ?value-list? ?loop-body?

 Execute a prepared plan from spi_prepare with variable substitution. The optional -count value
tells spi_execp the maximum number of rows to be processed by the query.

 The optional value for -nulls is a string of spaces and ’n’ characters telling spi_execp which of the
values are NULL’s. If given, it must have exactly the length of the number of values.

 The queryid is the ID returned by the spi_prepare call.

 If there was a typelist given to spi_prepare, a Tcl list of values of exactly the same length must be
given to spi_execp after the query. If the type list on spi_prepare was empty, this argument must be
omitted.

 If the query is a SELECT statement, the same as described for spi_exec happens for the loop-body
and the variables for the fields selected.

 Here’s an example for a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(int4, int4) RETURNS int4 AS ’
 if {![info exists GD(plan)]} {
 # prepare the saved plan on the first call

Chapter 25. PL/Tcl - TCL Procedural Language

321

 set GD(plan) [spi_prepare \\
 "SELECT count(*) AS cnt FROM t1 WHERE num >= \\$1 AND num
<= \\$2" \\
 int4]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
’ LANGUAGE ’pltcl’;

 Note that each backslash that Tcl should see must be doubled in the query creating the function,
since the main parser processes backslashes too on CREATE FUNCTION. Inside the query string
given to spi_prepare should really be dollar signs to mark the parameter positions and to not let $1
be substituted by the value given in the first function call.

 Modules and the unknown command

 PL/Tcl has a special support for things often used. It recognizes two magic tables, pltcl_modules
and pltcl_modfuncs. If these exist, the module ’unknown’ is loaded into the interpreter right after
creation. Whenever an unknown Tcl procedure is called, the unknown proc is asked to check if the
procedure is defined in one of the modules. If this is true, the module is loaded on demand. To
enable this behavior, the PL/Tcl call handler must be compiled with
-DPLTCL_UNKNOWN_SUPPORT set.

 There are support scripts to maintain these tables in the modules subdirectory of the PL/Tcl source
including the source for the unknown module that must get installed initially.

322

Chapter 26. PL/Perl - Perl Procedural Language
 PL/Perl allows you to write functions in the Perl programming language that may be used in SQL
queries as if they were built into Postgres.

 The PL/Perl intepreter is a full Perl interpreter. However, certain operations have been disabled in order
to maintain the security of the system. In general, the operations that are restricted are those that interact
with the environment. This includes filehandle operations, require, and use (for external modules). It
should be noted that this security is not absolute. Indeed, several Denial-of-Service attacks are still
possible - memory exhaustion and endless loops are two examples.

26.1. Building and Installing
 In order to build and install PL/Perl if you are installing Postgres from source then the --with-perl
must be supplied to the configure script. PL/Perl requires that, when Perl was installed, the libperl
library was build as a shared object. At the time of this writing, this is almost never the case in the Perl
packages that are distributed with the operating systems. A message like this will appear during the
build to point out this fact:

* Cannot build PL/Perl because libperl is not a shared library.

* Skipped.

 Therefore it is likely that you will have to re-build and install Perl manually to be able to build PL/Perl.

 When you want to retry to build PL/Perl after having reinstalled Perl, then change to the directory
src/pl/plperl in the Postgres source tree and issue the commands

gmake clean
gmake all
gmake install

 The createlang command is used to install the language into a database.

$ createlang plperl template1

 If it is installed into template1, all future databases will have the language installed automatically.

Chapter 26. PL/Perl - Perl Procedural Language

323

26.2. Using PL/Perl
 Assume you have the following table:

CREATE TABLE EMPLOYEE (
 name text,
 basesalary integer,
 bonus integer
);

 In order to get the total compensation (base + bonus) we could define a function as follows:

CREATE FUNCTION totalcomp(integer, integer) RETURNS integer
 AS ’return $_[0] + $_[1]’
 LANGUAGE ’plperl’;

 Notice that the arguments to the function are passed in @_ as might be expected.

 We can now use our function like so:

SELECT name, totalcomp(basesalary, bonus) FROM employee;

 But, we can also pass entire tuples to our functions:

CREATE FUNCTION empcomp(employee) RETURNS integer AS ’
 my $emp = shift;
 return $emp->{’’basesalary’’} + $emp->{’’bonus’’};
’ LANGUAGE ’plperl’;

 A tuple is passed as a reference to a hash. The keys are the names of the fields in the tuples. The hash
values are values of the corresponding fields in the tuple.

