PostgreSQL 8.3.23 Documentation

The PostgreSQL Global Development Group

PostgreSQL 8.3.23 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2013 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2013 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xliv
1. What 1S POStZIeSQLT ..cc.eoiiiiiiiiiieiireeeeeete ettt ettt st xliv
2. A Brief History of PoStreSQLu........coviiiiiiiiieiiieieeriiesteeieeite sttt eve e s xlv

2.1. The Berkeley POSTGRES Projectccceecieviiisiieniienieeieeieeeie et eieeniee e xlv
2.2, POSEEIESOS ..ottt ettt ettt ettt st b et s be e be e taesabeebaebee e xlv
2.3, POSEEIESQLou. ittt ettt st ettt et e sabeebeebee s xlvi
3. COMNVENTIONS ...ttt ettt ettt ettt et e bt e atesaesat e be s bt easenbesbeensesaeemaenbeeanensene xlvi
4. Further INfOrmation........c.ccocueriirieiiinieiincre ettt sttt st xlvii
5. Bug Reporting GUIEIINES........cecveeiiiriiiriieiieiieeie ettt ettt sbe et s beesieesaeeeas xlvii
5.1, Tdentifying BUgSoooueiiiiiiiiieeiee ettt xlviii
5.2, WAL t0 TEPOT..cuveiiiiiiiiiieeite ettt ettt ettt st sat e bt e st e sate s beesaaesanesates xlviii
5.3. WHETe 1O TEPOTE DUZSeeuvieiieiiiiiieriteeite ettt sttt ettt st e bt sbeesabeebeebeesabesaneenee 1
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 6
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 6
2.2 CONCEPLS ...eneeteenteteettete et eit ettt et e s bt e bt e st e bt eat et e s bt es b et e ebeen b e bt eatenaesbeenaesbeentebeeneenes 6
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 6
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 7
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 8
2.6. Joins Between Tables........ccoiiiiiiiirieriinieeneeteseeee ettt 10
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 12
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 13
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 14
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 15
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 15
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 15
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 15
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 16
3.5, INhETILANCE ..ottt sttt 18
3.6. CONCIUSION ...ttt ettt ettt et ettt ettt ettt sae st e s bt ees et eaeennes 19

I1. The SQL Language 21

A SQL SYNEAX 1euttetieeiteeieertee sttt ettt et e e sttt et e et e s bt e et e e bt e s bt e st e e bt e bt e st e et e e b e e sateebeebeesaee 23

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieiteeit ettt ettt ettt st e st e st e sbeesaeesaneens 23
4.1.1. Identifiers and Key WOrds...........cccceievieririenininieiinecicnceeeeeeeeeeenne 23
1.2, CONSLANLS .euuteutieriteeieetee ettt et et et sat et e e st esat e e bt e bt e s bt e sbe e bt esbeesanesaeeenbeas 24
4.1.2.1. String CONSLANLSccoeruiriiiiieiieiiniieienie ettt 24
4.1.2.2. Dollar-Quoted String CONSLANLSeecveerveereeruerrieeneeneenreereeenieenane 25
4.1.2.3. Bit-String CONSLANEScceeruieeieiereieienieeieie ettt 26
4.1.2.4. NUMEIIC CONSANLSoveuieiitieienieeienteeiteie et eee et see e sbe e 26
4.1.2.5. Constants of Other TYPEScceevereerererieieeieiere e 27
1.3 OPETALOTS ...ttt ettt sttt ettt et e sbe e s bt st e ebeesbeesanesaeeebees 28
4.1.4. Special CRaraCers.coeeueerueriieientieiiete sttt ettt be e 28
4.1.5. COMIMEILS ...eouviiiiiniieitieniteete ettt sttt siee sttt e bt e s et s be e bt e b e sanesaeeebees 29

iii

4.1.6. LeXical PreCEdENCEvvevieeiiriiieieeiiieee et eeeare e e 29

4.2, Value EXPIESSIONS....ueiruiiriiiiiieriieniteeiteitesite st estte st sbeebee it e sateesbeesatesabeenbeesaeesaseens 30
4.2.1. Column References..........cocevuereeieniinieniinienenieeteeneeteseceee et 31
4.2.2. Positional Parameters...........c..coceeeueviiriieniinienenenienieneetencee et 31
42,3, SUDSCTIPLS c.uveentieiieeieeite sttt et ettt st et e st e st s bt e bt e s bt e sabeebeesbeesatesaseenbeas 32
4.2.4. Field SeIECtiOncc.cocveruirierienieieiieieie ettt 32
4.2.5. Operator INVOCAtIONSc..coeeuiriieieiieiiete ettt 33
4.2.6. FUNCHON CallSeoiiiiiiiiiiiieeieeeetee ettt e 33
4.2.7. Aggregate EXPreSSIONS.ccevieueruieieniirieienieeeeieeie et 33
4.2.8. TYPE CASS ..ttt 34
4.2.9. Scalar SUDQUETIESc.oouiiiiiiiiiieiieee e 35
4.2.10. Ar1ay CONSLIUCLOTSveenvreeiierteenieeriterteenteeette st ereesteesteeeseesseesbeesaresaeeebees 35
4.2.11. ROW CONSIIUCLOTS....cuveeeteeuierieenteenitenteenieeeste st eteesseesieeeseesseesbeesanesneeesees 36
4.2.12. Expression Evaluation Rulescccoocoviiiiiniiniineeeee, 38

5. Data DEfINItION ...cueetiiiiiieetieie ettt ettt et b et be et sbeest e be b e e st e enees 39

5.1, TabIE BASICS ..ueeeuiitieiieiieiieie ettt ettt sttt 39

5.2. Default ValUEsc..cocieriiiiiiiiiieieieeteee ettt sttt 40

5.3, CONSIIAINES ...ttt ettt ettt sb e ea et sb et esbeestenae s bt e b e sbeestenbeeaeenees 41
5.3.1. Check CONSIIAINEScc.verueriieiiniieienieeiteie sttt ettt ettt st eaee e 41
5.3.2. NOt-INUIL CONSIAINES ...c.veveenriiieiieieeiieienteetente ettt sttt 43
5.3.3. Unique CONSLIAINES.ooueruieiiriieienieeiteienieetenteeieete sttt enee b eneenees 44
5.3.4. Primary KeYS.....cooiriiiiiirieieeieetenteteeseee ettt 44
5.3.5. FOr@ign KEYS ..c.cevuiriiiiiiiniieiinieeiesieetete sttt 45

5.4, SYStEM COIUMMNS ...c..vieiieriieeiieieerte sttt este et esteestaesbeesaeesseesbeesseenseesaseenseenseesnns 48

5.5. MOAIfYING TabIES......eevuierieiiieiienite ettt sttt sttt siresbeebeesaeeseseeseeseesene 49
5.5.1. Adding @ COIUMM.....c..eeiuiiriieiieiienteeie ettt st et esbeeaeens 49
5.5.2. Removing @ COIUMM ...cccueiriieiiiiieniieeie ettt st saeeaeens 50
5.5.3. Adding @ CONSIIAINEcccueevierierieiiienie ettt ettt et esivesaeeeaeas 50
5.5.4. Removing @ CONSLIAINT c...eevierierieeiienieeteeieenitesteeieesieesreeteenbeesaaesaeeenbeas 51
5.5.5. Changing a Column’s Default Value..........c.cccoooverviiiiiiinieniiiniiinierieeieeee, 51
5.5.6. Changing a Column’s Data TYPEccveevieriiinienieniienieeeeeeeeiee e 51
5.5.7. Renaming @ COIUMIc...ooiuieriiriiiiieniteeieeeeit ettt 52
5.5.8. Renaming a Tableccceeiiiiriiniiiiiieiecceeteeeee e 52

5.0, PIIVIIEZES .uveeiieiieiieetete ettt sttt sttt st e 52

5.7, SCREIMAS ...ttt sttt sttt et st e 53
5.7.1. Creating @ SChemac..cocoeviiriiiiiniiiiecccec e 53
5.7.2. The Public SChemacc..cocuiiiiiniiiiiiicieeeet et 54
5.7.3. The Schema Search Path...........cccccooiiiiiiiiiiiiieeeeeeen 54
5.7.4. Schemas and Privileges...........cccccoviiiiiiiiiiiiiiiiiccceeeeeeee e 56
5.7.5. The System Catalog Schemac.cocceeviiiiiiiniiniiniieeeeeeeeeen 56
5.7.6. USAZE PAEINISeiuvieiiieiieiiieciteeie ettt ettt 56
5.7.7. POTtabIlityoueeeieiiciieeieee et 57

5.8 INHETILANCE ...ttt ettt ettt st et 57
581 CAVRALS ...ttt sttt st sttt ae e 60

5.9, PartitiONINgcceeuieuieiiniiieieieiee sttt ettt sttt et 60
5.9.1. OVEIVIEW ..ttt ettt b ettt st et ettt be et e bt eaee e 60
5.9.2. Implementing Partitioningccocceveererieiiinenieninceeneseeeseeee e 61
5.9.3. Managing Partitionscceveevieririenenieienieeiee et 64
5.9.4. Partitioning and Constraint EXClusionccoceceevineinenicnienieneeicnceeene. 65
5.9.5. Alternative Partitioning Methods.........c.ccoeevieriniienininenenieneneecceeene. 66
5.9.0. CAVALS ...ttt ettt sttt ettt sttt ettt et 67

5.10. Other Database ODJECEScevueerieriieriieriieeieerieesieeseesreesaeesiresbeesseesseeseseenseenseesnns 67

v

5.11. Dependency TraCKing........c.coceerieriiiniienienieeieenitesie sttt sttt s ese s 68

6. Data ManipUIation.......ccc.eerierieenieeniie ettt sttt ettt et e eteesbee st e e bt esbaesabesabeenbaesssesaseenbeas 69
6.1, INSETTNG DALA ..conviiiiiieiiiiie ettt st ettt st et 69
6.2, Updating Data.......coviiiiiiiiiiiieiieieectt ettt ettt sttt st ettt 70
6.3. Deleting Data........coueiiiiiiiiiieietet ettt s 71

T QUETICS ..vveeeuerieetieeeiteeeiteeetteestteessteeessseeessseeesseeessaeassseaassseeassseesnssaeansseeassssessssaesnseeansseessses 72
T 1. OVEIVIBW ettt sttt ettt ettt sat e st e bt e st st e e bt e s bt e sate e bt e satesabeenbeesseesateens 72
7.2. Table EXPIESSIONSeevuiiriiieiiiiteniie ettt ettt sttt ettt et e st e st e sbeesaeesaeeens 72

7.2.1. The FROM ClaUSE.....ccotiriiiiieniienieeieesiteete ettt st ete ettt sare s ebees 73
7.2.1.1.JOINEd TabIesccc.eeviiiiiiiieiiieieeeeteeeeee e 73

7.2.1.2. Table and Column AIASES..........ceveerierrierreenienieeeesee e 76

7.2.1.3. SUDQUETIES «...eouveenvieiiieiieeieesiteeeete ettt s 77

7.2.1.4. Table FUNCHONSccouiiiiriiiniiiiieeieeitceeee et 78

7.2.2. The WHERE ClaUSE....c.cerrtiiiieriienieeieeniteeite ettt sttt st senesaee s 78
7.2.3. The GROUP BY and HAVING ClauSes......c.cceoeririeniireenienenienienieeeesieeeeenees 79

7.3 SLECT LISES. ..ttt ettt ettt st b ettt et sae e b 82
7.3.1. Select-LiSt TtOIMS ...c..eeueiiriieieeiieiete ettt 82
7.3.2. Column Labelsc..cooueiiiiiiiieieietee e 82

733 DISTINCT tuieuitireieeeieettete st st ettt st b ae et ent e s b sa et eaesae st neneeneas 83

7.4, CombIining QUETIES......ccuertieriirtieientieterteritet ettt et ste st ebesb et e st sbeenbesbeeaesbeennenee 83
7.5, SOTtING ROWS ..ottt ettt ettt s s 84
7.6. LIMIT ANA OFFSETuc.uiiiieuieiieientiteiereeertestete st s st ese st e sse e st ese s b sae s saeneneene 85
7.7 VALUES LISES vttt s 85

8. DALA TYPES e utteuteetieeiieeteette sttt et e stt e st e et e bt e s abe e bt eabeessbeesbeeabeesseeesbesnte e saensaesabeebeenaaesnseens 87

8. 1. INUMETIC TYPES.cueteuriitieieeiieeiteieenite st e it et e seteete et e sttessbeenbeesbaessbesnseebeesasesnsesnseas 88
8L 1. INLEZET TYPES .eeuteeiieiieeieeieeitte ettt et ete et e st e et e bt e satessbeenteesbaesnsesnseens 89
8.1.2. Arbitrary Precision NUMDETScccoeviirieriiiiiienierie et 89
8.1.3. Floating-Point TYPESueecveeriierieeiieiiierteeieeite ettt et 90
8114, SeTTal TYPLS . .eeeuieeiietieiieeie ettt ettt sttt ettt et e st e st e eteesbbesaeeaneens 91

8.2, MOMNELATY TYPES weeenvriinrieiieiieiieeitenite st ettt ettt et s bt sbesbeesbeesabesbeebeesaaeeaseenbeas 92

8.3, CRATACIET TYPES ..eevrienrieiieitie ettt sttt sttt ettt et sttt e bt e st e sbe e beesabeeaseenbeas 93

8.4. BINary Data TYPES ...coveevuieriieiiieieeite ittt ettt ettt sttt et ebees 95

8.5. Date/TIME TYPES.ccueirriiiiiniiiiiteieeite sttt ettt et ettt b e st s bt e sbeesaneeaeeenbees 96
8.5.1. Date/Time INPULc..ooiiiiiiiieiiiieic et 97

8.0 1L DIALES ettt st 98
8.5 1.2, TIMES ..ottt ettt et et sttt s et eseeeneennesneenneas 98
8.5.1.3. TIME SEAMPS ...evivieiiiiiiiieieeiieteteee ettt s 99
8.5. 1.4 INLEIVALS ..coutiiiiieieeieet ettt 100
8.5.1.5. Special Valuesc.ccocoeeiiiiiiiiniiiiiiiiicecececcc e 101
8.5.2. Date/Time OULPULeevuiiriiiiiiriieeieeeet ettt ettt 101
8.5.3. TIME ZIOMES ..ottt ettt sttt st 102
8.5.4. INLEINALS.eeiiiiieiiieiteet ettt st 104

8.6. BOOLEAN TYPEL ...ueeeiiieieitieieeteee ettt ettt ettt ettt 104

8.7. ENUMETAEd TYPES ..ecouveenreeiiiiiiiiieniee ettt ettt e 105
8.7.1. Declaration of Enumerated TYPeSs........ccceoererierenienieneeieneeceniesiceeneene 105
8.7.2. OFAETING ..ottt sttt ettt et sae st b eate b eae 105
8.7.3. TYPE SALCLY ..ttt 106
8.7.4. Implementation Details.........ccccoeeiiiiniiiiiniiiiinieeeeeeeeee 107

8.8, GEOMELIIC TYPES ..uveueentiriienienieeiteteettete ettt sttt ettt bbb st sbeeae e e 107
881 POINLS ..ottt ettt s 107
8.8.2. LINE SEZMENLS.....c..eouiiiiriieiirieriieieeitete ettt sttt ettt sbe e i eae 108
88,3 BOXES ittt ettt st st 108

884 PathS ..o 108

8.8.5. POLYZOMS. ...eiuiiiiiiiiieiieeteet ettt sttt ettt st et 108
8.8.6. CICIES ...cuiiiiiiicc s 109

8.9. NetWork Address TYPES....ccueruieriierieiiieieeite sttt ettt st et esaesane e 109
80,1 INEt it s 109
8102 A AT ittt ettt 110
LI G T o T ol I e oSSR 110
8.9.4. MACAAAT wrteeririeeeiie et etee et e et e te e et e st e e s bee e et e e nbaeensbae e tbeeennneeennens 111

8.10. Bit StriNG TYPES ..ottt e 111
8.11. Text SEarch TYPES....c..oouieiiriiiieiieieieee et e 112
LT B e Y ol e B USROS 112

8Ll 1.2, £ SQUETY teieetiiiee ettt e ettt e e et e e e e et e e e e et e e e e e eertaeeeeenrees 113

812, UUID TYPE ..ttt sttt ettt et s et st et ene b b naene 114
813, XML TYPE vttt sttt ettt ettt s sttt ebe e benaen 114
8.13.1. Creating XML ValUescceoueiuirieriinieienieeieiesicee et 115
8.13.2. Encoding Handlingccceeoueiieieniinieieneeieieei et 115
8.13.3. Accessing XML ValUues.......ccccoeeieriinieieneiieienitee et 116

BLL4. ATTAYS ..ottt ettt ettt st et b ettt e a et bt et be e bbbt eat e e e 116
8.14.1. Declaration Of Array TYPES.....ccceveevuerieriererieieniieienieetene et 116
8.14.2. Array Value INPUL.........cooiiiiiiiiiiieiinieteecteetee e 117
8.14.3. ACCESSING ATTAYS ..couviuieiiniiriienientteie ettt ettt ettt st saesbe e e ene 118
8.14.4. MOAIfYING ATTAYS...cutrueeierierieieniieteeieete ettt sttt sttt sbe e nieeae 120
8.14.5. Searching in AITAYS......ccccererieririeiinieieneetetesit ettt naeee 122
8.14.6. Array Input and OUtPUL SYNEAX ..cc.eeeruierieeiieeiienienieeieeneesre e enaeeseeesenes 123

8.15. COMPOSILE TYPES ..veeuveerrierereriieiieniiesteerieenteesiteereeteesitesaeeseesbaesssesseesseesssessesnne 124
8.15.1. Declaration of COmMPOSIte TYPES....cccveerererireririeriienieeiieniienresieeieeseeenenes 124
8.15.2. Composite Value INPUL.........cceeieriiiriienienieiiteteete et 125
8.15.3. Accessing CompoSite TYPES ..ecuveruvirrieerieriieeiienienieeieesite st e e 126
8.15.4. Modifying CompoSite TYPES.....ueevirriierieriiiriienienieeieenieesre et enieesiee e 127
8.15.5. Composite Type Input and Output SYNtaX......cccceveeervieenienieeriieeneeneenne 127

8.16. Object Identifier TYPES ..cecverreiriieriieiieeieeite sttt ettt sttt e sre e 128
817, PSCUAO-TYPES ...ttt ettt ettt sttt ettt ettt e s bt e st e sabeenbeesabesaneenne 129
9. FUNctions and OPETAOrScueevueeriierieriieenieerteeieeieesiteete et esbtesaseebeesbtesabesseesbeesasesnseenne 131
0.1. LOZICAl OPETALOLSeouvieieiritieiieienieetenteeieete et s sre ettt eeeesae e enesaeenneneens 131
9.2. CompariSOn OPETALOLS.......c..coueeeerieriereniieireteeeerre s eresreeaeesesteenessesneesesueesnenneens 131
9.3. Mathematical Functions and OpPerators.............ccceereeueruereecreneeeeneeeeneneenennene 133
9.4. String Functions and OPeratorscoeeveruiriereneeienieeiereete e 136
9.5. Binary String Functions and OPEratorsccceeereeieniiniecuenieieene e 147
9.6. Bit String Functions and OPeratorsc.cccoeeeveririeniiniecieneeeese e 149
9.7. Pattern MatCRINGcccevirierieiiiiiriietitetetecette ettt sttt s s 150
9. 7.1 LIKE et e e 150
9.7.2. SIMILAR TO Regular EXPressionsccocceeevereeirerenienienieeeenenenennens 151
9.7.3. POSIX Regular EXPressionsc.cocecteirirenienreneeinenenienseseeeeeresreseneens 152
9.7.3.1. Regular Expression Detailsc.cocevevvecieininineneneceeneneneenee 155

