This page in other versions: 8.4 / 9.0 / 9.1 / 9.2 / 9.3  |  Development versions: devel  |  Unsupported versions: 7.2 / 7.3 / 7.4 / 8.0 / 8.1 / 8.2 / 8.3

38.6. Control Structures

Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL's control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

38.6.1. Returning From a Function

There are two commands available that allow you to return data from a function: RETURN and RETURN NEXT.

38.6.1.1. RETURN

RETURN expression;

RETURN with an expression terminates the function and returns the value of expression to the caller. This form is to be used for PL/pgSQL functions that do not return a set.

When returning a scalar type, any expression can be used. The expression's result will be automatically cast into the function's return type as described for assignments. To return a composite (row) value, you must write a record or row variable as the expression.

If you declared the function with output parameters, write just RETURN with no expression. The current values of the output parameter variables will be returned.

If you declared the function to return void, a RETURN statement can be used to exit the function early; but do not write an expression following RETURN.

The return value of a function cannot be left undefined. If control reaches the end of the top-level block of the function without hitting a RETURN statement, a run-time error will occur. This restriction does not apply to functions with output parameters and functions returning void, however. In those cases a RETURN statement is automatically executed if the top-level block finishes.

38.6.1.2. RETURN NEXT and RETURN QUERY

RETURN NEXT expression;
RETURN QUERY query;

When a PL/pgSQL function is declared to return SETOF sometype, the procedure to follow is slightly different. In that case, the individual items to return are specified by a sequence of RETURN NEXT or RETURN QUERY commands, and then a final RETURN command with no argument is used to indicate that the function has finished executing. RETURN NEXT can be used with both scalar and composite data types; with a composite result type, an entire "table" of results will be returned. RETURN QUERY appends the results of executing a query to the function's result set. RETURN NEXT and RETURN QUERY can be freely intermixed in a single set-returning function, in which case their results will be concatenated.

RETURN NEXT and RETURN QUERY do not actually return from the function — they simply append zero or more rows to the function's result set. Execution then continues with the next statement in the PL/pgSQL function. As successive RETURN NEXT or RETURN QUERY commands are executed, the result set is built up. A final RETURN, which should have no argument, causes control to exit the function (or you can just let control reach the end of the function).

If you declared the function with output parameters, write just RETURN NEXT with no expression. On each execution, the current values of the output parameter variable(s) will be saved for eventual return as a row of the result. Note that you must declare the function as returning SETOF record when there are multiple output parameters, or SETOF sometype when there is just one output parameter of type sometype, in order to create a set-returning function with output parameters.

Here is an example of a function using RETURN NEXT:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION getAllFoo() RETURNS SETOF foo AS
$BODY$
DECLARE
    r foo%rowtype;
BEGIN
    FOR r IN SELECT * FROM foo
    WHERE fooid > 0
    LOOP
        -- can do some processing here
        RETURN NEXT r; -- return current row of SELECT
    END LOOP;
    RETURN;
END
$BODY$
LANGUAGE 'plpgsql' ;

SELECT * FROM getallfoo();

Note that functions using RETURN NEXT or RETURN QUERY must be called as a table source in a FROM clause.

Note: The current implementation of RETURN NEXT and RETURN QUERY stores the entire result set before returning from the function, as discussed above. That means that if a PL/pgSQL function produces a very large result set, performance might be poor: data will be written to disk to avoid memory exhaustion, but the function itself will not return until the entire result set has been generated. A future version of PL/pgSQL might allow users to define set-returning functions that do not have this limitation. Currently, the point at which data begins being written to disk is controlled by the work_mem configuration variable. Administrators who have sufficient memory to store larger result sets in memory should consider increasing this parameter.

38.6.2. Conditionals

IF statements let you execute commands based on certain conditions. PL/pgSQL has five forms of IF:

  • IF ... THEN

  • IF ... THEN ... ELSE

  • IF ... THEN ... ELSE IF

  • IF ... THEN ... ELSIF ... THEN ... ELSE

  • IF ... THEN ... ELSEIF ... THEN ... ELSE

38.6.2.1. IF-THEN

IF boolean-expression THEN
    statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be executed if the condition is true. Otherwise, they are skipped.

Example:

IF v_user_id <> 0 THEN
    UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

38.6.2.2. IF-THEN-ELSE

IF boolean-expression THEN
    statements
ELSE
    statements
END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that should be executed if the condition evaluates to false.

Examples:

IF parentid IS NULL OR parentid = ''
THEN
    RETURN fullname;
ELSE
    RETURN hp_true_filename(parentid) || '/' || fullname;
END IF;
IF v_count > 0 THEN 
    INSERT INTO users_count (count) VALUES (v_count);
    RETURN 't';
ELSE
    RETURN 'f';
END IF;

38.6.2.3. IF-THEN-ELSE IF

IF statements can be nested, as in the following example:

IF demo_row.sex = 'm' THEN
    pretty_sex := 'man';
ELSE
    IF demo_row.sex = 'f' THEN
        pretty_sex := 'woman';
    END IF;
END IF;

When you use this form, you are actually nesting an IF statement inside the ELSE part of an outer IF statement. Thus you need one END IF statement for each nested IF and one for the parent IF-ELSE. This is workable but grows tedious when there are many alternatives to be checked. Hence the next form.