Tip: Because the function body is passed as an SQL string literal to CREATE FUNCTION you have
to escape single quotes within your Perl source, either by doubling them as shown above, or by
using the extended quoting functions (q[], qq[], qw[]). Backslashes must be escaped by doubling
them.

 The new function empcomp can used like:

SELECT name, empcomp(employee) FROM employee;

 Here is an example of a function that will not work because file system operations are not allowed for
security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS ’
 open(TEMP, ">/tmp/badfile");
 print TEMP "Gotcha!\n";
 return 1;
’ LANGUAGE ’plperl’;

Chapter 26. PL/Perl - Perl Procedural Language

324

 The creation of the function will succeed, but executing it will not.

325

Bibliography
 Selected references and readings for SQL and Postgres.

 Some white papers and technical reports from the original Postgres development team are available at
the University of California, Berkeley, Computer Science Department web site
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/)

SQL Reference Books
 The Practical SQL Handbook , Bowman et al, 1996 , Using Structured Query Language , 3, Judith

Bowman, Sandra Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley, 1996.

 A Guide to the SQL Standard , Date and Darwen, 1997 , A user’s guide to the standard database
language SQL , 4, C. J. Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

 An Introduction to Database Systems , Date, 1994 , 6, C. J. Date, 1, 1994, Addison-Wesley, 1994.

 Understanding the New SQL , Melton and Simon, 1993 , A complete guide, Jim Melton and Alan R.
Simon, 1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems , Ullman, 1988 , Jeffrey D. Ullman, 1, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation
 The PostgreSQL Administrator’s Guide , The Administrator’s Guide , Edited by Thomas Lockhart,

2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide , The Developer’s Guide , Edited by Thomas Lockhart,
2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide , The Programmer’s Guide , Edited by Thomas Lockhart,
2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction , The Tutorial , Edited by Thomas Lockhart, 2001-04-13, The
PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide , The User’s Guide , Edited by Thomas Lockhart, 2001-04-13, The
PostgreSQL Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL , Simkovics, 1998 , Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information Systems, Vienna
University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and EXCEPT
constructs into Postgres. Prepared as a Master’s Thesis with the support of O.Univ.Prof.Dr. Georg
Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University of Technology.

Bibliography

326

 The Postgres95 User Manual , Yu and Chen, 1995 , A. Yu and J. Chen, The POSTGRES Group , Sept.
5, 1995, University of California, Berkeley CA.

Proceedings and Articles
 Partial indexing in POSTGRES: research project , Olson, 1993 , Nels Olson, 1993, UCB Engin

T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database System , Ong and
Goh, 1990 , L. Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33, University of
California, Berkeley CA.

 The Postgres Data Model , Rowe and Stonebraker, 1987 , L. Rowe and M. Stonebraker, Sept. 1987,
VLDB Conference, Brighton, England, 1987.

 Generalized partial indexes (http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z) ,
Seshardri, 1995 , P. Seshadri and A. Swami, March 1995, Eleventh International Conference on
Data Engineering, 1995, Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , Stonebraker and Rowe, 1986 , M. Stonebraker and L. Rowe, May 1986,
Conference on Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, Stonebraker, Hanson, Hong, 1987 , M. Stonebraker, E.
Hanson, and C. H. Hong, Feb. 1987, Conference on Data Engineering, Los Angeles, CA, IEEE,
1987.

 The Postgres Storage System , Stonebraker, 1987 , M. Stonebraker, Sept. 1987, VLDB Conference,
Brighton, England, 1987.

 A Commentary on the Postgres Rules System , Stonebraker et al, 1989, M. Stonebraker, M. Hearst, and
S. Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf) , Stonebraker, M, 1989b,
M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , Stonebraker, Rowe, Hirohama, 1990 , M. Stonebraker, L. A. Rowe,
and M. Hirohama, March 1990, Transactions on Knowledge and Data Engineering 2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , Stonebraker et al, ACM, 1990 , M.
Stonebraker and et al, June 1990, Conference on Management of Data, ACM-SIGMOD.