9.7.3.2. Bracket EXPIessionsccceeveceeirerenienienieieeniinesieeeeeieeesve e 157

9.7.3.3. Regular Expression ESCapes..........ccccoevveeveieininenieneeenincnenaenee 158

9.7.3.4. Regular Expression Metasyntax........cccceeeeeenenieeienieneeneneenennens 161

9.7.3.5. Regular Expression Matching Rulesccoccoevvininieninencnnen. 162

9.7.3.6. Limits and Compatibilityccccecveverreerireeneninienieneenesceeenee 163

9.7.3.7. Basic Regular EXPressionsc..cocueeeeeeneneenienenienieneeneneeniennens 164

9.8. Data Type Formatting FUNCHONSc..cccueriiriiniiniinieninieiertcteecetenie st 164
9.9. Date/Time Functions and OPErators..........ceeveerueereerieerieeneeneessieeneeeseesseessesnseens 170

Vi

9.9.1. EXTRACT, QAT E_PATE ttttiieirrieeeeiirreeeeeeitrreeeeeiirereeeeesreeeeesessrreeeesssreeeeesnsnnes 174

0.0, AT e £ UIC oo e oottt e e ettt eeae e e e e e e e e e e e et e aaaaaaeaas 178
9.9.3. AT TIME ZONE..iciiiiioiiiiiiiitiieieiet ettt st en e 178
9.9.4. Current Date/TIimeccccecueviriiinirieienieieniteeeneeeereseereete et 179
9.9.5. Delaying EXECULION......ccc.eeitieriiriiiiieniteeie ettt ettt et 181

9.10. Enum Support FUNCHONScocuevuiiieiieniiiieiiieeeneeteieeeereete st 181
9.11. Geometric Functions and OPerators...........c..coceeereeienieniecrenieereeneeeenreseenennene 182
9.12. Network Address Functions and Operators............coceeeeeecuereeieeneeeeneneecnennenne 186
9.13. Text Search Functions and OpPerators.............cceeereeueniiniecienieieeneeeereseenennene 188
9.14. XML FUNCHONSuteeiieiiiiiiieieeriteeite ettt sttt sit e st e st sbt e st be e bt e st ebeenee s 192
9.14.1. Producing XML CONtent..........c..coceeeuiviiiiiiniiiieniiieieseeeese e 192

L2 00 B < TS 11111 TN o SRS 193

0.14.1.2. XINLCONCAL tereruieeeieiieeiieeeitieeetteeetteesteeesnteeesteeessseeesaseeennseesnsens 193

0.14.1.3. XINLELEMENT tecuteeeieiieeiieeeiieeeiteeeieeeeteeesteeesaeeessseeesnseeennseeenneeas 194

0.14. 1.4, XINLEOTEST titiiiieeiiieeieeeiteeetteesite e st e e steeeeteeeenteeesebeeennseeeneeas 195

0.14.1.5. XIMIP T tertiiiiieiieriee st eie et ste e e ste e e e beeste e teesebeebe e saessbaenseenneens 195

0.14.1.6. XINLT OO 1eruvierieiiesiieeieenteesteeteesteestaeeseesseesseessbeeseeseesssaenseenseens 196

.14 1.7, XINLAGG ttteuteeeiieeeiieeeiieeeiteeetteeetteesteeesabeeesateeesateeenabeeenaseesaeeas 196

9.14.1.8. XML PrediCates.c.coevueieiririnienieieneieieetesiesieseeeeneeie e 197

9.14.2. Processing XIMLc..coeeviiriiiininienienitetesieete ettt st 197
9.14.3. Mapping Tables to XIML.......ccccocerieriiniriiinieieneneeieseetese et 197

9.15. Sequence Manipulation FUNCHIONSccceviriinineniininieieneeiesceteeseeeeae 201
9.16. Conditional EXPreSSions........cecuevereerienierieninienieneeteniesieete st sieesiesieesnenieene 203
9.16.1. CASE ettt et 203
9.16.2. CORLESCE vttt sttt ettt s st e 204
9.160.3. NULLIF ettt sttt sttt s st 205
9.16.4. GREATEST aNd LEAST ..eeuiiuiriiiiieieiieiietiiesreieeeitent st s 205

9.17. Array Functions and OPETatorsccevveerierrieenieerieriieenieeneesieenieesseesseenseenseens 205
0.18. Aggregate FUNCHOMNS........cocuiiriiiiiiiiieieeteee ettt ettt e 207
9.19. SUDQUETY EXPIESSIONSeeruvieiiiiieriiieiieniiesiieeieeite sttt eieesieesteeaeesbeesateeseeseens 210
0.19. 1. EXISTS ittt s 210
9.19.20 TN ettt e st 211
9.19.3. NOT INuuiiuiiiiiiiiiieieiei it sttt st 211
9.19.4. ANY/SOME ...uiiuiiiiiiiiiiiiiiiiie sttt st 212
9.19.5. ALL e et st 212
9.19.6. ROW-WiS€ COMPATISON......cueruriiiriiereniietetiereie et ete st eneesae e enne e 213

9.20. Row and Array COMPATISOISc..ccueeueruirieiieiieienieeteieeieeresteeeesreseenesieenesneene 213
9.20. 1. TNttt ettt s et bt ea e be e ne 213
9.20.2. NOT INuuiiiiiuieieieeiietesie ettt ettt sttt et st st e ae e enesne e 214
9.20.3. ANY/SOME (AITAY) -.eevvveeurerreeniieneerieeniteetesteesseesstesseesseesssesseenseesssessaeenne 214
9.20.4. ALL (AITAY) cvveeureereeniieeteeteeniteete et esbtesstesbeesbeesstesateesbeesssesabeenbeesssesnseenne 214
9.20.5. ROW-Wise COMPATISOMNcouerverrerenrenieiierinienieteeeiteiesieseenseseneeneeresresseneens 215

9.21. Set Returning FUNCHIONSccoeiruiriirieieieiniinenieseeteeetee et 215
9.22. System Information FUNCHIONSccecveieirinininieicieieneeeeeeeeeee e 216
9.23. System Administration FUNCHONSc..cceciririnineniecieiiinineeeceeeeeecse e 223
10. TYPE COMVEISION. ...ttt sttt ettt eat et e et e e besbe e tenbeebeentesbeeneenbesstenaesbeensenseane 230
LO. 1. OVEIVIBW ettt b e sttt b ettt ebte e saeeaesbeas 230
1.2, OPETALOTSeenvieientieiieteiteeitente ettt ettt et et s bt et st eate bt sbeebe s bt esbenbeebee et saeeaenbeas 231
10.3. FUNCHOMS ...ttt sttt et s 234
10.4. ValUe SOTAZE.....ccviruieiiriiiieiieiteteeteet sttt sttt ettt et ettt st e e saeesae b 236
10.5. UNION, CASE, and Related CONSIUCTS.uvvviiiieieeeeeieieeeeieieieeeiereeeeeeeeeeeeseeennns 237
L1 INAEXES vttt ettt ettt ettt sttt ettt eb bt st e b e b ettt e bt e e sbe e aesbeeanenteeae 240

Vii

T1.1. INErOAUCHION «.vvveiieiiiieie ettt ee e e e e earreeeeeeareeeeeeenareeeeeenreeeees 240

T1.2. INAEX TYPES.utteurteruieeieeieesiteeiteeite st ettt e st e st e bt esbt e sabe e bt esbeesabeebeenbeesaseenseeseens 241
11.3. Multicolumn INAEXESccoeviririiiiiiiiiiiiiiieccc e 242
11.4. Indexes and ORDER BY ..cccuevuirierierieeienieneerieieesesieesnesesieessesseessessesseessessessnensenne 243
11.5. Combining Multiple INAEXESccouerierriiniinieiierie ettt 244
11.6. Unique INAEXESeoveeiiiiiiiiieiieiieiceterieet ettt s 245
11.7. Indexes on EXPIeSSIONScceeceeeuirieriiriiiienieniietenieeeenre et ene e 245
11.8. Partial INAEXEScevveeruiiiiiiiiiiiieieee ettt ettt st st 246
11.9. Operator Classes and Operator Familiescccocoeviniiiinininiinincciccieee 248
11.10. Examining Index USage.........ccccoirieiiriiiiiiiieieicecie e 249
12, FUll TEXE SEATCH ...ttt ettt et st 251
12,1, INEEOAUCHION ..ttt ettt ettt ettt et e sae e aesaean 251
12.1.1. What Is @ DOCUMENt?.....cc.coiiiiiiiiiii it 252
12.1.2. Basic Text MatChingccceecieriiieieiiieiereeee e 252
12.1.3. CONFIGUIALIONS ...ttt ettt st e e s ee b 253

12.2. Tables and INAEXES......c.eiuerieriieieiirieeseetee ettt s 254
12.2.1. Searching @ Tablec..cociiiiiiniiieeseeeeee e 254
12.2.2. Creating INAEXEScc.eeveeiiniieieniiiieiesi ettt 255

12.3. Controlling TexXt SEArch..........cccevirierinirienierieee et 256
12.3.1. Parsing DOCUMENLSc..cccuevuirieniriiieniieienieetenee sttt 256
12.3.2. Parsing QUETIES ...c..ceoueruieieniirienieniteienteeitenteeite ettt sveas 257
12.3.3. Ranking Search Resultsccocevieveniiiiininiiniiiccneecccececee e 258
12.3.4. Highlighting ReSUILScccoiriiniiiiieniiiiiieieceeeeetceeece e 260

12.4. Additional FEaturesccoeeuevieiiiiiniinieicieieinestceeeee e 262
12.4.1. Manipulating DOCUMENLS........ccceerriiriierienieeiienieenteeieenieesee e eveeseee e 262
12.4.2. Manipulating QUETIES........cccveereerieeiiieniienieeieenieenee e enieesieeseseeseesaeesaeas 263
12.4.2.1. QUErY REWTTNZ .eovvevvieiieeieeiieieesee sttt s 264

12.4.3. Triggers for Automatic Updatescoceevveeviieriensieesiienienieeieenieeseeeeees 265
12.4.4. Gathering Document StatiStiCscocverveerierrierieeieeieenreeee e 266

L2.5. PaTSEIS ...ttt 267
12.6. DICHONALIES.eouiiuiiiiiiiiciiiini et 268
12.6.1. StOP WOTAS ..ottt ettt sttt 269
12.6.2. SIMPle DICHONATYooviiiieniiiiieeieete ettt 270
12.6.3. Synonym DiCHONATYccceeiiriieiriinieniieieeiee ettt 271
12.6.4. Thesaurus DIiCIONATYcoeecveririenienieieniieeee et 272
12.6.4.1. Thesaurus Configurationc.cceceeeeeerieneereeneneeneneeeennene 273

12.6.4.2. Thesaurus EXamplecccocooceviniiiininiiiiicceceneceeee 273

12.6.5. ISpEll DICHONATY......ccoeiuiiiiiiiiiiiieeieeieeee et s 274
12.6.6. Snowball DICONATYcocuiiuiiiiiiiieieiieiee e e 275

12.7. Configuration EXample...........ccceeiieieriiriiieieeieieeeeeese et 276
12.8. Testing and Debugging Text Searchccocovieiinieiininieeneeeeee e 277
12.8.1. Configuration TeStING........cceeteruirieriertieieneeie et 277
12.8.2. Parser TESHNEccueveeeuiririenieteteieteteeteeeteree et sttt ev e 279
12.8.3. Dictionary TSNccueeueruieienieiieie sttt s 281

12.9. GiST and GIN INdeX TYPES ...cccecveuremiruinrenieieieiienenteteteteie ettt 281
12.10. PSQL SUPPOLL ...ttt ettt sttt e b st ae b 283
12,11 LIMIEAEIONS . c..eveteieiieiieierie ettt st et ettt sae s 286
12.12. Migration from Pre-8.3 Text Search..........ccceoveviniiiinininiiieicecceeee 286
13. ConcurrencCy CONIOL......ccueiiiriirieiireeienieei ettt sttt ettt sae st esae s eane b ene 288
13.1. INErOAUCLION ...ttt ettt 288
13.2. Transaction ISOIAtioNccceuevieiiiiiiinienicicie e 288
13.2.1. Read Committed Isolation Levelcccccocevieneniiiiininnininiinicnecicene 289

viii

13.2.2. Serializable Isolation LeVel..........cccccoovveiiiiiiiiiiiiiireee e 290

13.2.2.1. Serializable Isolation versus True Serializabilityc.ccceuenne 291

13.3. EXPICIt LOCKING ..ottt ettt st e 291
13.3.1. Table-Level LOCKS......cccociiririiiiieieniiciceeeee e e 292

13.3.2. ROW-LeVel LOCKSc..couiiiiiiiiiiiiieienieceieeeee st 294

13.3.3. DEAdIOCKS. . ..coueeieiiieieiieieiteeee ettt 295

13.3.4. AdVISOTY LOCKS ...c..eoiiiiiiiiiieiciicececce e e 296

13.4. Data Consistency Checks at the Application Level............cccccocieiiiinininnennn. 296

13.5. Locking and INA@XES........cccueeuieuieiiirieiiniiiieieeeeee e 297

14, Performance TIPScccooieieiiiiiieiieeeeee ettt s 299
14.1. USING EXPLATIN .eeutiiuiiieiiiteieeteete et eee st eieete st eseesaeeeesae st esesseessesseeneesaesaeenesnees 299

14.2. Statistics Used by the Plannerccooceeieiirieiinieeneeees e 303

14.3. Controlling the Planner with Explicit JOIN Clauses..........cccceeeereereeeenerceneennens 305

14.4. Populating a Databasecceeeruirierienieienieeiieie sttt 307
14.4.1. Disable AULOCOMIMILec.veruirieriiriieientieienteete et te st ee et enae e eesaeas 307

14.4.2. USE COPY.utuirtiieienieneeiteiente sttt ettt sae sttt et sae st s s et eaesresbenaens 307

14.4.3. REMOVE INAEXEScouvevieiiiiieiienie ittt s 307

14.4.4. Remove Foreign Key COonstraintscccoeeeceerereenenensienieneenenceneennees 308

14.4.5. Increase maint enance. WOTK_ MM ceeens 308

14.4.6. Increase checkpoint_SEgmMENTS ..iiiiviieeiieeeeieeeiieeereeeereeeeveeeereeeaneas 308

14.4.7. Turn Off ArChive MOAE oo e e e e e e e e e 308

14.4.8. Run ANALYZE Afterwards.........cccocovvviiiiiiiiiiiiiiiics 308

14.4.9. Some Notes About Pg_dUmP ...c..coeevveriieieniriienenieeneeteeeeee e 309

I1I. Server Administration 310
15. Installation INStIUCHIONS ..c..ceuvertietieiirieeieienitetenteetete ettt ettt ettt saesaeesaesbeeanenneene 312
I5.1. SROTt VEISIONviiiiiiiiiciiciicini et 312

15.2. REQUITEIMENLSveeiieenieeiiesiieeieeieesite et ettesttesbeeteesbtesabeesseesbeesasesnseenseessseensesnseens 312

15.3. Getting The SOUICE.....ccceiiiiiiiiieriieeeetee ettt st ebe e 314

15,4, UPZIAQING ..couveeiieiiieieeiee ettt ettt ettt et sttt e st e sateebeesbeesabeebeesee s 314

15.5. Installation ProCeAUIe.........c.ccocveriirieiieniiniiiinietenceeereeeereeee et 315

15.6. Post-InStallation SETUP.......cceevveiriieriiiieeiterite ettt sttt e 323
15.6.1. Shared Librariescocceceeieeenirienienieieniieeee sttt 323

15.6.2. Environment Variables...........coceeveeriiiiinieinienieeieeieenieeeeeeieesie e 324

15.7. Supported PIatfOrmscooeiiiiiiiiiiieeeecee et 324

16. Installation 0N WINAOWS.cc.eeeiiiiiiiriiniieieenteete ettt ettt e sb e st beesaaesaee e 326
16.1. Building with Visual CH+4 2005........cocoererieieineneniieieteeercereneeeeeeee e 326
16.1.1. REQUITEIMENLS ...cuveeieiietieiieeeeiiesieeitete et ete et eeesee et eesbeentesteeneeneesneensesneas 326

16.1.2. BUIIAING ..ottt st 327

16.1.3. Cleaning and inStallingcccocereereriienienieiese e 328

16.1.4. Running the regression eSSooveririerierieienieeceie et eee e 328

16.1.5. Building the dOCUMENtAtioN.........cceeiruirrirenieieieinere et 329

16.2. Building libpq with Visual C++ or Borland CH+....c..coeeeveieininenicniciiincncee 329
16.2.1. Generated fIleScoeruieriirieieniiteiet et 330

17. Operating System ENVIrONMENtccccoeiieiierieieniinieie ettt 331
17.1. The PostgreSQL USEer ACCOUNLc..cevueriirieriiriieienieetenie ettt ettt 331

17.2. Creating a Database CIUSLETcceveeriirerieniiniieienieeteseeteest et 331
17.2.1. Network File SYSteMScoeeieririinieniieiinieetenie sttt 332

17.3. Starting the Database SEIVeT..........ccceviririerierieiiineeieneeteeseeee et 332
17.3.1. Server Start-up Failuresccoccvceeveriiiiininiiniiieeneeecececcee e 334