38.6.2.4. IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
    statements
[ ELSIF boolean-expression THEN
    statements
[ ELSIF boolean-expression THEN
    statements
    ...]]
[ ELSE
    statements ]
END IF;

IF-THEN-ELSIF-ELSE provides a more convenient method of checking many alternatives in one statement. Functionally it is equivalent to nested IF-THEN-ELSE-IF-THEN commands, but only one END IF is needed.

Here is an example:

IF number = 0 THEN
    result := 'zero';
ELSIF number > 0 THEN 
    result := 'positive';
ELSIF number < 0 THEN
    result := 'negative';
ELSE
    -- hmm, the only other possibility is that number is null
    result := 'NULL';
END IF;

38.6.2.5. IF-THEN-ELSEIF-ELSE

ELSEIF is an alias for ELSIF.

38.6.3. Simple Loops

With the LOOP, EXIT, CONTINUE, WHILE, and FOR statements, you can arrange for your PL/pgSQL function to repeat a series of commands.

38.6.3.1. LOOP

[ <<label>> ]
LOOP
    statements
END LOOP [ label ];

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN statement. The optional label can be used by EXIT and CONTINUE statements in nested loops to specify which loop the statement should be applied to.

38.6.3.2. EXIT

EXIT [ label ] [ WHEN boolean-expression ];

If no label is given, the innermost loop is terminated and the statement following END LOOP is executed next. If label is given, it must be the label of the current or some outer level of nested loop or block. Then the named loop or block is terminated and control continues with the statement after the loop's/block's corresponding END.

If WHEN is specified, the loop exit occurs only if boolean-expression is true. Otherwise, control passes to the statement after EXIT.

EXIT can be used with all types of loops; it is not limited to use with unconditional loops. When used with a BEGIN block, EXIT passes control to the next statement after the end of the block.

Examples:

LOOP
    -- some computations
    IF count > 0 THEN
        EXIT;  -- exit loop
    END IF;
END LOOP;

LOOP
    -- some computations
    EXIT WHEN count > 0;  -- same result as previous example
END LOOP;

BEGIN
    -- some computations
    IF stocks > 100000 THEN
        EXIT;  -- causes exit from the BEGIN block
    END IF;
END;

38.6.3.3. CONTINUE

CONTINUE [ label ] [ WHEN boolean-expression ];

If no label is given, the next iteration of the innermost loop is begun. That is, all statements remaining in the loop body are skipped, and control returns to the loop control expression (if any) to determine whether another loop iteration is needed. If label is present, it specifies the label of the loop whose execution will be continued.

If WHEN is specified, the next iteration of the loop is begun only if boolean-expression is true. Otherwise, control passes to the statement after CONTINUE.

CONTINUE can be used with all types of loops; it is not limited to use with unconditional loops.

Examples:

LOOP
    -- some computations
    EXIT WHEN count > 100;
    CONTINUE WHEN count < 50;
    -- some computations for count IN [50 .. 100] 
END LOOP;

38.6.3.4. WHILE

[ <<label>> ]
WHILE boolean-expression LOOP
    statements
END LOOP [ label ];

The WHILE statement repeats a sequence of statements so long as the boolean-expression evaluates to true. The expression is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
    -- some computations here
END LOOP;

WHILE NOT done LOOP
    -- some computations here
END LOOP;

38.6.3.5. FOR (integer variant)

[ <<label>> ]
FOR name IN [ REVERSE ] expression .. expression [ BY expression ] LOOP
    statements
END LOOP [ label ];

This form of FOR creates a loop that iterates over a range of integer values. The variable name is automatically defined as type integer and exists only inside the loop (any existing definition of the variable name is ignored within the loop). The two expressions giving the lower and upper bound of the range are evaluated once when entering the loop. If the BY clause isn't specified the iteration step is 1, otherwise it's the value specified in the BY clause, which again is evaluated once on loop entry. If REVERSE is specified then the step value is subtracted, rather than added, after each iteration.

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
    -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
    -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP
    -- i will take on the values 10,8,6,4,2 within the loop
END LOOP;

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop body is not executed at all. No error is raised.

If a label is attached to the FOR loop then the integer loop variable can be referenced with a qualified name, using that label.

38.6.4. Looping Through Query Results

Using a different type of FOR loop, you can iterate through the results of a query and manipulate that data accordingly. The syntax is:

[ <<label>> ]
FOR target IN query LOOP
    statements
END LOOP [ label ];

The target is a record variable, row variable, or comma-separated list of scalar variables. The target is successively assigned each row resulting from the query and the loop body is executed for each row. Here is an example:

CREATE FUNCTION cs_refresh_mviews() RETURNS integer AS $$
DECLARE
    mviews RECORD;
BEGIN
    PERFORM cs_log('Refreshing materialized views...');

    FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

        -- Now "mviews" has one record from cs_materialized_views

        PERFORM cs_log('Refreshing materialized view ' || quote_ident(mviews.mv_name) || ' ...');
        EXECUTE 'TRUNCATE TABLE ' || quote_ident(mviews.mv_name);
        EXECUTE 'INSERT INTO ' || quote_ident(mviews.mv_name) || ' ' || mviews.mv_query;
    END LOOP;

    PERFORM cs_log('Done refreshing materialized views.');
    RETURN 1;
END;
$$ LANGUAGE plpgsql;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the loop.