17.3.2. Client Connection Problemsc..coccevereriinininnieninniineneeneneereniene 334

17.4. Managing Kernel RESOUICES.c.covuiiriiirieriiieniienieeie ettt ettt s 335

ix

17.4.1. Shared Memory and Semaphoresccccceveerieenieeniienienieeieeneeseeeae 335

17.4.2. Resource LIMILSccccveiriiiiiiiiiiiiiiiiciccccccn e 341
17.4.3. Linux Memory OVErCOMMILccereerieerieeniierienieeieeneeeeesieenseesseesanes 341
17.5. Shutting DOwn the SEIVET........cociiiiiiiiiiiiiiieeieeeie et e 342
17.6. Preventing Server SPOOTINGc.coviiiieiiiiniiiieiieerite ettt 343
17.7. ENCIyption OPLONS. ...c.ceveiuriiieiieiiniteienie ettt ettt nesne e esne e ene e 343
17.8. Secure TCP/IP Connections with SSLcccccooviiriiniiiniiniinieiieeneceeeeee 345
17.8.1. Creating a Self-Signed Certificatecocoecevirienenieiienineccneeeeeee 346
17.9. Secure TCP/IP Connections with SSH Tunnelsc...coocevviriiiniiniiniinnenneen. 346
18. Server CONfIGUIATIONcc.eiiiiiiiiiiirieieeee ettt 348
18.1. Setting Parameterscocueiuieiiiiiiiiiiii et 348
18.2. File LOCALIONS ...ttt ettt ettt ettt et sae e aesnean 349
18.3. Connections and AuthentiCation.ccceeverteruierieneeriene et 350
18.3.1. CONNECHION SELHINES ..evreueeeienieriieieeiestieienteete e s e e st et et eseenee e eesaeas 350
18.3.2. Security and AuthentiCation...........cccevueeiereeieneieeie e 352
18.4. Resource CONSUMPLION........couieuieriirieeienteeitenteettete st etesteeetetesbeentesteeneeseesaeeaesneas 353
L84, 1. MIBIMIOIY ..ttt ettt ettt eb ettt et sttt et et e e saeeae b 353
18.4.2. Free SPace Map.......coeeueeieruirienieiteiesitee ettt sttt s 355
18.4.3. Kernel Resource USAge........coccevuirierieniieieniieienieiceiesieeeeieeieeie e 355
18.4.4. Cost-Based Vacuum Delayccccooevievieniniiiniiiienieieeeeeeeceeee 356
18.4.5. Back@round WIIter........cccueririininieieniieieieeteee sttt 357
18.5. Write Ahead LOZ ...cveiiiiiiiiiieieieet ettt e 358
18.5. 1. SEUNES..cuviviriieieriieteet ettt ettt sttt ae e b 358
18.5.2. CRECKPOINLS.eevitiiiieiieeiiieieerite ettt ettt ettt e e e aeesnbeebaesanesnees 360
18.5.3. ATCRIVING c.evieiiieiiieieeeeee ettt ettt sttt et e saaeseeas 361
18.6. QUETY Planming.......cccueeiuiiiiieiieiieiie ettt ettt ettt st ebe e esebeebeeaee s 362
18.6.1. Planner Method Configuration...........cecceevverieeneeneeniieneeneesieenieesiee e 362
18.6.2. Planner Cost CONSLANLSccueveuieiriiiiiniiieieieieiie e 362
18.6.3. Genetic QUETY OPUMIZETeovveeruieriieiiieieeiee ettt et ere et esbee e saees 363
18.6.4. Other Planner OPtONS.covviiieerienieriieieeite ettt eee st e e 364
18.7. Error Reporting and LOZZINGccccuerieiriinieiieiieeniie ettt st 365
18.7.1. WHEre TO LOZ ..coueiiiiiiiiiieeie ettt 365
18.7.2. WHen TO LOZ c..ooeieiiiiieiee ettt 367
18.7.3. What TO LOZ ..ottt 369
18.7.4. Using CSV-Format Log Outputc..cccevieiiinirienenieeieieeeie e 372
18.8. RUN-TIME StAISTICS ...verveiieeriiiiieeieenite ettt ettt ettt ettt e et et st eee e i 373
18.8.1. Query and Index Statistics COllECtOrccevirieniininiieniieeeieeeeeneee 373
18.8.2. Statistics MONIOIINEZc..couiiiiiiiieieniieieieeeeie st 373
18.9. Automatic VaCuUMINGcceeviiiiiiiiiiiiiiieienietee e 374
18.10. Client Connection Defaultscoocoverieiirieiireeee e 375
18.10.1. Statement Behavior........cceecieiiiieieiieeeeee e 375
18.10.2. Locale and FOrmattingccccoeceeierieieneeiene e 378
18.10.3. Other Defaults.......ccooeeiiiieieeiieest e 379
18.11. Lock Management
18.12. Version and Platform Compatibilitycccoeoveviriiiienenienenieeeeececee e 381
18.12.1. Previous PostgreSQL Versionsc.ccecereeienerienieneniienieeeenieseenee e 381
18.12.2. Platform and Client Compatibility..........ccccecererieneniniieniniencrceeeee 383
18.13. Preset OPtiONS....cueruieiertieieieetieie ettt ettt sttt sttt ettt s bt ettt sbee e saeeaesbeas 383
18.14. Customized OPLIONS ...c..eeuveiiriieiiniieierieeiteiesttete ettt ettt ettt e e saeesae b 384
18.15. DeVElOPEr OPLIONS ..cuveuveririiiriieiirieetenie ettt ettt st et sttt ebee e saeeae i 385
18.16. SHOTT OPLIONS ...couvivienieiieiteieeitete ettt ettt sttt sttt et et ebee e saeeae b 386
19. Database Roles and Privil€Zesc.ccoceecieriiiinininiiniinienenteiesieeteieetenee e 388

19.1. Database ROIESoeeieeiiuriiiieeiiieie ettt et eeare e e e st e e e eeaaeeeeeearaeee s 388

19.2. ROIE AITDULES...c..eveeiriiieiiiiieieeieniecetceit ettt sttt s aeeae 389
1.3, PLIVIIEEES ..eevvieniieiiieeieeite ettt ettt ettt et st ettt st e b e sateebeeaee s 390
19.4. ROIE MEMDETSHIP ...eouveiiiiiiiiiiiiieriieeeetee ettt st e 390
19.5. Functions and TTIZEETSeevuerriieriieiieeitenieeieeieesite et eiee sttt eaeesbee st eaeeiee s 392
20. Managing Databasescoeeceeririeiiinieieiieeere ettt sttt st 393
20. 1. OVETVIBW ..eniiiiiieiieeitesite ettt ettt ettt s ettt et e sbt e sabe e bt e s bt e sabeenbeesbeesabeenbeebeens 393
20.2. Creating a Database.........cc.coeeieriirieiiniieiei ettt 393
20.3. Template Databasesccccoceevieriiiieiiiniiniiiieece et 394
20.4. Database Configurationccccoceecueriieieniieieneneeiesie et 395
20.5. Destroying a Databaseccccoiiiiiiniiiiiiiiieieneceeeeeeee e 396
20.6. TabIESPACESeeniiiieiiiiieiierie ettt st 396
21. Client AURENTICALIONeeuvieieiieieiiieieet ettt ettt eseesee st ee bt et e sbeeaeeneesaeeaesaeas 398
21.1. The pg_hba. Conf fIle ..ottt s ae e 398
21.2. Authentication MEthOdS.........cccoeriiiiiiiiieiee et 403
21.2.1. Trust authentiCAtION.cecuerueeierteeiieiestieie ettt saeas 403
21.2.2. Password authentiCation...........coceeeeruerieieneeienienieie e 403
21.2.3. GSSAPT authenticationccoceeeeruerieieneeienieneeiesieeesie e 404
21.2.4. SSPI authentiCationcccuevueeierierienieniieienie ettt s 404
21.2.5. Kerberos authentiCationcc.cceeerereeienieeieneneeniesieetesieeieenie e 404
21.2.6. Ident-based authentiCationc..ceoeveeienerienenienieneeeneeeenee e 405
21.2.6.1. Ident Authentication over TCP/IP..........c.ccocvivvininienincencnnen. 406

21.2.6.2. Ident Authentication over Local Socketsccccceevveenircennennen. 406

21.2.6.3. TAENE MAPS ..cutiriieriiieieeiieriieeteeieesiteereesre e ieesreebeenseessseenseeneeens 406

21.2.7. LDAP authentiCation........c..cecuerueeeeriineenienenienienieeienieeeeneesieesiesieeneniene 407
21.2.8. PAM authentiCation..........c.ccecueruerieniineeieneeienieniterenieeeeeneesieesaesieeneniene 408

21.3. Authentication ProDIEIMNScceerieriirrieerienieeieeriteste et esieesitesreeseesieesbeeseeseens 408
22, LOCAZATION ..c.eeeuieiieiieieeitete ettt ettt ettt st ettt ettt et sae st sb et ebe e bt s enaenae s 410
22.1. LOCALE SUPPOTIL...ciiiiiiieriieeiieiiterite st erteesite sttt ebeesitesitesbeesbeesaeesabeeseenseesabeenseeseens 410
2211 OVEIVIBW ...oniiiieiieieniteteett ettt sttt ettt b e sae st 410
22.1.2. BERAVIOT ..ottt ettt st 411
22.1.3. PTODICINS ..ottt ettt st 412

22.2. Character SEt SUPPOTL.....cceueeruieriierieerieeritesteerteesttesttesteesteesseesbeesseesbeesaseenseenseens 412
22.2.1. Supported Character SELS........ccceeveerieriieriienienieeieerte st e esbee st eee e 412
22.2.2. Setting the Character Set..........c.ccocuevierieiiinieieenieriereneeree e 415
22.2.3. Automatic Character Set Conversion Between Server and Client........... 416
22.2.4. Further Readingccccocoviiiiiniiiiiiiiiciieecceceeeee e 418

23. Routine Database Maintenance TasKs.........ccocueevuerriiniiniienieinienieeieeste et 419
23.1. ROUtinge VACUUMINGocueiiiiiiiiiiiiiieieniieieie ettt s 419
23.1.1. Recovering Disk SPace.........coeeueeveiriniinienienieieintieseeieteeeieeesreneene 419
23.1.2. Updating Planner StatiStiCscceeverueruierierieienieeieiesieeee st 420
23.1.3. Preventing Transaction ID Wraparound Failures..........c.cccccceceniniennnnen. 421
23.1.4. The Auto-Vacuum Daemonccceeeeeieriiiinienieniieniienieeieesieeeieeeeee 423

23.2. ROUtiNg REINAEXINGeveeutiiieiieiiitieiesteeiteie ettt st 424
23.3. Log File MainNteNanCe.ceeeueeruerueeienieeiienieeieeniesieeitesteeteetesteesteseesieenaesbeeneenaeene 425
24. Backup and RESIOTEcccueiuiiiiriiiiiieiieee ettt et 426
24.1. SQL DUMP...ttiiiiiiitieieeees ettt sttt ettt et et st ae b seenaeeae 426
24.1.1. Restoring the dumpcccooceevieniriinenieeececeeeeee e 426
24.1.2. Using pg_dumpall......c..ccceveriiininiineniiiineetene et 427
24.1.3. Handling large databasesccoceeverieienirienenienienieeieneeeenee e 428

24.2. File System Level Backupcocevieviiririiniiienienenieieeieeeetese st 429
24.3. Continuous Archiving and Point-In-Time Recovery (PITR)ccccccccvininnee. 430

Xi

24.3.1. Setting up WAL archiving.........cccecceevieeieiiiienienienieeniieseeeie et 430

24.3.2. Making a Base BacCKUDcoooveviiiiiiinieiieiieeiteceeeiecieeeeie e 432

24.3.3. Recovering using a Continuous Archive Backupccecceeveenienieninnns 434

24.3.3.1. RECOVETY SEUINZS....eeveeiieriiiiieeieeniieeieeieenieeste et ste e 436

24.3.4. TIMEINES.......ooviiiiiiiiiiiiiiccc e 437

24.3.5. Tips and EXamplescccoeieviiririeiinieiiieieerecieseeree e 438

24.3.5.1. Standalone hot backups.........ccccecveeuieienirieneninienieeccsceeeee 438

24.3.5.2. archive_command SCIIPLS ...cceereerieeeruereeienieerereeeere e 439

24.3.0. CAVEALS ...uveeeeeiieeiteeiteete ettt ettt sbt e et e bt e sbe e st st e bt e st e st e e be e st e saneenne 439

24.4. Warm Standby Servers for High Availabilitycccccocoeviiiiniiiininiininiicene 440
2447, PIANNING ...eeiieiiiiiieiteeteeteeeteee ettt ettt sttt e be e st 440

24.4.2. IMPLEMENTATIONeeutieeieieeieeieeieetetesttet et e see e tesbe e e s teeneeseesneeneesaeas 442

24.4.3. FAILOVET ..ottt ettt ettt ettt sttt et e eeeenean 442

24.4.4. Record-based Log Shipping........ccccevevierierieienerieiesceesieeee e 443

24.5. Migration Between Releasesc.cevuiriiieriiieieiieesieeeeeee et 443

25. High Availability, Load Balancing, and Replication.............ccccevcereenenieienencencnceeene 445
26. Monitoring Database ACHIVILYcceeuerierieiririerienieieiee ettt ettt ne 449
26.1. Standard UnixX TOOISc.cecueririeriiieienieeee sttt 449

26.2. The Statistics COIECTOT.cviiiiriirriieieieieiieeste ettt s 449
26.2.1. Statistics Collection CONfIUIAtIONccueveeeererienenieienieeeenieseeeennees 450

26.2.2. Viewing Collected StatiStiCscooueruerierieneriienenienienieerenieeeenie e 450

26.3. VIEWING LOCKS ...cuveiieiiiiieienieeteestetet ettt ettt st 457

26.4. DyNAMIC TIACINE ..evveuvirteeieniieiieieiieetenteeitete ettt ettt sttt ae e naeene 457
26.4.1. Compiling for Dynamic Tracing..........cccccveeveerieneerienenneeneneeneneerenene 458

26.4.2. Built-in Trace POINESc..coceevierierieriiniiiineeteiesieeceeeeenee e 458

26.4.3. USING Trace POINLSccuveriiiiierieeieeiienieeie ettt ettt 458

26.4.4. Defining Trace POINLS........cooivvieriiiriieieeie ettt 459

27. Monitoring DiSK USAZEcccvevruieriiiiiieieeiiieiieeieeiee ettt e sitesteesteesbtesatesbeesbeesasesnseenne 461
27.1. Determining DiSK USQZEcccveerueeriiiriieniienieeieeitesitesieesiee st sre et sieesteeieeniee s 461

27.2. Disk Full Failure.........cccocoiiiiiiiiiiiiiiiiiiccccceeeecc e 462

28. Reliability and the Write-Ahead LOg......ccccueriiiiiiiiiiiiieiieieeiieeieeeete et 463
28.1. REHHADILILY ..oovviiiiiiiiiiiccc s 463

28.2. Write-Ahead Logging (WAL)cooiiiiiiiieniiiieeteste ettt 464

28.3. Asynchronous COMMIUL..........cecueririerieniirieniineeie ettt eee st eresieeenenneene 464

28.4. WAL CONfIGUIALIONouviiiiiiieiieiiiiieienieetcte ettt eae 465

28.5. WAL INEEINALS ...eoutiiiiiiiiiiieiteiteeete ettt ettt et et e 467

29. RegresSion TESES.......ccueiiiiiiiiiieie ettt sttt st st s 469
29.1. RUNNing the TeSEScc.couiiiiiiiiieiiiieieeeee ettt 469

29.2. Test EVAIUATION ...c.eeiiiiiiiiiiiieiieieeiteeeeteete ettt et st 470
29.2.1. Error message differences.ccccoeeevirinenenienieinineneneeeeeecereseneene 470

29.2.2. Locale differencesceoerieiereeieesiieieete et 471

29.2.3. Date and time differencescceoeererierienieiieneeieiesee e 471

29.2.4. Floating-point differencescccccueviririinenenienieinine et 471

29.2.5. Row ordering differences..........coeeveieiriinenicnienieininesesieieeeeeeeeseene 471

29.2.6. Insufficient stack depthccccooerieiiniiiiinieiecee e 472

29.2.7. The “random” STcceeruirieriererieiestieteste ettt sttt e e s naeas 472

29.3. Variant CompariSOn Filesccoceiieiiiriiiiiniiieenenteeeeeeeese e 472

Xii

IV. Client Interfaces 474

30. TIDPQ = € LADTATY .euevieiieiiieiite ettt ettt sttt st e sbe e i e st ebeesaeesaeas 476
30.1. Database Connection Control FUnctions...........c.ccccceuevieiiininininicnininincicnes 476
30.2. Connection Status FUNCHONScccocuiiiiiiiiiiiiiiiiciciice e 482
30.3. Command Execution FUNCHONScccoecieriiiieiiniiiiiiniceeeeeneeeeeseerenene 485

30.3.1. Main FUNCHONS «...oocuiiriiiiiiiieiteeceeeteee ettt 486
30.3.2. Retrieving Query Result Informationcccceceevieiniininieninnienene 492
30.3.3. Retrieving Result Information for Other Commandsccccecceeveneee 496
30.3.4. Escaping Strings for Inclusion in SQL Commands...........cccccceveeeenninne 497
30.3.5. Escaping Binary Strings for Inclusion in SQL Commands 498
30.4. Asynchronous Command Processing..........ccceccvererueciecirenenenenieneeeneneneneennes 499
30.5. Cancelling Queries in PrOZIessccooieieririenenieiesieeieeeeie et 503
30.6. The Fast-Path INterface..........cccoiiiieiiiiieiie e 504
30.7. Asynchronous NOHICAIONcerueruierieriieienieeiceie ettt 505
30.8. Functions Associated with the COPY Commandc.ceceeeereerienenieneneeienene 506
30.8.1. Functions for Sending COPY Data........ccccoverierinieiieninieneeeeesceeene 507
30.8.2. Functions for Receiving COPY Data........ccoceeievinienieniniinciieeneceene 508
30.8.3. Obsolete Functions for COPYccccveiririinienienieieiniineneieeeeee e 508
30.9. Control FUNCLONScc.eoueieiiiiiiiriieiiieieietetteese ettt sttt s 510
30.10. Miscellaneous FUNCHONSc.coceeuirierieiiiiininenieieieteeseereeeeeee e 511
30.11. NOUICE PrOCESSINGveveeuiiiiriiiiiniieienieeiteie ettt sttt sttt eae 512
30.12. Environment Variablescccocooiveriiieinininenicieieieeeeeeeeeeee e 513
30.13. The Password Fileccccceviiininiiiiiiiiiiiceccseeee e 515
30.14. The Connection Service Fileccccoeviiviiiiiinininiiiiiininceccecce 515
30.15. LDAP Lookup of Connection Parameters...........ceecvervveereeneenieeneeneesveesieeneens 515
30.16. SSL SUPPOTL.ccuuviiiiieiieiieeitettesite sttt e sitesteebe e ttesitesbeesseesseesabeesseenseesaseenseenseens 516
30.17. Behavior in Threaded Programs............cccocuvvvieenienieiiieenienieeieecenee e 517
30.18. Building libpq Programs............cccceevieriiniiinieeienieeieeitentc ettt 518
30.19. EXample Programs.........coceevuierieniiiniienienie ettt st st ettt siee st eseenaee s 519

31, LarZ8 ODJECLS ..eeuveeiieeiieeiieiite ettt ettt et b e st e bt e bt e st e st e st e e sbtesabesabeesbeesatesate e beenatesanas 528
311 INErOAUCHION ..ottt 528
31.2. Implementation FEatUrescccevviiiierieniiiieeiente ettt 528
31.3. Client INterfaces.ocueeuieiiririeierieieeeete ettt s 528

31.3.1. Creating a Large ODBJECtcc.ccuerirviinieieniiieieniceeeeeee e 528
31.3.2. Importing a Large ODbJect........cceeveviirieiiiniiiiienieieeeece e 529
31.3.3. Exporting a Large ODbJect........cccecveviirieiiiniiieiinicicecece e 529
31.3.4. Opening an Existing Large ODbjJect...........ccccecveeiiniiiininiiniiiceneciee 529
31.3.5. Writing Data to a Large Object..........ccccceviiiiiiniiiiniiieiieceseciee 530
31.3.6. Reading Data from a Large Objectccooceeieiinieiinieieneeceeseeeee 530
31.3.7. Seeking in a Large ObJect........c.oeveriirieriinieieieeiieeeeee e 530
31.3.8. Obtaining the Seek Position of a Large Object.........ccceeeeevireeneniecenienne 530
31.3.9. Truncating a Large ODJECtc..coecuriririniinienieieieieneneieeeree e 531
31.3.10. Closing a Large Object DeSCIIPLOrcoueeierieriierienieeieneeeere e 531
31.3.11. Removing a Large ODJECtcevevuirieienieiieieniieiesieeteee e 531
31.4. Server-Side FUNCHONS.cc.oiiriiiiieienieetee ettt s 531
31.5. EXample Programccccovirioniiiiienieieeccee ettt 532

32. ECPG - Embedded SQL N C.....cooiiiiiiiiiiiieicicieineseseereteie ettt 538
32.1. THE CONCEPL...cueeiiriieniiiieiesieeitete ettt ettt ettt ettt ettt et ettt st e b sbeesnenaeeae 538
32.2. Connecting to the Database SEIrVer.........cccccvirierirerieninieieneeteneeeeeseereneae 538
32.3. CloSing @ CONNECHIONeeuviriiriieieniietenieeiteteeieetesteeiteste sttt sbeeseestesaeesaesbeessenaeene 539
32.4. Running SQL Commands..........c.ccoceevuerierieniineenenenienieneetesieeteseesieesiesieenenienne 540

Xiii

32.5. ChooSINg @ CONNECHION.eeriieriieriiieiienitenieeieeritesitesbeesieesieesbeebeesseesabeeseenseens 541

32.6. USING HOSt Variablescccueevuiiriiiiiiiiieiiesieeieeite sttt sttt st e 541
32.6. 1. OVETVIEW ..vtiiniieiiiieiieeiteete ettt sttt ettt sttt e st st e bt e sate st e enbeesaeesaees 541
32.6.2. DeClare SECHOMNS. ...c.eevuieriiiiieniieeieeitesit ettt ettt st e e s e 542
32.6.3. Different types of host variablesccoecervienieniiniiinieneceeeeeeee, 542
32.6.4. SELECT INTO and FETCH INTO weeereereeriuersueereeeneenieenseeneeseeenseeseennes 543
32.6.5. INAICALOTS.uvveeeieeirieeeeeceee ettt e ettt e e eee et e e e eeeareeeeeenreeeeeesanseeeeeennnnes 544

32.7. Dynamic SQL....c..coiiiiiiiiiiieieteeteeee et 545

32.8. PELYPES LIDTATIY ...ceeniiiiiiicieeee e 546
32.8.1. The NUMETIC LYPE ...cevemieniiiiiieiieiieieeie ettt 546
32.8.2. The date LYPE......eeueeeiiiieiiiieieteeiiete ettt s 549
32.8.3. The timeStampP LYPE......eeruerueeeerreerieieeieeiesteetestesseeeesteeneesaeeneeneesreeneeneeene 552
32.8.4. The INterVal LYPEccverueeeirieeieitiet ettt ettt ettt s ene 556
32.8.5. The decimal tYPe.......cceerueruerieriieiieieeieeie sttt ettt s ene 556
32.8.6. errno values of pEtypeslib.......ccooieiiiiiiiniiieie e 557
32.8.7. Special constants of pgtypeslib.........ccceceririiiriniiiinieeeeeeseeee 557

32.9. Informix compatibility MOde.........cccccvevverieininiininiieieieeneeeeceeeeeee e 558
32.9.1. Additional embedded SQL statements............ccccceeveeeeereeeeciieeeieeeeeee e, 558
32.9.2. Additional fUNCLIONS.c.eervierieeiieiienreeie et eee et eeeeebeesaeeseeeeenes 558
32.9.3. Additional CONSLANES.cc.eerveerreeieeriienreeieereereeseeeteeseressreeseenaeesseensnes 567

32.10. Using SQL DeSCriptor AT@aS.........cccuerieeierierierierienienienieeienieeeesiesieeniesieesenieene 568

32.11. Error Handlingcoueveiiininieiiniciecetce ettt 570
32.11.1. Setting CallDACKScooererieriiniiiiinieieneetecstteteteete et 570
32,112, SQICA ettt ettt e e eaees 572
32.11.3. SQLSTATE VS SQOLCODE c.cterttestreereereersresressreesseesuesseesseesssessseensesseessnes 572

32.12. PreproCeSSOr QITECTIVESvirruieriieriiierieeriieeiieeieenieesitesbeesaeesseesreeseesseesseenseenseens 575
32.12.1. INCIUAING fIl@S....uiiiieiieeiiieiieieete ettt 575
32.12.2. The #define and #undef direCtivesccceevevveeeciiiiecie e 575
32.12.3. ifdef, ifndef, else, elif and endif direCtivescccveeeeeevveeeeeeiinneeeeeeinnns 576

32.13. Processing Embedded SQL Programs............ccccceevierieeneeniiniieeeeniee e 576

32.14. Library FUNCHONScooiiriiiiieiieiieeieesitesite ettt sttt st siee st ebeeiee s 577

3215, INLETNALS ..ottt ettt sttt et sttt e bt st eb e b 578

33. The Information SCREMA...........ccvieriiiieiiie et e ree e sebee e beeeereas 581

33.1. The SCREMAcceiiiiiiii et ettt e e e et e e et e e sasae e s ebeaesseeennneas 581

33.2. DAta TYPES ..ottt st 581

33.3. information_schema_catalog _NAME ..ueeeeeiiireeeeeeiirreeeeeeireeeeeeerreeeeeeenseeeens 581

33.4. administrable_role_authorizZationsS .o eeeeeeesirsreeeeeeens 582

R R Tt o NI Ty oY RSN oo N I =Y SRR 582

R T T ol o ok B o1 N =Y = TR RRRRRRY 583

33.7. check_constraint_roUfine_USAGE .ccoiveeeiiiiiiieeeieiieeeeeeiriee e e eetree e e e enreeees 585

33,8, ChE K CONSETAINES toiiiiiiiiiiiiie et e e e ettt e e e e e e e eeeeeseesa e aeeaees 586

33.9. COLUMN_AOMAIN_TUSAGE ttrrieeieerriiieeieitireeeeeeireeeeeeitreeeeeeetreeeessesraseeeeensreseeeaesssaeens 586

33.10. COLUMN_PTivVilEges cioriieeieciiiiieeieiieeeeeeeiteeeeeeitteeeeeeetreeeeesearaeeeeesnsreeeeesnsseeeas 587

33,11, COLUMN UL _USAGC e iiiitiiieeeeerieeeeeeitreeeeeettreeeeetteeeeeeeataeeeesssraseeeanssseseeeansreeens 587

33,12, COLUIMNS ceiteeieeittttireree et eeeeeeeeeeeeesetabareerereeeeeeeeeeeeesassarsaasrereesaeeeeeeeeenesssssrsrnrneees 588

33.13. constraint_COLUMN_USAGTE wiiieerrrrurreeerirrreeeeiirreeeeeeetrereessesrareeesssreseesssssesens 593

33,14, ConStraint_tabl e USATE . iiiieiiiieeiieeeeteeeeteeeeteeeeteeeesteeeeesseeeseseeaseseeaneas 593

33,15, data_ tyPe PrivVileges e iiiieeiteeeeiteeeeteeeeteeeeteeeesteeeeesseeeseseeareseeaneas 594

33,16, AOMAIN CONSETAIINTES tteeeettetiteeeeeeeeeeeeeeeeee e e et eeeeaaeeeeeeeeeeeereeaaaaraaaaaaaaaees 595

33,17, dOMain_ UL USAGC ciiiiiiiieeetiieeitteeeteeeeteeeeteeeetreeeeaseeeeteeeesseessseesesesanasesennneas 595

33,18, OMAIIIS tiietieieitieeeiiee et e ettt e ettt e et e e e vt e eeaaeeesbee e treeeaseeentaeeeatseesasseesaseeenasesenreas 596

RO R R =Y ool o4 < Y= 1= SRRSO 598

Xiv

33,20, 1A L A, T O LS e eee e et e e e ettt ———————eaeataeaee ettt —————————————. 601

33,21, Ky COLUMN _USATC i iittrieeieerreeeeeeitrreeeeeeitereeeeeireeeeeeeisreeeeeeeraeeeeensreeeeesnrreeees 601
33,2 DAL AMEE T S uuiiiiieitirieeeeeiteeeeeeeteeeeeeette e e e e eeetaeeeeeeetbeeeeeeetreeeeeearateeeeetrreeeearraaeas 602
33.23. referential CONSTIAINTS weeeeeeee ettt eeeeeeeeeeeeeeeeeeteeeeareeaeaaeaaees 605
33.24. r0le_COLUMN__GIANTS tiriieeieeirreeeeeeiirreeeeeeitrreeeeeireeeeeeeisreeeesseseseeeesssreeeeessssseeens 606
33,25, role _rOULANE _GranTS iiiiiiiiieeeeeiieeeeeeetreeeeeeereeeeeeetreeeeeeearaeeeeeeareeeeeeearreeeas 606
33.20. rOle_ LAl _GLants ciriieeieeiieeeeeeiieeeeeeeiteeeeeeeereeeeeeetreeeeeeeraeeeeeesreeeeesenrreeeas 607
33,27, £0le_USAGE_GTANES witrerciieerreerirreesiteeessreesseeessseeessseesssseeassseesssseessseesssesssssens 608
33.28. rOULINE_PTrivViLlegeSs iiiriieeriiieeiieeeitieeeieeesireeesteeesreessreeasreessseessseeessseeessses 608
33,20, L OUE AN S cetriiee ettt ettt ettt ettt e e e et e e e et e e e e taa e e e e abae e e e e ebraaeeeenraaeaas 609
33,30, SCREMAT A ceetriieeieiitiee e et ee e ettt e e e ettt e e e et e e e e et e e e e e etre e e e e e ntae e e e eanrraeeeeanrraaeas 615
33,3 . SO OUEICE S cuttiieeeetieeee e ettt e e eeete e e e e ettt e e e et e e e e e et te e e e e e etaa e e e e e eataaeeeeanrtaeaeeanraaaeas 615
33,3, SOl FEALUTES cietttieeieeiiieeeeeettee e e eette e e e eette e e e e etteeeeeseataeeeeeentaeeeeennsaeeeeeanraaeeas 616
33.33. sgl_implementation_INFO v e e et e et e e eaareee s 617
33.34. SOL_L1ANGUAGES teurreeeeeirrreeeeeitieeeeeeitteeeeesetteeeeeaasreseaesesressesaassaseesasssreseeesssseeens 617
33,35, SOl _PACKAGES tieietiieeeie ettt e et eetee e et e et e et e e et e e e et e e et e e et e e e et e e eteeeereeeeaneas 618
R I TG LT =T B < Y- s o PP UUPRRUSRRU 619
R T = Te A =B 5 I s < OO URRRTPRRP 619
33.38. SOl _S1ZiNGg _PrOFIles oriiiiiieeiieeeiteeeeiteeeeteeeeteeeete e eete e e et e e eta e e e teeeereeeeaneas 620
33,30, LA L COMSETAITITES teeteeeeeeeeitteee e e e e e e e e e e et e e e e e e e e e e eeeeeeeeeeaarsaeaaaaaaaees 620
33.40. LA le Privilege S i aiiieciieeeeieeeeiteeeetee e ettt eeeteeeetae e etreeeaae e etaeeeareeeeareas 621
33 LA LS tiiiitie ettt ettt e ettt e e e e b e e e at e e e ta e e eteeeetaeeeabeeenareeenreas 621
RIS I S o ok K e 1= of - SO RSP TRRURRRR 622
R I R TR 1M o ok v T =T £ Y- FUUU SRRSO 624
33,44, VieW_COLUMN_USAGE ttrrrrieeierirrreeeieirreeeeieitereeeeesseeeeeessssessesssssessesessresseessssseees 624
33,45, VieW _rOULINE_ USEGE tiriiiieeiiiieeieiteeee e et eeeeeete e e eetaeeeeeeearaeeeeeeareeeeeenareeees 625
33,40, VieW LAl e USATC.ciiiiiiiieiiiiieeeeeeiitreeeeeeiereeeeerteeeeeeeitaeeeeeeiraeeeeeetreeeeeenrreeees 625
3347, VEEWS teterteeeetesteetete et eteste et este s st e b e teessese e st ensesae e st e seesaenbeeseentenseestenseereensensaens 626
V. Server Programming 628
34, EXtending SQL.....c.eooieiiiiieeeeteite ettt ettt et st b e saeesaees 630
34.1. How EXtensibility WOTKS.........coociiriiiiiinieniiiieeteste ettt 630
34.2. The PostgreSQL Type SYSteM......cccccueriiriiriinieiineeienieeeereste et 630
34.2.1. BASE TYPES ..ceveniiiierieiieiesieeeeteee ettt st 630
34.2.2. COMPOSILE TYPES....ccuviuiererierieiieiieteeie ettt sttt 630
34.2.3. DOMAINS ..eeuvvieeeiieeiieesiieeesieeeeteeeereeseteessaeesseeessseeeessaeessseeessseeesssessnsses 631
34.2.4. PSEUAO-TYPES ..ottt 631
34.2.5. PolymorphiC TYPESccouiririiiiiiiieiiiieeenie ettt 631

34.3. User-Defined FUNCHONScccieiiiiiieiieeiecie ettt ettt eve e e s veeaaenee s 632
34.4. Query Language (SQL) FUNCHONSooviriiriiiiieieiieiesieeieeee e 632
34.4.1. SQL Functions on Base TYPescccevierererieneniieienieiesie e 633
34.4.2. SQL Functions on Composite TYPEsccccerieruerrierienienienenceneseeieneene 634
34.4.3. Functions with Output Parameters...........c.ccecererienieninrienenienenceenene 637
34.4.4. SQL Functions as Table SOUICEScccceviieeiuiiieiiieeeiiee e 638
34.4.5. SQL Functions Returning Setsc.cccceerververienerinenenenieieieenesrenenns 639
34.4.6. Polymorphic SQL FUunctionscccceeereiienenienininieneeeenenieeeniene 640

34.5. Function OVerloading.........c.ccecererierienienienintenie sttt ettt 641
34.6. Function Volatility Cate@OIIiesc.eeverteruieriirienieniertenienitetenteeteseesieeniesbeenenieene 642
34.7. Procedural Language FUNCHONScoccecieriiriininenienientciesieetenee et 643
34.8. INternal FUNCHONS ...ccueeeiiieiieiieriie ettt ettt sbeesaeesaesbeeaeesseesabeenseenseens 643
34.9. C-Language FUNCHONS.c.cooierieriieieeniesieeieenitesitesieesaeeseeesbeeseesseesnseensasnseens 644
34.9.1. Dynamic Loading........ccccceeriierieriiieniienienieeitenieesee ettt sne st eieesaee e 644

pay

34.9.2. Base Types in C-Language Functions.........c..cceeceevvieriieenienieensieeneeneennes 645

34.9.3. Version 0 Calling CONVENLIONSeeveerurereerriieniienienieeniieneeseeenieeseenanes 648
34.9.4. Version 1 Calling CONVENLIONS ..c..eevveerirerierrieeniieniienieeniiesieeseeenieesieenanes 650
34.9.5. WIIING COAE....couuiiiiiiieiiiiiiieiieete ettt sttt st e 652
34.9.6. Compiling and Linking Dynamically-Loaded Functions 653
34.9.7. Extension Building Infrastructure...........coccceceevienieriieenienienieenieeneenene. 655
34.9.8. Composite-Type ATZUMENLScccccuevuieriererienienierenteeeenieeeeneseenennene 657
34.9.9. Returning Rows (Composite TYPeSs)ccccoeevevrerieciininieenereeieneereiene 659
34.9.10. REtUINING SELS.....ccouiruiiiiiieieiieiietiee ettt ettt s nene 661
34.9.11. Polymorphic Arguments and Return Types.........cccccceeeeniniieniniicenine 665
34.9.12. Shared Memory and LWLOCKScccooiiiiiiniiiiiiiccccncciee 666
34.10. User-Defined AZEIrEZatesccevuieiertieieniieiieriesieeie sttt eeeseeeee e sreeneeseeens 667
34.11. User-Defined TYPEScoveveueruiririinriicieieeeitneste sttt sttt s 669
34.12. User-Defined OPerators...........cceeeeruerieeierieeieniesieetesteeieeie st eeeseeseeseesseeneesaeens 673
34.13. Operator Optimization Information............cceccerererierenieieneeese e 673
34.13.1. COMMUTATOR tevevirenrenrenterietesiesseteseesteuessesseseseneeneesessesaesensensenesuessenenne 674
34.13.2. NEGATOR .eueuiuiiireienrenterietesiesseeessesteuesuessesesseneentesessesaessessensenesuesnensenne 674
34.13.3. RESTRICT weoutruiiireienrenteieeiesteseeteaeesteae st st s sent st eses e saesae s ennenesuessenenne 675
341314, TOTIN ittt sttt sttt st s 676
34.13.5. HASHES ittt sttt sttt et eb s st s s aee 676
34.13.0. MERGES . c.ccutiuiiuiiiiieietentettetesie sttt st sttt ene b sa e snenene 677
34.14. Interfacing Extensions To INdeXes........ccccceereerereriininieiieniiieneneeesieeenene 678
34.14.1. Index Methods and Operator CIassescoceveevvenereeneneenenenvenenne 678
34.14.2. Index Method Strategiesc..ceceevuireeriererienienieienieeteneseene e 678
34.14.3. Index Method Support ROULINESccccevcverviienienieeiieniieeieeieeieeseeene 680
34.14.4. AN EXAMPIE ...ocuviiiiiiieeiiiieeieete ettt ettt ettt 681
34.14.5. Operator Classes and Operator Families...........ccecceevvenienieencieeneeneennnn. 684
34.14.6. System Dependencies on Operator CIassescceecvvereerceerieenieeneennne. 686
34.14.7. Special Features of Operator Classes........cocverveerieriieenienieerieeenieeneennnes 687

35 THIZEETS weeeuveeneeeieesite et ettt et et bt e st e et e bt e st e et e eabeessbesabesabeesbtessbesabeebeesaeesateenbeanaeesanas 689
35.1. Overview of Trigger Behavior..........coocieviiiiiiiieinieniciieetetc et 689
35.2. Visibility of Data Changes...........ccecueeruierieniiiiieiiiente ettt 690
35.3. Writing Trigger FUnctions in Ccccovieriiiiieinienieiieeieentceeeeeiee e 691
35.4. A Complete EXamPIEcc.ooiriiniiiiiiiiiiiciiitceneceeeeeerese et 693
36. The RUIe SYSIEIMcouviiiiiiiiiiciieiceet ettt st s 697
36.1. The QUETY TTEC.....cc.eeoiiiiiiiiieieeee ettt 697
36.2. Views and the Rule Systemcc.ccoiiiiiiiiiiiiiiiiceeceeeee e 699
36.2.1. How SELECT Rules WOrKcccoeeviiiiiiiniiiiiiiiiieceeceeeeeee 699
36.2.2. View Rules in NON-SELECT Statementscccceeeeervieeneeneenseeenieeneennes 704
36.2.3. The Power of Views in PostgreSQLccocoiiiieiininiireeeeseeeee 705
36.2.4. UPAating @ VIEW.....ccuiruieiiiiieieitietieie ettt sttt ettt sae e sae b enee e ene 705

36.3. Rules on INSERT, UPDATE, ANA DELETE eeteeeteteeeeeeieeeeeeeeeeereeeeeeeseeeeeesesseeeeeeeees 705
36.3.1. How Update Rules WOrkccocoeiiiiiiiniiieiiieeeeee e 706
36.3.1.1. A First Rule Step by Step......ccceeoverieieniiieenceeeeeec e 707

36.3.2. Cooperation With VIEWS.......cccoieieiiniiiiiniiieiesieeeeene e 710

36.4. Rules and Privil@Zescccooieiiriiiiiiniieienie ettt 716
36.5. Rules and Command StatUs...........coeeueeveieirininenenieieieeneseeseeeee e 717
36.6. Rules VErsus TIIZEETS ..c..ceoveririeriiiieienieeitete ettt ettt 717
37. Procedural LangUaZEsc..cocverierieiiniiienieniteienitetese ettt sttt sttt et e 721
37.1. Installing Procedural Languagesc..ccceeereerererienenieiieneeeeneeeeiesieevenieene 721
38. PL/pgSQL - SQL Procedural Languagec..coceeeueveeienerienenieienieneenieseeieseeneniene 723
38.1. OVEIVIBW ..ttt sttt sttt ettt sttt bt ettt eatesaesbeebesbeesnenbeene 723

xvi

38.1.1. Advantages of Using PL/PESQLcoocieviiiiiiiiiieeieteeeeeeeeee e, 723

38.1.2. Supported Argument and Result Data Types......ccccceevveereeneerciieneeneennne. 723

38.2. Structure of PL/PESQL....c.uiiiiiiiiiiieitetee ettt st 724
38.3. DECIArAtIONSeeuviiieiiiiieiieniceiteteee ettt ettt ettt et st nneeae 725
38.3.1. Aliases for Function Parametersc..cocceceeverieiiinincencniencnecrennene 726
38.3.2. COPYING TYPES werevierieiieeiiettete ettt sttt st 728
38.3.3. ROW TYPES ..ttt 728
38.3.4. RECOTA TYPES ..ottt 729
38.3.5. RENAME ...titteeiieeiieeteesiteeiteesteesttesutesbeesstesatesabe e beesatesabeenbtesatesateebeesseenaees 729