The query used in this type of FOR statement can be any SQL command that returns rows to the caller: SELECT is the most common case, but you can also use INSERT, UPDATE, or DELETE with a RETURNING clause. Some utility commands such as EXPLAIN will work too.

PL/pgSQL variables are substituted into the query text, and the query plan is cached for possible re-use, as discussed in detail in Section 38.10.1 and Section 38.10.2.

The FOR-IN-EXECUTE statement is another way to iterate over rows:

[ <<label>> ]
FOR target IN EXECUTE text_expression LOOP 
    statements
END LOOP [ label ];

This is like the previous form, except that the source query is specified as a string expression, which is evaluated and replanned on each entry to the FOR loop. This allows the programmer to choose the speed of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE statement.

38.6.5. Trapping Errors

By default, any error occurring in a PL/pgSQL function aborts execution of the function, and indeed of the surrounding transaction as well. You can trap errors and recover from them by using a BEGIN block with an EXCEPTION clause. The syntax is an extension of the normal syntax for a BEGIN block:

[ <<label>> ]
[ DECLARE
    declarations ]
BEGIN
    statements
EXCEPTION
    WHEN condition [ OR condition ... ] THEN
        handler_statements
    [ WHEN condition [ OR condition ... ] THEN
          handler_statements
      ... ]
END;

If no error occurs, this form of block simply executes all the statements, and then control passes to the next statement after END. But if an error occurs within the statements, further processing of the statements is abandoned, and control passes to the EXCEPTION list. The list is searched for the first condition matching the error that occurred. If a match is found, the corresponding handler_statements are executed, and then control passes to the next statement after END. If no match is found, the error propagates out as though the EXCEPTION clause were not there at all: the error can be caught by an enclosing block with EXCEPTION, or if there is none it aborts processing of the function.

The condition names can be any of those shown in Appendix A. A category name matches any error within its category. The special condition name OTHERS matches every error type except QUERY_CANCELED. (It is possible, but often unwise, to trap QUERY_CANCELED by name.) Condition names are not case-sensitive.

If a new error occurs within the selected handler_statements, it cannot be caught by this EXCEPTION clause, but is propagated out. A surrounding EXCEPTION clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the PL/pgSQL function remain as they were when the error occurred, but all changes to persistent database state within the block are rolled back. As an example, consider this fragment:

    INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');
    BEGIN
        UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
        x := x + 1;
        y := x / 0;
    EXCEPTION
        WHEN division_by_zero THEN
            RAISE NOTICE 'caught division_by_zero';
            RETURN x;
    END;

When control reaches the assignment to y, it will fail with a division_by_zero error. This will be caught by the EXCEPTION clause. The value returned in the RETURN statement will be the incremented value of x, but the effects of the UPDATE command will have been rolled back. The INSERT command preceding the block is not rolled back, however, so the end result is that the database contains Tom Jones not Joe Jones.

Tip: A block containing an EXCEPTION clause is significantly more expensive to enter and exit than a block without one. Therefore, don't use EXCEPTION without need.

Within an exception handler, the SQLSTATE variable contains the error code that corresponds to the exception that was raised (refer to Table A-1 for a list of possible error codes). The SQLERRM variable contains the error message associated with the exception. These variables are undefined outside exception handlers.

Example 38-1. Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as appropriate:

CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
    LOOP
        -- first try to update the key
        UPDATE db SET b = data WHERE a = key;
        IF found THEN
            RETURN;
        END IF;
        -- not there, so try to insert the key
        -- if someone else inserts the same key concurrently,
        -- we could get a unique-key failure
        BEGIN
            INSERT INTO db(a,b) VALUES (key, data);
            RETURN;
        EXCEPTION WHEN unique_violation THEN
            -- do nothing, and loop to try the UPDATE again
        END;
    END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

Comments


March 13, 2008, 8:15 a.m.

It's worth noting that each exception block creates a new subtransaction. If you end up running tens or hundreds of thousands of them within a single transaction (either with repeated function calls or with loops within a few functions) you'll hit severe performance problems.

This might be improved in PostgreSQL 8.4 according to some current mailing list discussion and circulating patches.

See the March 2008 thread on pgsql-performance with subject "Re: [PERFORM] Very slow (2 tuples/second) sequential scan after bulk insert; speed returns to ~500 tuples/second after commit".


Sept. 14, 2008, 9:43 a.m.

Using "RETURN QUERY" is 30x fast than returning the same set of records using a bunch of "FOR/RETURN NEXT" statements (measured on a 10,000 records table with 50 columns on a PG 8.3.1).

Privacy Policy | About PostgreSQL
Copyright © 1996-2014 The PostgreSQL Global Development Group