38.4. EXPIESSIONSccureuiiiieiiitieiientieitente sttt et et e ne et eaeesaesaeenesaeeaneneene 730
T 7 1 (N 1] 111111 SRR 730
38.5. 1. ASSIZNIMENL ..ueeeiiieiiiiieeiieeieeete ettt sttt sttt st e e saee e 731
38.5.2. Executing a Command With No Result..........c.cocceiininiiiiiiiniieeee 731
38.5.3. Executing a Query with a Single-Row Resultcccoceniniininiiiinnne 732
38.5.4. Executing Dynamic Commandsccoooeeierienienienenieneecene e 733
38.5.5. Obtaining the Result Status........cccoecivieriererieninieeeeere e 735
38.5.6. Doing Nothing At Allcccoeiiiiiieiieeeeees e 736

38.6. CONLIOL SIUCLUIES....cuveeuieeiieiiertieeieerteeeteeteesteesseesssesseesseesseesnseesseenseessseesseenseens 736
38.6.1. Returning From a FUnCtion...........cccoeeevieniiieninieienieencceesceeiee 736
38.0.1.1. RETURN ..ottt ettt ettt st sttt st sae s 736

38.6.1.2. RETURN NEXT and RETURN QUERYcccecurirrirrenuennereerenenrenuenne 737

38.60.2. CoNditioNalscoeeruirieeriiniiieiieiieereet ettt 738
38.0.2.1. TF—THEN .eouirtiteuieiteiteteeteteeee ettt s 738

38.60.2.2. IF—THEN=ELSE t.eerttrtenuerieeienienrenteeieeneesreetenieessentesseensesmeensensens 738

38.6.2.3. IF—THEN-ELSE IF.iicccsitrtertenierrenteneentenieensenieesrensesseensesmeensensens 739

38.6.2.4. IF-THEN-ELSIF—ELSE .ecceesertrrenreneenienieetenieerensesseensesmeensennens 739

38.6.2.5. IF-THEN-ELSEIF~ELSE ..ceccestrrenrireeruenieenienieerentesseensesmeensennens 740

38.6.3. SIMPIE LOOPS ..eerevieiiiiieiiieiterie ettt ettt sttt st e 740
38.0.3.1. LOOP .viiiiiiiiciiieitctteee et 740

38.0.3.2. EXIT oottt ettt st s 740

38.6.3.3. CONTINUE ..eiitiuiiuiriiititeieieieiieic sttt st s 741

38.60.3.4. WHILE c.eoviiuiiiiiicieii ettt st s 741

38.6.3.5. FOR (INtEZET VATIANL)....covueerurernreeieeniienieeieenieesieesieenieesateeieenieens 742

38.6.4. Looping Through Query Resultsccccoecerviieniiniieniiinienienieeeeeeee, 743
38.6.5. Trapping EITOTSccuooieiiiiiieiieicieeceereeeeeeeee e 743

38,7, CUISOTS ... ueieeutieeeiiieeetieeeteeesiteeeseteeesaeessteeeassaeessseeesseeasseesssseeansseesssseessseesnssessssens 745
38.7.1. Declaring Cursor Variables............ccccoceeveririeniinieiienieece e 745
38.7.2. Opening CUISOTLScc.coueeiiriirieiieiieieeteeee ettt ettt s sre e neene 746
38.7.2.1. OPEN FOR QUEI Y eeuvteeeurrerirrreaiereesiureesaseessseessssesssseessssessssessnsses 746

38.7.2.2. OPEN FOR EXECUTE tecteetieterteeiereesseeneenseeeenseeeesseseensesseesenseens 746

38.7.2.3. Opening a Bound CUISOr.........coceririerenieienieecese e 747

38.7.3. USING CUISOTS.euieeiriieiesieeiiesteettete et etesteestebesbee st e steeseesaesaeenaesbeeneeneeene 747

38.7. 3.1 FETCH toutteiiteeiteeteesite ettt ettt sttt et sbee st nee s 747

38.7.3.2. MOVE ..ttt ettt sttt sttt ettt st b ettt ese et et eaenbeas 748

38.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..eovveirviemnieenreenrenneeenneens 748

38.7.3.4. CLOSE .eeuttitteietieiteit ettt sttt sttt ettt sb ettt et ae b 749

38.7.3.5. Returning CUISOTScccerueerierierieniiniienieniteienieeieenteeiee e seeeneesieas 749

38.8. Errors and MeESSAZESceveruiruieiiriieieniieitenieeitete st eite sttt st este st site st sbeesnenaeene 750
38.9. Trigger ProCeAUIEScoceviriiniiiiiieniietee ettt 751
38.10. PL/pgSQL Under the HOOdccooouiriiriiniiiiiiiiiiieictceceecse e 756
38.10.1. Variable SubStIULIONc..cecverterieriirieieneeteteseeteeete et 756
38.10.2. Plan CacChingccceoveeviiririiniiniieiinceieniecteestteteeeee e 758

XVii

38.11. Tips for Developing in PL/PESQL......coociiiiiiiiiiiinieiieeieerec et 760

38.11.1. Handling of Quotation Markscceceervverriienieniieniiienienieeieeieesee e 761
38.12. Porting from Oracle PL/SQL..........coooiiriiiiiiiiiienieeieetesec et 762
38.12.1. Porting EXamplescocueiriiinieniiiiienienieeieeiteete ettt 763
38.12.2. Other Things to Watch FOT..........ccocciiviiriiiiiiiiieiceetceeeeeeee 768
38.12.2.1. Implicit Rollback after Exceptions..........cccccoeecveriieveenincennennen. 768

38.12.2.2. EXECUTE utteteeteesiteeieeieesiteeteeteesieesseesseesbeesasesnseenbeesasesnsesnseens 769

38.12.2.3. Optimizing PL/pgSQL Functions.........c..ccccceeecverirveencrcennennen. 769

38.12.3. APPENAIX...ciiiiiiiiiiiieieiieieeeee e e 769

39. PL/Tcl - Tcl Procedural Language............cocovecuieiieiiniiiieneiieieneeeeie e 772
LI B 0 1) 1< SRR 772
39.2. PL/Tcl Functions and ATZUMENLS........cc.eoveeeutrerenenieeereeniesrensenseeeneesessessenuennes 772
39.3. Data Values in PL/TCl......ccciiiiiieciieieeeeece ettt ettt s be e 773
39.4. Global Data in PL/TCLcccuiiiieiieiieceeetecte ettt ve e s eeee e 774
39.5. Database Access from PL/TCl......cccuioiieiiiiiieieeeecie ettt 774
39.6. Trigger Procedures in PL/TCLcoooeoieiiinininincicicieeseeceeeecee e 776
39.7. Modules and the unknown COMMANG........cccveereerierrrerieeneeneeeieeseeseeeeveeaeeneeens 778
39.8. TCl Procedure INAIMEScccccveereeriieriienieeieeieenieesireeseesteesseesseeseesseessseesesnseens 778
40. PL/Perl - Perl Procedural Language...........c.cccoereeieniinieniinieienieetenienitee e 780
40.1. PL/Perl Functions and ATZUMENTS...........cecueruerierieneeienienienienieeienieeeeneeseeeneennens 780
40.2. Database Access from PL/PEr]ccooceviiiiiieiienieciieseee ettt 783
40.3. Data Values in PL/PET........cccoociiiiiiiiiieeieeieeteee ettt 786
40.4. Global Values in PL/PEI]cccoecuiiiiiirieiiieieereee ettt 786
40.5. Trusted and Untrusted PL/Per]oocvviiiiiienieniieiieeeeeieeeesee e 787
40.6. PL/PEIT TTIZZEIS ..eeveeeuieeiieiierieeieeitesitesiteeteesitesitesbeesaeesatesabeensaessaesnseensaenseesssas 788
40.7. Limitations and Missing FEaturesccccceevierieriiiiienienienieenieenee e eeeesiee e 789
41. PL/Python - Python Procedural Language...........ccoecvevvieeniieniinieeieenie et 791
41.1. PL/Python FUNCHONScccuiviiiinieniieiieitente ettt sttt sttt e e s s 791
41.2. Trig@er FUNCLIONSeovuiiiiiiiiieiieeiie ettt ettt sttt st ettt e st e esaae e 795
41.3. DAtaDASE ACCESS ..eeuveeuieriiieiieniieniteeteesite sttt eteesttesatesabeesseesatesabeesbeesseesaseeseesaeesaees 795
42. Server Programming INEETTACEoeveeviiiiiiiiieiieiie ettt 797
42.1. Interface FUNCHONS ...cc.eiiiiiiiiiieiieeieeteet ettt sttt et 797
SPI_CONNECT ...ttt ettt ettt et st e sb e st st e beesaeesaees 797

N d 503V o BTSRRIt 799
SPI_PUSI .ttt st 800
SPL_POP et st s 801

N & B o) 1 LT 802

N & B O 805
SPI_PIEPATE.....ceiiieiieeteeeee ettt ettt ettt ettt 806

S PIEPAIE_CUISOTeeiiieiiiiiieeiieeieeeite ettt ettt et sttt st e e e e 808
SPI_getargCoUNLcciiiiiiiiiiiiiicicee e 809
SPL_getargtyPeid......ccuevuieieiieiieieeieeerieet ettt 810
SPL_iS_CUISOT_PIANeitiiieiieicee ettt s 811
SPI_eXECULE_PlaN....ccouiiiiiiiiiiieiiieieeteec ettt 812

N o IS (TS o R O O OSSOSO P PR O PRSP ROTPPOPPPPP 814
SPI_CUISOT_OPEIL.c.uiiniiiiiiiiieiieeie ettt ettt sttt sttt ettt e sbe e 815
SPLCUISOT_fIN.ciiiiiiieeeeeeeeee ettt e e e et e e e e e e e e aa e e e et eeeeeeeeeeas 817
SPLCUISOT_fEUCR ...ttt e e r et e e e e e e e e e 818
SPI_CUISOT_INOVE ..ttt et ettt e e e e e e e e e e s e s s e s aaaaaaateeeeeeeeeseens 819
SPI_SCIOll_CUISOT_TEECH ...vvviiiieiiiieieeeeee et e e e e e e e 820
SPI_SCIOIl_CUISOT_INOVE ..evvvviiiiiiiiieeeeeeeeeeeeeeeeee ettt e e e e e e e e e e sessesaaassaaaseeeeeseeessens 821

S CUISOT_CLOSE..eiiieeeeeeeeee ettt et e e e e e e e e s e s s e aaaaaaateeeeeeeeeeeeas 822

XViii

SPI_SAVEPIAN ...c.utiiiieiieiieeieeete ettt ettt st 823

42.2. Interface SUpPOrt FUNCHONSeevuiiiiiiniieniiiiieiierite ettt 824
SPI NAME.....eoiiiiiiieieiiete ettt st 824
SPIL_ANUMDETcoviiiiiiiieicitee ettt st 825
SPI_ZELVALUE ...ceeieiieiieeieeteee ettt st et 826
SPI_getbinvalcc.cocviiiiiiiiiiieieeee ettt 827
SPL_GEILYPE ...ttt st 828
SPL_gEttyPeid....c..coueiieiieiiiiieieeeeeceeee e s 829
SPI_gEtrelNameeovuiiiiiiiiiriieeie ettt 830
SPI_gEtNSPNAME.......c.eiiiiiiiiiiiieie ittt st 831

42.3. Memory Managementcccouieierieriiieniinieieeeeeeste et 832
SPIPAILOC ...ttt 832
SPI_TEPAIIOC ...ttt 834
SPL_PITEE. ..ttt sttt aeeae 835
SPL_COPYLUPLE ...ttt st be et eae 836
SPIL_IEtUINTUPIE ...ttt ettt 837
SPL_MOAIFYTUPLE ...ttt 838
SPLATEEIUPIE. ...ttt st 840
SPL_{TeetUPLaDIC.coueeiieiiiiiiiee ettt 841
SPL_ATEEPIAN.....coutiitiiiieieeite ettt st 842

42.4. Visibility of Data Changes.........cccceeerererieninieieneeenieetenesieete et 843

42.5. EXAMPIES ..ottt sttt sttt ettt sa e st 843

VI. Reference 847
L. SQL COMMANGS.......viiieiiiiiiiieeiieeciee ettt e ettt eete e e et e eeere s e tbeeestseeestseessseessreseesseessseeesssesannns 849

ABORT ...ttt ettt et sttt et a e st 850

ALTER AGGREGATEcotitititiietieeetereeteeeeetest ettt sa e st 852

ALTER CONVERSIONcoeotiiiiiiietinteeneeeteeteteste ettt sttt et sae st eae e 854

ALTER DATABASE ..ottt ettt ettt st 856

ALTER DOMALINooiiiiiiiiititenteeett ettt ettt et ettt et ae st enesaeee 858

ALTER FUNCTIONocoiiiiiiiiiiiieieteetetent ettt ettt sae e ne e 861

ALTER GROUP ...ttt ettt 864

ALTER INDEX ...ttt ettt ettt et sse e e sesseensesseeneenseeneensennenn 866

ALTER LANGUAGEoootiieeieee ettt ettt sttt sae e sesneas 868

ALTER OPERATOR ..ottt ettt st e s s aeenean 869

ALTER OPERATOR CLASS ...ttt ettt ettt sae s eesnean 871

ALTER OPERATOR FAMILY ..ottt 872

ALTER ROLE ..ottt ettt et sttt esaeeneeeeenean 876

ALTER SCHEMA ... oottt ettt sttt sttt et e saeeaeeeeeneas 879

ALTER SEQUENCE ...ttt sttt snean 880

ALTER TABLE ...ttt ettt sae e sae s 883

ALTER TABLESPACE ...ttt st 892

ALTER TEXT SEARCH CONFIGURATIONccceiiiiiiininierienieeesieeeenee e 894

ALTER TEXT SEARCH DICTIONARYcoiiiiiiiiiieiinieieneeterieseee et 896

ALTER TEXT SEARCH PARSER........cociiiiiiiiiiiteeeeeeeteee e 898

ALTER TEXT SEARCH TEMPLATEccooooiiiiiinieieneeeeeteeeeeeete e 899

ALTER TRIGGERcoouiiiiiiiiiiiiiteetee ettt s 900

ALTER TYPE......oiioie ettt sttt sttt s 902

ALTER USER ..ottt ettt ettt et st 904

ALTER VIEW ..ottt sttt ettt et st s 905

ANALYZE ..ottt sttt st ettt et ettt st ae st eae 907

BEGIN ...ttt ettt et ettt ettt sa e sbe e 909

Xix

CLOSE ..o 912
CLUSTER ..ot s 914
COMMENT ...ttt s s 917
COMMIT ...ttt s 920
COMMIT PREPARED.........ccocoiiiiiiiiiiiiiiciicee s 921
COPY ettt et ettt st eae 922
CREATE AGGREGATEoooiiiiiiiiieteeee ettt 930
CREATE CAST ...ttt ettt 933
CREATE CONSTRAINT TRIGGERccccoiiiiiiiiiiiiiiiieieeeeceere e 937
CREATE CONVERSIONoooiiiiiiiiiieec ettt 939
CREATE DATABASE ...t 941
CREATE DOMAIN ..ottt sttt s s 944
CREATE FUNCTION ..ottt 946
CREATE GROUP ..o 952
CREATE INDEX........ooiiiiiii e 953
CREATE LANGUAGEc.oooiiiiiiii e 958
CREATE OPERATORcoiiiiiiiiiiiiii e 961
CREATE OPERATOR CLASS ...ttt 964
CREATE OPERATOR FAMILYoociniiiiiiiiiiiiininiesieeeeetee st 967
CREATE ROLE......ccoooiiiiiiiiiiicieiet ettt 969
CREATE RULE.......ccoooiiiiiiiiiiieitrteteeteet ettt s e 974
CREATE SCHEMA ...ttt sttt 977
CREATE SEQUENCEcccooiiiiiiiiiitiectctetete ettt 979
CREATE TABLEooiiiiiiiicteeeee ettt s s 983
CREATE TABLE AS ..ottt 994
CREATE TABLESPACE.......cc.ccooiiiiiiiiiiicicceeeee e 997
CREATE TEXT SEARCH CONFIGURATION........ccccoceviiiiiiininiiieiciceciecnce 999
CREATE TEXT SEARCH DICTIONARYcccccoiiiiiiiiiiiiiiininiieicieceeceens 1001
CREATE TEXT SEARCH PARSERcccccooiiiiiiiiiiiiiciiiccccecc 1003
CREATE TEXT SEARCH TEMPLATE.........cccccccoiiiiiiniiiiiiiiininiicciccccce 1005
CREATE TRIGGER.........ccooiiiiiiiiiiiiiiicccc e 1007
CREATE TYPE ...t 1010
CREATE USER.......cciiiiiiiiiiiiiicte e 1017
CREATE VIEW ..ottt 1018
DEALLOCATEoooiiiiieteeeeeeeet ettt sttt sttt et s 1021
DECLARE ...ttt st s 1022
DELETE ...ttt e e 1025
DISCARD ...ttt et st sae e 1028
DROP AGGREGATE.........ooiiiiiiiiiiitceeneeetee ettt s 1029
DROP CAST ...t 1031
DROP CONVERSIONottt 1033
DROP DATABASE ... s 1034
DROP DOMAIN ...t 1035
DROP FUNCTION ...t 1036
DROP GROUP ... 1038
DROP INDEX ...t s 1039
DROP LANGUAGE ..ottt 1040
DROP OPERATORc.coiiiiiiiiiiiiniitcicieteteeeeeeee sttt 1041
DROP OPERATOR CLASS ...ttt 1043
DROP OPERATOR FAMILYccooiiiiiiiiiiiiienicicieiee ettt 1045
DROP OWNED.......ooiiiiiiiiiiiiiniiceect ettt s 1047

XX

DROP ROLEcoiiiiiiiiiiiiiiinccc ettt s 1049

DROP RULE ..ottt ettt sttt s s 1051
DROP SCHEMAoiiiiiiiinieineereeeree ettt 1053
DROP SEQUENCE.......c.ccooiiriiiiiineireeteete ettt ettt 1055
DROP TABLE ..ottt 1056
DROP TABLESPACEcoooiiiiiiiieteteteteesestetetet sttt ettt 1058
DROP TEXT SEARCH CONFIGURATIONcc.cceotriiiminieieieenienieneneeeeieeiene s 1060
DROP TEXT SEARCH DICTIONARYooiiiimiiieinineniinteteteeeientenieneeeeieeenieneens 1062
DROP TEXT SEARCH PARSERccoociiiiiniiiiieininenestctcteteesieseseeeeieee e 1063
DROP TEXT SEARCH TEMPLATEccociiiniiiininininciceeeeesteseneeeeieeesie s 1064
DROP TRIGGER ..ottt 1065
DROP TYPE.....oiitiiitiiieieiere ettt sttt 1067
DROP USER ..ottt sttt sttt 1068
DROP VIEW ..ottt ettt sttt ettt e 1069
EIND ettt ettt 1070
EXECUTE ..ottt ettt sttt sttt 1071
EXPLAIN ..ottt ettt sttt st sttt sttt s 1073
FETCH ..ottt sttt s 1076
GRANT .ottt ettt ettt 1080
INSERT ...ttt sttt ettt sttt st 1086
LISTEN L.ttt ettt ettt sttt ettt 1089
LOAD ...ttt ettt 1091
LOCK ittt ettt ettt sttt 1092
IMOVE. ..ottt sttt ettt sttt sttt 1095
NOTIFY ..ttt sttt sttt sttt sttt 1097
PREPARE ..ottt ettt 1099
PREPARE TRANSACTIONc.ootiriiinieieninicinetntetntee et 1101
REASSIGN OWNED......ccooiiiniiiniiinicenieeneeceetetstet et 1103
REINDEX ...ttt ettt st sttt 1104
RELEASE SAVEPOINTccoiiiiiiiiiinieenieceetnet ettt 1107
RESET ...ttt sttt 1109
REVOKE ..ottt 1111
ROLLBACK ...ttt ettt 1114
ROLLBACK PREPAREDc.ooctiititiieitriinenienteteteiese sttt ettt 1115
ROLLBACK TO SAVEPOINTootiitiiiirininienteteteienie sttt eie e 1116
SAVEPOINT ..ottt ettt st ettt sttt e et naen 1118
SELECT ...ttt sttt ettt st sttt sa ettt e et eae b sbenaen 1120
SELECT INTO ..ottt sttt et ettt sa ettt ene e sae e 1132
SET ettt ettt ettt et h b e ettt naen 1134
SET CONSTRAINTS ...ttt ettt 1137
SET ROLE ...ttt ettt ettt 1138
SET SESSION AUTHORIZATION.......c.cocetrieiinieiiniriiinietnietnieesieese et 1140
SET TRANSACTION ..ottt ettt ettt 1142
SHOW .ottt bttt 1144
START TRANSACTION ..ottt ettt 1146
TRUNCATE ..ottt sttt s 1147
UNLISTEN ..ottt sttt st sttt 1149
UPDATE ..ottt sttt 1151
VACUUM ...ttt sttt sttt sttt sttt s 1155
VALUES ..ottt ettt sttt 1158
II. PostgreSQL Client APPIICALIONScceevueruieiiriirienierteierieeteneeitet ettt 1161
CIUSEEIAD ...t 1162

xxi

CTEALEADeiee ettt e eet e e e e et e e e eeear e e e e eeeateeeeeeeareeeeeeetreeeeeans 1165

CTEALELANZee ittt ettt ettt st et e bt e st e et e ebeesabeenbeebeesabesnbeebeens 1168
CTEALEUSET .evveeuteenteeeuteeteesteesutesteesteesheesabeesbeesbtesabeenseenbaesateenseenbeesaseenseenseesssesnsesnseenns 1171
AIOPAD .ttt ettt ettt st st e bt e st e ebeebee e 1175
AIOPIANG ..ttt ettt sttt e be e st et e bt e st e e et e e 1178
AIOPUSET ..ttt ettt ettt sb e st et e bt st e et e e bt e sabeenbeebeesabeenseebeene 1181
EOPE vttt ettt ettt s b e bbbt e e bt bt b e b e ae e saaeeaeenee e 1184
PECOMIIZ .ottt ettt et sttt ne e 1186
PE UMD .ottt et ne e 1189
PEAUMPALL ... e 1197
PE_TESTOTE ..ttt ettt ettt ettt et e bt st e e bt e beesateebeebeessbeeabesbeesbbeenseebeene 1202
PO e e e s e s 1209
e 10T (55 Ca Lo T PRSI 1234
VACUUINADeeiiiiii ettt ettt e et e ettt e sabeesateeesnsbeeensaeesnseeenn 1237
1. PostgreSQL Server APPIliCAtIONScccoeueeiirieieririerieeieete ettt 1240
INIEAD .ttt ettt et e bttt e s e et e et e st e ebe e baeerbeenbaeteesebeenseereenes 1241
IPCCIRAN ...ttt ettt st e bbbt et enbe st e besben 1244
PE_CONLIOIAALA ...ttt ettt st sb et st et sae st enaesbens 1245
P Ctl ettt et h ettt et nae st ae b ea 1246
PETESEEXIOE ..ttt ettt ettt st ea 1251
POSEEICS .ttt ettt ettt et be et b et e st e bt et e bt e st e sb e e bt e bt s bt e b s bt eat et eatenaesbeeaenbeens 1253
POSIIMASTET ...ttt sttt ettt ettt ettt e e s bt e st e sb e bt e bt sbe et e sbeeatesbeebeenaesbeensenbeeas 1260
VII. Internals 1261
43. Overview of PostgreSQL INtErnalsccccveevueriiienieniieeiieiieeee et 1263
43.1. The Path Of @ QUETYccouiiiiieiieiieiieeiteite ettt st ettt e ebee e 1263
43.2. How Connections are Establishedccccccovievieniiiiiiniiiniiiieeiceee e 1263
43.3. The Parser STAZEccoeeriiiieeieiie ettt sttt sttt et sabe e ebee e 1264
43,31 PaTSET.c.utieiieiieeieeteete ettt sttt et sttt aes 1264
43.3.2. Transformation ProCess.........occevvueerieriirieeniienienie ettt 1265

43.4. The PostgreSQL Rule SYSEMc.ceviuiiriiiriiiiieieeiie ettt 1265
43.5. Planner/OptmiZeTcooutiiieerienieeieeitesite et erteesiee st eeeesbeesiteebeenaeesabesseenseenae 1265
43.5.1. Generating Possible Plans............ccceviiriiiiiiiniiiniiiiiinieceeceeeeeeee 1266

43,0, EXCCULOT ... eeecteieitieeserieesteeesteeestreesereesseaessseeesssaeessseeessseeanssesasssesasseenssseesssenens 1267
44, SyStem CatalOZsc..eeuveruiiieieiieietieeee ettt ettt ettt ettt e 1269
4.1, OVETVIEW ...eeeeeeiieiiieeiiieesteeesteeetreeseseesseeessseeesssaeessseeassseesassesasssesansseesssseesseenns 1269
VYIS oY =Y fo fial=Ye P o =SNNURUUSRURI 1270
V2T T oY HE=Y (WSS 1271
Q4.4 DG AIMOD currireeeeitrteeeeeeireeeeeetitreeeeeeeareeeeeaitreeeeeeastaeeeeaassraeseeaassseaeeeasrasaeeaarreeeeans 1272
VYIS T oY JE=Y 111 o b oo Yo FUUUU OO RO OO USSP U PP PPN 1273
ViV Y Yo B ok ol e L= PR UE U UsUUS U UURRR USROS 1274
Vi Yi R B Yo JE=N ol o o o3 L ot =SSOSO USROS UUURR OO PPPPRN 1274
44 8. PG_AULNIG it iiiiiiii et eere e e e et e e e et e e e e et e e e e eaata e e e e eatraeaeeenrraaaaans 1277
44.9. DG_AUL N _MEMDET S ceicuriieeieiirieeeeeiireeeeeeittreeeeestreeeeeesatreeeeesesseeeeeessraseeeeesreseanes 1278
44.10. PG_AULOVACUUI ceeeiuvrieeeeeitreeeeeeirreeeeessreeeeeessreseeeasssresseesssssseesssssessesssssseseenses 1278
Q.1] DO CASE ttttietieeeieeeete e et e et e ettt e et e e et e e ete e e eae e e e ae e eetteeeetae e e tteeeteeeetaaeeraeans 1280
QA1 DO CLaSS tiitttieeiteeeeteeeeiteeeet e e et e e ettt e e eeteeeeteeeeteeeeae e e taeeeetteeettaeeteeeeraaeaaraeans 1281
44,13, PG_CONSTETAINE tiiiiiiieeiieeeieeeetteeeette e et e e eteeeeteeeeaeeeetreeeeaseeetseeesseeesseeaareeens 1284
¥ B Yo B el Yo 12 =S ar = I Yo IE RPN 1286
V¥ G o Ye H e I= N o1 oY= N=T= SRR PPN 1286
¥ (Y oY Mo 1Y < 1= 3 o FUU RPN 1288
ViVi% R o Yo Hie [=Y-Toh ok oY ok e o WUUNNNNRU RN PPPRN 1289

XXii

Y TR oY B =3 o N DT U USSP URRRR PPN 1290

Vi Vi g L o Yo B I o Ve L= ST U USROS PPN 1290
Vi) O B oY B 10U o =0 o K o= SO USROS UEUUR U PPN 1293
4421, PG _LANGUAGE trreeeeeeitrreeeeeiitreeeeeeiirreeeeeeirreeeeesireeeeeesisreseeessrseeeeesireeeeeesisreeeesans 1293
44,22, PG L AT GEOD JECE terttreieeieiitreeeeeeiitreeeeeeerreeeeeetreeeeeeeiareeeeeeerseeeeeeiareeeeeeerreeaeaaas 1294
VY300 T oY B I = o =3 o 1= § NSO RS USSP OO PPN 1295
4424, DG _NAMESPACE ureeereriresreeesreeestreeaisreesoseeeaseeesssaeasseeassseessssessssseesssseesssseessseeens 1295
VYA B oTe B o) o Tol IE= = =TSSP 1296
VYIS U oTo B o) o 1= 3 o= vl e Yol SNSRI 1297
VYIS I oTo B ey o b =Y 111 I USSR 1298
ViR T oTe B o B uE= 11V Y = =SSR 1298
ViS40 I oTe B o o TSR 1299
44,300, PG L OWE AL @ ttiieeieeittieeeeeciteee e eeett e e e e eette e e e eeetaeeeeeeeabreeeeeeareeeeeeaaraeeeeeanrraaaaans 1302
44.3]. PG_SNACDENA wrrieiieeirieeeeeciteeeeeere e e e e ettt e e e e eette e e e e etreeeeeeeataeeeeeaaraeaeeeanrraaaaans 1303
ViV SR PR Yo H-Y oo (Y= Teh okl oY il Kol o FHNUUUUNNNN RSO SU USROS UUURR U PP PPN 1304
ViV B0 1C T 'eYe H- R ul= 1 ol =1 ol I < ST OO OO UUUUR SO PPN 1305
44,34, PG L AD L ESPACE cierttrieeeeeitreeeeeeitreeeeeett e e e e e s ra e e e e enbre e e e eaeataaeeeaaaraaaaeanrraaaaans 1307
VA ¥IC T W oYe J o ok e fe (=% = NUUUNN USROS U U USRS RSP URUO USSR 1307
44,36, PGt CONT LG tttriiiiiieeitieeetee ettt e et e e et e e ettt e eeaeeeeteeeetaeeeeaaeeeetaeeentseeesseeenreeens 1309
44,37, PGt S CONE LG MAP e ittieiiireeitrieeitreeeiteeeeteeeeteeeeaeeeetreeeessesestseeeesseeeassaesreeens 1309
.38, PG £ A Cltuuiiiiiieeiiie ettt ettt ete et e et e e e e e e e tb e e eear e e etae e etaeeeaaaeearaaens 1310
44,30, DO £ S _PATSET trreeireeeeteeeeieeeetteeeetteeeeteeeeteeeeaeeeebeeeetbeeeeareeetaeeeatteeeraaesraeens 1310
¥ B oY B =T = 11} B IE= X o = SRR 1311
V2V oY B o4 < = DT T U USRS RRPPPRN 1311
44,42, SYSTEM VIBWS ..evieuiieiieiiiieiienitesiteeteesttesttesteesseessaesaseeseesseesssesssessseesssesssesssesnns 1318
Vi ¥ NG T oY B o1 b Biat=Yo b of =N TSROSO 1319
ViV Vi N Yo B e b oo V) < FUUUU USROS PPPRN 1320
¥ S T oY B I oL L= 5 4= Y= T OO EOU PPN 1320
QA 46, DG _LOCKS ceeeeeitrreeeeeeireeeeeeeireeeeeestreeeeeeeaeeeeeesireeeeeesareeeeeseareeeeeeaiareeeeeeerreeeeeans 1321
4447, pg_prepared _StatemMenE S creeeeeeeireeeeeeiirreeeeeeirreeeeesireeeeeeeirreeeeeens 1324
4448, PG _PrePaArem_XACES wiiitiirreeeeeeiireeeeeeiirreeeeesiireeeeeesireeeeesiirreeeeesireeseeeeireseesans 1324
Q440 DG T OLES eieiiiiriieeeeecreee e eeeete e eet e e e e ettt e e e e e tae e e eeeara e e e eeerrteeeearaaeeeeerraeaeaaas 1325
A4.50). PG _TULES teeieeitreeeeeeeireee e eeeirt e e eeetre e e e eeeaeeeeeeetaeeeeeestreeeeeeetrreeeeeaiareeeeeeerreeaeaans 1326
A4 5], PG _SEEEANITS trreeeieiirieeeeeiirteeeeeeireeeeeeeteeeeeeetreeeeeeetreeeeeeerreeeeeaaraeeeeeatreeaeaans 1327
VYR oTe BE=) s =Y Lo) USSR 1328
T B o Yo = o= o SRS 1328
Y oTe B oY < 1 =Y USSP 1330
44.55. pg_tiMEZONE_ADDIEVS tiriiiieeriiieeierieiitreeateeesseeesreeessseesssseeesseesssseesssseesseeens 1331
44.56. PG_t IMEZONE_NAMES teveeerureeeereeeiereerirreeateeesseeessseeassseessssesessseesssseessssesssseesns 1331
QS] PO USET trteeieeteieeeeeecttee e e eect e e e ee et e e e e etta e e e eeetaaeeeeeatreeeeeaantaaaeeeartaeaeeeanrraaaaans 1332
QA 58, PG VA EWS teeieeitriieeeeeiteeeeeeete e e e e ettt e e e eebe e e e e eeaa e e e e eaataeeeeattaaaeeaaataeaeeeanrraaaaaas 1332
45. Frontend/Backend ProtoCol.........ccccuiiiiiiiiiiiieiiccieeite ettt 1334
45,1, OVEIVIEW ..uvieeieieiieiiesiteeiteeiteesteestteeteesteesstessseesseesseessseesseesseesssesseesseesssesssessseees 1334
45.1.1. MeSSaZING OVEIVIBW......cc.eerueruieiinieeiiestesiceie st eee st eaeente e eeesbesieenaeseeens 1334
45.1.2. Extended QUEry OVEIVIEWcccuevueeieriirienienieeienieeteenieseeeeeseeseeenieniens 1335
45.1.3. Formats and Format Codesccceceririeneninieninienesceeeneseeneneene 1335

45.2. MSSAZE FLOW ..ottt st 1336
45.2. 1. SEATt-UP ettt 1336
45.2.2. SIMPIE QUETY ...eoviiieiiiiieiieieeieeteett ettt ettt st et 1338
45.2.3. Extended QUETYcoceririerieniieiinieeitenie ettt 1339
45.2.4. FUNCtion Call.....cc.cocieviiriiiinieniiiiiieetese ettt 1342
45.2.5. COPY OPETALIONS ..eevveeurieirerireeiieniienresieesieesresseenseessessessseessessesnses 1343

XXiil

45.2.6. Asynchronous OPErations........cec.eereereerieeriierieriieenieenreseeesieesseseesnnes 1344

45.2.7. Cancelling Requests in Progress.........c.evcveerierienieeniienienieeieenieeeeene 1345
45.2.8. TerMINAtIONc..ouviuiiiiiiiiiiiiieieteeece e 1345
45.2.9. SSL Session ENCIyPtioN.......covevveerierienieeiienieeieeeente st 1346

45.3. MeSSage Data TYPESeeruverieeriiiriiieieeitenite ettt sttt ettt 1346
45.4. MeSSage FOIMALSc..coveiiirieiiiiieieneeeeeeeteeeic ettt et s 1347
45.5. Error and Notice Message Fieldsccccoceviiiiniiiininieiniceenceeneeeeieeene 1362
45.6. Summary of Changes since Protocol 2.0..........c.cccceceririieiininiiniiiencieeienene 1363
46. PostgreSQL Coding CONVENLIONScc.coeevueriirieriieiieienienenieerereeeeee oo saeseenesneens 1365
46.1. FOrMAHINGooviiiiiiiiiiieiieteeee ettt s ne s 1365
46.2. Reporting Errors Within the Server ... 1365
46.3. Error Message Style GUIAE.......cccvirieeriiiniiiiieiieie et 1367
46.3.1. What S80S WHETE......cceeruiiieiiitieieiteeste et 1367
46.3.2. FOIMALINZ ..c.veeveenieeieierieeiete ettt ettt sbe et ae et eeeetesbeeneeaesreens 1367
46.3.3. QUOtation MATKS.......c.eeeiiuiiieitiee et et et eeee et e et eeaeeeeaeeea 1368
46.3.4. USE Of QUOLES. c..eeuveeieniertieiieieet ettt ettt ettt et e e seeeeesbesaeenaesbeens 1368
46.3.5. Grammar and PUNCTUALION.c..eeverueeierterieienitete e eetete ettt saene 1368
46.3.6. Upper Case VS. LOWET CASEecveeuviriieieniiriieienieetenteeiee e eee et siene 1368
46.3.7. AVOid PASSIVE VOICL....eeviruieriertieiiiniieiientesitete st eite st ette e st ete b siee e sreens 1369
46.3.8. Present VS PaSt tEINSE....c.evueeruerrierienieeientenieentenieeitenteeteeteseeeeestesiaeniesieens 1369
46.3.9. Type Of the ODJECE....cccueruiriiriiriieiiitetec et 1369
46.3.10. Brackets.......cceoveieiiiiiniiiiicieicteiee e 1369
46.3.11. Assembling error MESSAZES........evveeueeruerreeruererrenienieentenieeeeniesaenseneens 1369
46.3.12. Reasons for €ITOTScccivevieieiiiniiinicecieieceeeeeeeeeeeee e 1370
46.3.13. FUNCLION NAMESoouiiiiiiiiiieiciieiieiene sttt 1370
46.3.14. Tricky words t0 aVOidccceevuierienieniieniienie ettt 1370
46.3.15. Proper SPeIlingcoceerieriiriieniienieeieeiteste ettt st 1371
46.3.16. LoCaliZation..........ccoccvviriiniiiiiiiiiiiicinesceccec e 1371

47. Native Language SUPPOTL......c.cecueerieriierniieniieeieeiteniteete st esteestesteesbeesasessseebeesssesasesnses 1372
47.1. For the Translatorcoccoiviiiiiiiiiiiiiicicicceeeeece s 1372
47.1.1. REQUITEMENLS ...veeuvieiieiiiieiieniieeieenitesite et ebtesatesaeeesbeesatesateenbeesaaesanesanes 1372
A7.1.2. CONCEPLS cuveeereeuieetteeite ettt et ete et stt e st e bt e st e sate e bt e st e sabesabeesaeesanesans 1372
47.1.3. Creating and maintaining message catalogsccevveeveerverrieeneeneennne. 1373
47.1.4. Editing the PO fIleSc..cocooiiiiiiiiiiiiiecceeeeecceeeeeeeee 1374

47.2. For the Programmer.............coccecuioieiiiiiiieiinieieneceeese e 1375
A7.2.1. MECRANICS ..ttt ettt ettt ettt 1375
47.2.2. Message-writing guidelinescccooivieiiniiiienininnieneceeeeeeeee 1376

48. Writing A Procedural Language Handlercc.ocooiiiiiiniiiiiiiicceeee 1377
49. Genetic QUETY OPHIMIZETcc.eeiiiiieiiiiiieierit ettt 1379
49.1. Query Handling as a Complex Optimization Problem..........cc.ccccocevvevveirencnnns 1379
49.2. Genetic AIZOTItRIMSc.cocoiiriiriirieieiiieereeete ettt 1379
49.3. Genetic Query Optimization (GEQO) in PostgreSQLcccccovirieniriienenenne 1380
49.3.1. Generating Possible Plans with GEQO...........ccccccecerininininccnnincnnns 1381
49.3.2. Future Implementation Tasks for PostgreSQL GEQOcccccceceeuennene 1381

49.4. Further REadingcceoieiiiiiiiiiiiiieeeeee ettt 1382
50. Index Access Method Interface Definitionccccoeceeveririeninieninceeeeeeeee e 1383
50.1. Catalog Entries for INAEXEScc.cecueririeniiniiieninieieeiteeseete e 1383
50.2. Index Access Method FUNCLIONS..........ccueveiiiiiniiniiicicicietececeeeeeese e 1384
50.3. TNAEX SCANMINEZ ...vevveniiiieiiiiieierieeteeeeete ettt ettt sttt st b et see e 1387
50.4. Index Locking Considerations.............ceceerereeriererienieneenieneeeenieseenienseesenseenes 1388
50.5. Index Uniqueness ChECKS..........coerieriirieniineenienenteieeeeteseete et 1389
50.6. Index Cost Estimation FUNCHONS............ccccvriiiiiniiniiiiiiinicieiceeeecece e 1390

XXV

VIIL

51, GIST INAEXES...uvvieieeireeeeeeiteeeeeeecre e eeer e eeete e e e e ttaeeeeeetaaeeeeenttaeeeeeentaseeeeeenrereeeeeareeeas 1393

S5T.1. TNEPOAUCHION «...veniiieiieiieic ettt 1393

51,2, EXENSIDIIILY ...eetiiiiiiiieiieiieeeeee ettt ettt et e 1393

51.3. IMPIEMENTALION......eeiiiiiiiriiieieetie ettt ettt st ettt ettt e e e saneeaees 1393

ST.A EXAMPIES ..eoueiiiiiiiiiiieeite ettt ettt ettt sb e st s bt e bt e st st e e st eats 1394

51.5. Crash RECOVETY.....ccooouieiiiiiiieieiiciciteecte ettt 1395

52, GIN TNAEXES ettt ettt ettt e e et et e st e st e sbe e s st e sat e e bt e sbeesaeeebeesaeesaeenn 1396
52.1. INEOAUCHION «.enviiiiiiiieite ittt ettt ettt e st st e b e sbbesaneeanes 1396

IR D (1] 113 Lo 1 SRR 1396

52.3. IMPIeMENtAtiON.....cc.eoiuieiiiiiiiieieiceiet ettt 1397

52.4. GIN tips and triCKS........ccocouiiiiiiiiiiiiieceeee e 1397

52.5. LIMIEALIONSeeutetieiietieiieeeetteie st eite e eat et et e e s bt este b e es et e sae et e sbesmeensesseensenneenes 1397

52.6. EXAMPIES ..ot 1398

53. Database PhySiCal StOTAZEcoceeuirierieieiriirenientceeret ettt ettt st s 1399
53.1. Database File LayOUL..........cccccueviririirienienieieininenesteteteie et eeneene e saens 1399

53.2. TOAST ettt ettt st ettt et bbbt et e s bttt b et naeeae 1400

53.3. Database Page Layoutcoccceveeriiiiiiiiiniiiicnecceecceeteee e 1402

54. BKI Backend INterface.coeeiiriiiiniinieiiiieesc ettt 1406
54.1. BKI File FOIMALcoouiiiiiiiiiiiitieieieeee ettt 1406

54.2. BKI COMMANGScouviiiriiiiiitieienieeiteieeitete sttt sttt ettt sttt sb e see e 1406

54.3. Structure of the Bootstrap BKI File........cccccoceevininiininiiiniienciecncceee 1407

54,4, EXAMPLE ..conviiiiniiiiiiieiieitee sttt ettt sttt 1408

55. How the Planner UsSes StatiStiCS......cooueruereeriiriirienieneeienieeiteniceitete ettt see e 1409
55.1. Row Estimation EXamples........ccccevvuirriirriieniiniiieieeniieeiecieenie e sene e 1409
Appendixes 1415
A. PoStEreSQL Error COAES.....couviiiiiiiiiieeiiieitesieete ettt sttt sttt st e esaee e s 1416
B. Date/Time SUPPOTTeevuiieiieriieeiietieste et ett et eite et esbtestesabeesbeesatessbeenbeesseesasesbeenseesseens 1425
B.1. Date/Time Input INterpretationc.eeveerierieereenie sttt eiee e 1425

B.2. Date/Time Key WOTdS........cooeeriiiiiiiiiiieniieiieeitesite sttt 1426

B.3. Date/Time Configuration Filescooceriiiiiiiiiiniiiiinceieeeeeee e 1427

B.4. HiStory Of UNILSooouiiiiiiiiiiieeieenite ettt sttt st sttt ae e 1428

C. SQL KEY WOTAS.....eeiiiiieeitieiieeieetterte ettt ettt ettt sttt et st e beesbee st e ebeebaesaee s 1430
D. SQL CONOIMANCEcuvviiriiieeiiieeiieeiee et eeteestte et eestee e beeeseseeesseesssseeassseesssseesaseaens 1450
D.1. Supported FEAtUIESc..cocveiiriiiiiieienieiecieeteeeeec et 1451

D.2. Unsupported FEAtUrescccoecuiriiiiininiiiinieiese ettt 1463

E. ReEIEASE INOLES ...ttt ettt ettt et e sat e sttt esbaesaeeeanes 1473
E 1. REIEASE 8.3.23 ..ttt ettt sttt sttt st ne e 1473
E.1.1. Migration to Version 8.3.23........cccooiriiiiiieiiieee e 1473

E 1.2, CRANEES .uveeiieiiieieeetee ettt ettt et 1473

E.2. REIEASE 8.3.22 ..ottt ettt st et 1474
E.2.1. Migration to Version 8.3.22.......ccccoceriiiiiieiiiniieiene e 1474

E.2.2. CRANEES .uveeeieeiiiiieeeee ettt sttt 1474

E.3. REIEASE 8.3.21 ..ottt st 1476
E.3.1. Migration to Version 8.3.21cccccoiriiniiieiiiniinienie e 1476

E.3.2. CRANZES ..cvteniiiieieieeeteet ettt st 1476

E.4. Release 8.3.20 ..ottt sttt st 1477
E.4.1. Migration to Version 8.3.20.......c.ccocervierinieiieninienieneee et 1477

Ei4.2. CRANGES ..cuviiiieienieiieeieteeeee ettt ettt 1477

E.5. ReIEASE 8.3.19 ..ottt st 1479
E.5.1. Migration to Version 8.3.19......cccceviiiriiniieiieienie sttt 1479

E.5.2. CRANEES .oouveeeieeiiieitesieete ettt ettt ettt ettt st e e e sateenbaenseesnee s 1479

XXV

E.6. REICASE 8.3.18 ..o et e e et a e 1480

E.6.1. Migration to Version 8.3.18......ccciriiiiiiriiiiieiieeesieeiteee e 1480
E.6.2. CRANZES ..uveeiieeiiieieesiteete ettt ettt ettt sttt ettt saeesaee s 1480
E.7.Release 8.3.17 oo 1482
E.7.1. Migration to Version 8.3.17......ccccevviiiriiniiiniieiteeesieeieeee et 1482
E.7.2. CRANEES ..cveiiiiieieieeieeeeeeectest ettt s 1483
E.8. REIEASE 8.3.160 ..cneiiiiiiiiiiiieeeeet ettt ettt sttt st 1484
E.8.1. Migration to Version 8.3.16.......c..ccccocueiiiriiiiininiiniieeeneceeeeeeeeee 1484
E.8.2. ChaNGEsooouiiiieiiiieieeeeee et 1484
E.O. REIEASE 8.3.15 ..ttt sttt st 1486
E.9.1. Migration to Version 8.3.15.......cccooiiiiiiiiiiiiiiecceeeeeecee 1487
E.9.2. Changescc.ooiiiiiiiiiieece e 1487
E.10. Release 8.3.14 ...cuouiiuiiieiiieieeteeceteteetetete sttt ettt s 1488
E.10.1. Migration to Version 8.3.14........cccooriiiiiieiiinieiene et 1488
E.10.2. Chang@es ...ccc.eeeuieieenieniieieeteete ettt ettt ettt e 1488
E. 1L Release 8.3.13 ..ottt sttt st 1489
E.11.1. Migration to Version 8.3.13......ccccccecrimimineneieinenenererereeeeeeiene 1489
E 112, CHANEES ..ottt sttt st 1489
E.12.Release 8.3.12 ...cuoiiiiiiiieiiieeeteteteeeee sttt 1490
E.12.1. Migration to Version 8.3.12.......cccccevieririiiieninienineenie et 1491
E.12.2. Chan@escoveeueeieriiiieieeiteieeieete sttt sttt 1491
E.13.Release 8.3.11 ..ottt 1493
E.13.1. Migration to Version 8.3.11....cccccocevvienininiiininiininceicneetecseeeeee 1493
E.13.2. CHANZES ...eevveeiiieiieiieeie ettt ettt ettt e ta et eseteebeessaesnseenbaenseesnnen 1493
E.14. Release 8.3.10 c...oouiiiiriiiiiiieeiieceteseste ettt sttt st 1495
E.14.1. Migration to Version 8.3.10.......ccccceevirriiniiienienienieeieenee et 1495
E.14.2. CHANZES ...eovieeiiieiiieiieeie ettt ettt st ettt sate et e aeesatesnbaenaeesane s 1495
E.15.Release 8.3.9 ..o 1497
E.15.1. Migration to Version 8.3.9......cccccociiriiriiiriiiiniieniienieeieesee et 1497
E.15.2. Changescceeeuieiieniieeiieieeitesite ettt ettt ettt ettt st saeesaee s 1497
E.16. Release 8.3.8 ... 1499
E.16.1. Migration to Version 8.3.8......ccccceciiriiriiiriiiiiienienie ettt 1499
E.16.2. Chan@Es ...ccc.eeeuiieiieniieeieeieeiteste ettt ettt st ettt et e i s 1499
E.17.ReICASE 8.3.7 ..ottt ettt e e 1501
E.17.1. Migration to Version 8.3.7.......ccccocevvieririiriieninienineeene e 1501
E.17.2. Changesc..ooveiiiieieieeieieeectesteeeee ettt st 1501
E.18. RElEASE 8.3.0 ..coneiiiiiiiiiiii ettt sttt 1502
E.18.1. Migration to Version 8.3.6.......c..ccccocueiirieiiiniiiiiiiieceneceeeeeeeeeee 1503
E.18.2. Changesc..coeeiiiiiiiiiieiieieeere e e 1503
E.19. Release 8.3.5 ..ottt ettt sttt 1504
E.19.1. Migration to Version 8.3.5.....cccccceoivirininiinenieieieene sttt 1505
E.19.2. Changesccoouiiiiiiiiiiiiciece e 1505
E.20. ReleaSE 8.3.4 ...ttt ettt ettt saen 1506
E.20.1. Migration to Version 8.3.4.......ccccoceriiiiiiiiinieiene e 1506
E.20.2. CHANEZES ..ottt sttt 1506
E.21. Release 8.3.3 ...ttt sttt et s st 1508
E.21.1. Migration to Version 8.3.3.......cccooiriiniiiirieniiiiene et 1508
E.21.2. CHANEES ..ottt st ettt 1509
E.22. Relase 8.3.2 ..ot 1509
E.22.1. Migration to Version 8.3.2......cccccoceviinirirnienienieniineeieneetesieeeeee e 1509
E.22.2. ChaNEES ..eoviveiiirieeieieeiteeeteee ettt et 1509
E.23.RelaSE 8.3.1 ..ottt s 1511

XXVi

E.24.

E.25.

E.26.

E.27.

E.28.

E.29.

E.30.

E.31.

E.23.1. Migration to Version 8.3.1......cccceeiiiirieriiriieiieniiesie ettt 1511

E.23.2. ChANZES ...eovvveeiiieiieiieeie ettt ettt st ettt st e b et st s beesaeesaee s 1512
Release 8.3 ..o 1513
E.24.1. OVEIVIBW ..ottt e 1513
E.24.2. Migration to Version 8.3........cccccevviiirieriiriiiiientesie ettt 1514
E.24.2.1. General........ccccoiriiiiinieiiiieicienceeeneeeeeseere e 1514
E.24.2.2. Configuration Parameters..........c..cccccoeevveciiniecinieiencneenenenns 1516
E.24.2.3. Character Encodingsccccccerieveniniieniinieeiinieicncneeieneee 1516
E.24.3. Changesc..cccoeouiiiiieiieieieeeesee ettt s 1517
E.24.3.1. Performancec..ceceerierienieenieenieeieeieesteeie et 1517
E.24.3.2. SEIVET .ottt 1519
E.24.3.3. MONITOTING .. .cotttieieiieiiesieeiieie ettt sae et aeeaens 1520
E.24.3.4. AUthentiCation..........coceeiuiirierrieinieinieeieeieesteee et 1520
E.24.3.5. Write-Ahead Log (WAL) and Continuous Archiving 1521
E.24.3.6. QUETIES ...ooouviieeiee e et eaee e 1521
E.24.3.7. Object Manipulationc..ceccereenienerienienienieneeienie e 1522
E.24.3.8. Utility Commands...........cccceceerereerienenienienieieneeiesie e 1523
E.24.3.9. Data TYPEScocviiiiiiiiiiiiiiiciccice e 1523
E.24.3.10. FUNCHONS.....cuiiiiiiiiniinieieieieesitetetereeeeeese e 1524
E.24.3.11. PL/pgSQL Server-Side Language............cccceeeveeveencneenennenns 1525
E.24.3.12. Other Server-Side Languagesceceevvereerveneerieneneenenenns 1525
E.24.3.13. PSALauiiiiiiieieeeeeeeteee et 1525
E.24.3.14. pE_dUmD ..co.coviiiiiiiiieieieetcesceeseeteestee et 1526
E.24.3.15. Other Client AppliCationsccceevvveevieerieerieniieesieesreesieenieenns 1526
E.24.3.16. 1iDPQ c.voviiiieiciiiiiecccce e 1526
Ei24.3. 17, @CPE ueeeueeeieeieeitieeteeteestte sttt ettt ettt sete et et e s ateeaeebee e 1527
E.24.3.18. WIndows POrt.........cccoeviiiiinininiiiiiciciiieccece 1527
E.24.3.19. Server Programming Interface (SPI)cccccoevevvieniennennennns 1527
E.24.3.20. Build Options.....ccccoeeieriirieniineeienenreieneetenreeeenneseesnenieens 1528
E.24.3.21. Source Code........ccvivuiiiiiiniiiiiiciciececc e 1528
E.24.3.22. Contribcccoviiiiiiiiiiiiiiic 1529
Release 8.2.23 ..o 1529
E.25.1. Migration to Version 8.2.23........cccceeviiriiriiiiniienienieesieesee et 1529
E.25.2. Changesc..coceeuiriieieiieieieeeeeesteeteee ettt 1530
ReIASE 8.2.22 ..ottt 1531
E.26.1. Migration to Version 8.2.22........c.ccccevirieiieninieniiieneneereieseeee e 1531
E.26.2. Changescccceouiiiiiiiieiieiieeeeere ettt s 1531
REIASE 8.2.21 ..ottt 1533
E.27.1. Migration to Version 8.2.21........ccccociiiiiiiiiiiiiiiicicecceeecee 1533
E.27.2. ChANZES ...eeveiiiieiieiteete ettt sttt ettt ettt st 1533
REIaSE 8.2.20 ..ottt 1534
E.28.1. Migration to Version 8.2.20........ccceecueririerienieienie et 1534
E.28.2. CHANEZES ..ottt st sttt et 1534
REIEASE 8.2.19 ..ttt 1535
E.29.1. Migration to Version 8.2.19......cc.cccccvirininenierinininenesierereeeeeenene 1535
E.29.2. ChaNEESooviruiiiiiieieiieitee sttt st 1535
Release 8.2.18 ..ot 1536
E.30.1. Migration to Version 8.2.18........ccccevueririeieninieniineenie et 1537
E.30.2. ChanEeScoveeveeiiieiieieeiteeeieete ettt st sttt 1537
RElEASE 8.2.17 .ot 1539
E.31.1. Migration to Version 8.2.17.......cccccevueririenieninienineeienienrenieeieeeeseeenee 1539
E.31.2. CHANZES ...eevveeiiieiieiieeie ettt sttt sttt e seteebeesaeesatesnbaenseesnne s 1539

XXVii

E.32.

E.33.

E.34.

E.35.

E.36.

E.37.

E.38.

E.39.

E.40.

E.41.

E.42.

E.43.

E.44.

E.45.

E.46.

E.47.

E.48.

REIEASE 8.2. 160 ..cuiiiiniiiiieieiectetete ettt 1540
E.32.1. Migration to Version 8.2.16........cccceevieriiriiiiniienieniieieeseesie e 1540
E.32.2. ChanGes ...ccc.eeeuiriieniienieeiteiteete sttt ettt ettt ettt et st e e saee s 1540
REIEASE 8.2.15 ..cuieieieeeeeeee ettt 1542
E.33.1. Migration to Version 8.2.15....ccccceciiviiriiiniiiiienienieeiteeeeee e 1542
E.33.2. Changesc.coceeriiriieieiieieiieeeeeseetee ettt 1542
REIASE 8.2. 14 ...ttt sttt e 1543
E.34.1. Migration to Version 8.2.14........c.ccccooiriiiininiiniieeenecreeeeeeeeeeee 1544
E.34.2. Changesc..cccoeoiiiiiiiiieieiieeeeeseeeee ettt 1544
ReIaSE 8.2.13 ...ttt 1545
E.35.1. Migration to Version 8.2.13........ccccociiiiiiiiiiiiiiiceneeeeeeeeeee 1545
E.35.2. Changescc.eeeuieieenieniieieeeteete ettt ettt e 1545
REICASE 8.2.12 ..ottt 1546
E.36.1. Migration to Version 8.2.12.......cccceeieririeiieniieienie e 1546
E.36.2. CHANEZES ...eovieeieieeieeieieee ettt st sttt et 1547
REIEASE 8.2. 11 .ot 1548
E.37.1. Migration to Version 8.2.11.....c.ccocevviiiiiiiiiniiienicee e 1548
E.37.2. ChHANEES ..ottt sttt 1548
RelEase 8.2.10 c..cueuieuiiiiiiiiiicteeeeeee e 1549
E.38.1. Migration to Version 8.2.10........ccccecuereririieninieninienie et 1549
E.38.2. Chan@escoueeueeiiiiieieiieiteteeice ettt sttt 1549
RElEaSE 8.2.9 ... 1550
E.39.1. Migration to Version 8.2.9......cccccocevviiriririiininienineeicneeteieeeeeeeee 1550
E.39.2. CHANZES ...eevvveeiiieiieniieeie ettt ettt ettt e be et eseteebeessaesnseenbaenseesnne s 1551
REIEASE B.2.8 ..ttt 1551
E.40.1. Migration to Version 8.2.8........cccecverieriiiriiieniienienieeieeneesreeveesiee s 1551
E.40.2. CHANZES ...eoouveeiiieiieiieeit ettt ettt ettt ettt e sate b e e e satesbeenseesane s 1551
REICASE 8.2.7 .ottt 1552
E.41.1. Migration to Version 8.2.7.......ccccecvirieriieriiieniienienieenieeneesteesveesieeseee s 1552
E.41.2. ChAn@ES ...covvveeiiiiiieiieete ettt ettt ettt st ettt st st esaeesaee s 1553
REIEASE 8.2.6 ..ottt 1554
E.42.1. Migration to Version 8.2.0.........cceceevuieriiriiienienienieeieeree e 1554
E.42.2. ChaN@ES ...coouveeiiieiieiieeite ettt ettt sttt ettt et st e i s 1554
REIEaSE 8.2.5 ..o 1556
E.43.1. Migration to Version 8.2.5.......ccccocevvieririiriieninieieieee e 1556
E.43.2. Changesc..ccceeouiiieieiieieiieeeteseee ettt 1556
REICASE 8.2.4 ...ttt 1557
E.44.1. Migration to Version 8.2.4..........cccoceiiiiiiiniiiniieeeneceeeee e 1557
E.44.2. Changesccccouiiiiiiiiiiieiiecese e 1557
REIASE 8.2.3 ..ttt 1558
E.45.1. Migration to Version 8.2.3........cccociriiiirieienieeienie e 1558
E.45.2. CHANEES ...eoovieeieieeiieieeieee ettt sttt et 1558
REIEASE 8.2.2 ..ottt 1559
E.46.1. Migration to Version 8.2.2........ccccceviririninenienieineneneseereeeeeneenennene 1559
E.40.2. ChaNEEScoveiuiiiiiieieiieiinieriestetetet ettt ettt 1559
REIEASE 8.2.1 .ottt 1560
E.47.1. Migration to Version 8.2.1......ccccoveriiniiirniiniiiieneeeee et 1560
E.47.2. CHANEES ..ottt sttt 1560
REIEASE 8.2 ...t 1561
E.48.1. OVEIVIEW ...eiiiiiiiiiciieiine sttt 1561
E.48.2. Migration to Version 8.2.........cccceverienerierienienienieneenienieerenienieeee e 1561
E.48.3. CHANZES ...eeovveeiiieiieriieeie ettt ste ettt st tee st esateebeesaaesateenbaenseesnne s 1563

XXVili

E.48.3.1. Performance Improvementscceeeueereerieerieeneeneessieeneenns 1563

E.48.3.2. Server Changesccccecuerieerieeniienienieenieesieeeieesiee e eieeniee e 1564

E.48.3.3. QUEry Changes.........ccceeruierierrieeniienieeieenieesiteesieesieesieesaeeniee e 1566

E.48.3.4. Object Manipulation Changesccccceveerieriernieeniensieeneenne 1567

E.48.3.5. Utility Command Changes............ccocueevuerrieerierieeeneeniensieenieenns 1568

E.48.3.6. Date/Time Changes..........ccocceevueerieerieniieenieenieeieeesee e eieenieenne 1569

E.48.3.7. Other Data Type and Function Changes...........c.cccccceereenenncns 1569

E.48.3.8. PL/pgSQL Server-Side Language Changes..........cccccceceeeuennene. 1570

E.48.3.9. PL/Perl Server-Side Language Changes...........c.cccccceervenennns 1570

E.48.3.10. PL/Python Server-Side Language Changes............c..ccccccuenee. 1570

E.48.3.11. psql Changesccccecveiiiriiiiinieiinieccceeeceece e 1571

E.48.3.12. pg_dump Changes..........ccecueevueereirieniieiieenieeieesieeseeeieesieene 1571

E.48.3.13. libpq Changesccecuerueeienienieieseeieieei e 1571

E.48.3.14. cpg Changesccceeevveeriierienieiieiiieeieeieesteeee et 1572

E.48.3.15. Windows POrt.........ccoeoiiiiriiiiiieeeeeeeeeeee e 1572

E.48.3.16. Source Code Changesccceeeeruenerienienienieneeienieseesienieens 1572

E.48.3.17. Contrib Changescccoceeeerierienienenieieniceie et 1573

E.49. Release 8.1.23 ..ottt 1574
E.49.1. Migration to Version 8.1.23.......ccccvviiiiriiiininieneneee et 1575
E.49.2. CHANEES ...eovivienieiieeieeeeeeee ettt sttt 1575

E.50. Release 8.1.22 ...cc.covciiiiiiiiiiiicieicteieieeeeet ettt 1576
E.50.1. Migration to Version 8.1.22........cccecueririerieninienineeienenresieseeeeseeenes 1576
E.50.2. ChanEESooveeueeiiieiieieeiteteeteete ettt sttt 1576
E.5T.Release 8.1.21 ..ottt 1578
E.51.1. Migration to Version 8.1.21......cccccvevieriiriiieniienienieeieesee e 1578
E.51.2. CHANGES ...eovvveeeiieiieiieeie ettt ettt sttt ettt et et e st sbeenaeesaee s 1578

E.52. Release 8.1.20 ..ot 1579
E.52.1. Migration to Version 8.1.20.......ccccceevieriiriiienienienieeieeneesie e 1579
E.52.2. ChanGES ...coouveeuiieiieiieeieeieesteete ettt sttt st e b et st st esaeesaee s 1579
E.53.Release 8.1.19 ..o 1580
E.53.1. Migration to Version 8.1.19.......ccccevriiniiiniiiiiiiiiniieiteeeeec e 1580
E.53.2. ChanGes ...ccceeviieiieniieniieeieesiteste ettt st ettt ettt et esaee s 1581

E.54. Release 8.1.18 ..o 1582
E.54.1. Migration to Version 8.1.18........ccccoceriiiriininiininieeneceeeeeeeeeeee 1582
E.54.2. Changesc..ccceouiiieieniieieiieeetesteeeeee ettt 1582

E.55. RelEaSE 8.1.17 ..ottt sttt ettt et 1583
E.55.1. Migration to Version 8.1.17........cccociiiiiiiiniiiiniieeeneceeeeeeeeeee 1583
E.55.2. Changesc..ooveiiiiiiiiieieieeeeeseee e 1583

E.56. RElEASE 8.1.16 ...cueniiuiiiiiiiiiiiieicieceiteterestetetee sttt ettt et 1584
E.56.1. Migration to Version 8.1.10.......cccceeeiiiririiiniieiere e 1584
E.56.2. CHANEZESovieiieieeieeieeteee ettt st sttt 1584
E.57.Release 8.1.15 ..ottt st et 1585
E.57.1. Migration to Version 8.1.15......cccoceviiiiiiiiiieene e 1585
E.57.2. CRANEZES ..ottt st sttt e 1585
E.58.Release 8.1.14 ...couiiiiiiieeee ettt 1586
E.58.1. Migration to Version 8.1.14........ccccooiiiiiiiiiniiieneneee e 1586
E.58.2. CHANEES ..ottt sttt 1586

E.59. Release 8.1.13 ..ottt 1587
E.59.1. Migration to Version 8.1.13ccccoceriininiiiininieneneeeneeeeeeeeeeeee 1587
E.59.2. Chan@eScoveeueeiiiiiieieeiteieeieee sttt sttt 1587

E.60. Release 8.1.12 ...cc.couciiiiiiiiiiieieicceecceee et 1587
E.60.1. Migration to Version 8.1.12.......ccoccevieriririiininiienincenieneeienieseeeeeeenee 1588

XXIX

E.60.2. CHanGESccuvevuiiiiieniieniieeiterite sttt et stte st esete bt e ieesatesbeenaeesaee s 1588

E.61. Release 8.1.11 ...cccoouiiiiiiiiiiiicicicccce e 1589
E.61.1. Migration to Version 8.1.11....c.cccocviriiriiniiiiniiienieeieeeeeec e 1589
E.61.2. Changescc.ceecuieiiinieiiieieeiteete ettt sttt ettt ettt et st e b e saee s 1590

E.62. Release 8.1.10ccooiiiiiiiiiiiiiiiiiiicce 1591
E.62.1. Migration to Version 8.1.10.....c..ccccoceriiiiiiininiininienenecreeeeeeeeeeee 1591
E.02.2. Changesc.cocveruiriieiiiieieieeeeeese ettt st 1591

E.63. Release 8.1.9 ...ttt st 1592
E.63.1. Migration to Version 8.1.9.......ccccocioiiiiiiiiiiiiii e 1592
E.03.2. Changesccccoouiiiiiiiieieiiceeee ettt 1592

E.64. Release 8.1.8 ...ttt st st 1592
E.64.1. Migration to Version 8.1.8........cccccevririninenieieinenenesreereeeeeenene 1593
E.04.2. ChANEESooveruiriieieieiieitnie ettt ettt sttt ene e be e 1593

E.05. RelCASE 8.1.7 ..ottt sttt et st 1593
E.65.1. Migration to Version 8.1.7.......ccccccevirinininenenieieenenestcreneeeneeesnene 1593
E.05.2. ChANZESeovirviriieieieiieiineseestetetetee ettt sttt e 1593

E.06. REICASE 8.1.0 ..cueiiiiiiiiiieieee ettt sttt st 1594
E.66.1. Migration to Version 8.1.6.......ccccocerieniriiiieniinienineee et 1594
E.06.2. CHANEESovieuienieiieieieeiteeet ettt st sttt 1594

E.07. Release 8.1.5ooeiiiiiiiiiieiccteetetce sttt 1595
E.67.1. Migration to Version 8.1.5......ccccoveriiniriiiiiniiienieneee et 1595
E.07.2. CHANEES ...eoviiieniiriieiieieeeteeette sttt sttt 1595

E.08. Release 8.1.4cccouiiiiiiiiiiiieiccteeteceee st 1596
E.68.1. Migration to Version 8.1.4......cccccocevviiriririieninienineeneneerenieeeeee e 1596
E.08.2. CHANGZES ...ceouveeuiieiieniieeiieieesiteste ettt ste e bee st e sateebeesaeesasesnbaenseesnne s 1596

E.09. Release 8.1.3cooiiiiiiiiiciceceece e 1598
E.69.1. Migration to Version 8.1.3......cccceiiiriiniiiiiieiieniesieeieesee st 1598
E.69.2. ChanGES ...cccuveeiiiiieriieeieeiteite sttt ettt ettt seteebeesiaesatesbeenaeesaee s 1598

E.70. Release 8.1.2 ..ot 1599
E.70.1. Migration to Version 8.1.2......ccccceceivieriiiriiieniienienieeieeseeeee e 1599
E.70.2. ChAN@ES ...coouveeuiiiiieiieeieeieesiteste ettt st ettt st ettt st esaeesaee s 1599

E.71.Release 8.1.1 oo 1600
E.71.1. Migration to Version 8.1.1.....cccccoeiuiiriiiiiiniiiiiieieeieeieeeesee e 1600
E.71.2. Changesc.ooeeiiriieieiieieiieteeeste ettt st 1600

E.72. RELEASE 8.1 ittt sttt sttt st e 1601
E.72.1. OVEIVIEW .eneiiiiiiiiiiiteeie ettt sttt ettt ettt st n 1601
E.72.2. Migration to Version 8.1.........ccccocirieiiiiniiniiiiieeeneereeeeeeeeeee 1603
E.72.3. Additional Changescc.coceeveririeniiieiieieiee e 1605

E.72.3.1. Performance Improvementsc..ccceceiieiinieicncnneniennens 1605
E.72.3.2. Server Changescccceieeierierienieseeieieeiceie e 1606
E.72.3.3. QUery Changes.........ccceecuerueeeenieeiieienieeieieetceie et see e sae e 1607
E.72.3.4. Object Manipulation Changescceceervereerueneenieneneenenneens 1607
E.72.3.5. Utility Command Changes...........ccccceceeeeruenienieneeieneneenienneane 1608
E.72.3.6. Data Type and Function Changesc.ccccecevverenevvecveenennennen 1609
E.72.3.7. Encoding and Locale Changes.........c..cccevereerieneeienenienenenne 1610
E.72.3.8. General Server-Side Language Changes...........c.ccecevereenuenncnns 1611
E.72.3.9. PL/pgSQL Server-Side Language Changes.........c..ccccceceeruennenn. 1611
E.72.3.10. PL/Perl Server-Side Language Changes.........c..cccccocereeruennnns 1612
E.72.3.11. pSQl Changesccccoueeierierieniinieeienieeiteeeiteesieeee e 1612
E.72.3.12. pg_dump Changes.........c..ceceevuererriererienienieieneeienieseenienieens 1613
E.72.3.13. ibpq Changesc..cecuevereenieneenienenieienieeienieetenie e 1613
E.72.3.14. Source Code Changesccccceveevuerereenienienieneeienieneenienens 1613

XXX

E.72.3.15. Contrib Changesccccuevuerrieenieenieeiiienieenieerieesieesieeeieenieenns 1614

E.73. Release 8.0.26ccccooiiiiiiiiiiiiiiiiiiiccc e 1615
E.73.1. Migration to Version 8.0.26........c.cccevieriiriiienienieniieieenee st 1615
E.73.2. CHANZES ...eoveeiiieiieiieeie ettt sttt st ettt st esaee s 1615

E.74. Release 8.0.25c.coiiiiiiiiiiiiiciiic 1616
E.74.1. Migration to Version 8.0.25........ccccoceririiiiininieninienenecreieeeeeeeeee 1617
E.74.2. Changesc..cocvevuiiieieiieieiieeeeesteeeee ettt st 1617

E.75. Release 8.0.24 ...c..couoioiiiiiiiieieteteteesestete ettt 1618
E.75.1. Migration to Version 8.0.24........c..cccccoiiiiiiiiniiniiceeceeeeeeeeae 1618
E.75.2. Changesc.ooveiiiiiiiiieieieeeseeee e 1618

E.76. Release 8.0.23 ..ottt sttt ettt 1619
E.76.1. Migration to Version 8.0.23.........cccccvvirininenenieiieenenesrereeeeeneereniene 1619
E.760.2. ChANEESooverviriieieieiieiinieseestetetete ettt ettt et 1619

E.77.Release 8.0.22o..o ittt sttt st 1620
E.77.1. Migration to Version 8.0.22........cccceceiiiieiiinieiene e 1620
E.77.2. CRANEZES ..ottt sttt 1620

E.78. Release 8.0.21 ...couiimiiiiiiieiieieee ettt sttt st 1621
E.78.1. Migration to Version 8.0.21ccccooeriiiiiiniiieniieeeneeeeeeee e 1621
E.78.2. CHANEES ..ottt sttt 1622

E.79. Release 8.0.20cc.coiiiiiiiiiiieieieieiteieeeeeeetee ettt 1622
E.79.1. Migration to Version 8.0.20........ccccecuererieiieninienineenieneeiesieeeeeeeenee 1622
E.79.2. CHANEES ..ottt sttt 1622

E.80. Release 8.0.19 ..ot 1623
E.80.1. Migration to Version 8.0.19........ccccocueviririiininieniniencneeienceeecene 1623
E.80.2. CHANZES ...eeovveeuiieniieiieeiieeieesite sttt et e st e st etae st e sateebeesaeesasesnbeenseesanen 1623

E.81. Release 8.0.18 ..o 1624
E.81.1. Migration to Version 8.0.18........cccceerieriiriiiinieienieeieereesee e 1624
E.81.2. CHANES ...cevuveeuiieiieriieeie ettt ettt sttt ettt et et e st st enaeesaee s 1624

E.82. Release 8.0.17 ..o 1625
E.82.1. Migration to Version 8.0.17......ccceccveviiriiiniiiinienienieeiteseesee e 1625
E.82.2. ChANES ...eovuteiiiiiieiieeite ettt ettt ettt st ettt et st esaee s 1625

E.83. Release 8.0.16ccccoiiiiiiiiiiiiiiiiiiciccs 1625
E.83.1. Migration to Version 8.0.16........ccceevieriiriiiniinieniieieeeeseceieeee e 1625
E.83.2. Changesc.coceeruiriiiiiieieieeiectesectees ettt 1625

E.84. Release 8.0.15 ...couiiiiiiiiiiiietcecetsteseetete ettt ettt 1627
E.84.1. Migration to Version 8.0.15........ccccoceiiiiiiininiiniiececceeeeeee 1627
E.84.2. Changescceeouiiiiiiiieieiieeeeeseeeeeee et 1627

E.85. Release 8.0.14 ..ottt ettt e 1628
E.85.1. Migration to Version 8.0.14........c.cccoiiiiiiiiiiiiiiececeeeeee 1629
E.85.2. Changescccecouiiiiiiiiiiieieecere e 1629

E.86. Release 8.0.13 ...ttt st 1629
E.86.1. Migration to Version 8.0.13......cc.ccceciririmineneieinineneerereeeeeeiene 1629
E.80.2. ChANZEScovtruiriiinienieiieiiniestestctetet ettt sttt 1629

E.87.Release 8.0.12ouoouiiiiieieee ettt s st 1630
E.87.1. Migration to Version 8.0.12.......cccccevieiiiiiiiininienieeee et 1630
E.87.2. CHANEES ...eoviiieniiiiieieieee ettt sttt 1630

E.88. Release 8.0.11 ...cccoueiiiiiiiiiiiieiciceiteteeeeeee sttt s 1630
E.88.1. Migration to Version 8.0.11.......cccceeieriiiinininiiininieneneceeeeeeeee 1630
E.88.2. CHANEESeviieeniiiiieiieieeiteet ettt st 1631

E.89. Release 8.0.10c.ccuciiiiiiiiiiiiieicieiieeceeee st 1631
E.89.1. Migration to Version 8.0.10........ccccecueviririiininieniniinienenieieneeeeeeeee 1631
E.89.2. CHANGZES ...eeovveeiiieiieniieeie ettt ete ettt e sttt bee st esateebeesseesssesnbaenseessne s 1631

XXXI

E.90. Release 8.0.9 ..o 1632
E.90.1. Migration to Version 8.0.9.........ccocveviiriiriiiinienienieeitereesee e 1632
E.90.2. ChanGES ...cccuveeuiiiiieniienieeiteiteste ettt sttt ettt e be et e st s be e s e saee s 1632

E.91. Release 8.0.8 ..o 1632
E.91.1. Migration to Version 8.0.8.........ccecueiriiriiriiiiienienieeieeeeeec e 1633
E.O1.2. Changesc.coceevuirieieiieieiieieeeeseeeeeee ettt 1633

E.92. Relase 8.0.7 ..coueiiiieiiiiiiiieeeete ettt sttt sttt st 1634
E.92.1. Migration to Version 8.0.7.......ccccoceevieririiriieniniiniieeeneeeeieeeeeeeeeeee 1634
E.92.2. Changesc..ccceeouiiiiiiiieiieiieeeeese ettt 1634

E.93. Release 8.0.0 ..cc.eoiiiiiiiiiiieeeeite ettt st 1635
E.93.1. Migration to Version 8.0.6..........ccccoceeiiiiiiiiniiiiniiiceneceeeeeeeeee 1635
E.93.2. Changesccocouiiiiiiiiiieecese e e 1635

E.94. Release 8.0.5 ..ccuuiiiiiiiiiiiieeeetee ettt ettt 1636
E.94.1. Migration to Version 8.0.5.....cc.cccoevirininineneieininenesrcreeeeeneeneniene 1636
E.94.2. Changesccoouiiiiiiiiiiiiic e 1636

E.95. Relase 8.0.4 ...ttt ettt 1637
E.95.1. Migration to Version 8.0.4.........ccoceriiiiiiiiinieiene it 1637
E.95.2. ChaNEES ..ottt sttt 1637

E.96. Release 8.0.3 ..ottt 1638
E.96.1. Migration to Version 8.0.3.......ccccoceriiriiiiiininienieeee et 1639
E.96.2. ChaNEESoveiuieniiiiieieieeiteeetce ettt st ettt 1639

E.O7. Release 8.0.2ccooiiiiiiiiiiiicieecteieeeeeet ettt 1640
E.97.1. Migration to Version 8.0.2......cc.ccoceevueririeniinenienincenieneetenieeeeeeseenee 1640
E.O7.2. CHANZES ...eevvveeuiieiieniieeie ettt ete ettt sttt et esateebeessaesnteenbaenseesnnen 1640

E.98. Release 8.0.1cooiiiiiiiiiiiiciciceccc e 1642
E.98.1. Migration to Version 8.0.1......cccceecuierieriiniiieiienieeieeieesee st 1642
E.08.2. CHANGZES ...eeovveeuiieniieiieeie ettt ettt st ettt et et et esatesbeenaeesaee s 1642

E.99. Release 8.0ccccceiiiiiiiiiiiiiiiciciciecce e 1643
E.99.1. OVEIVIEWooviiiiiiiiiiiiiiicccc e 1643
E.99.2. Migration to Version 8.0........ccccceevuierieriiiriiieniienienieesieesee st 1644
E.99.3. Deprecated FEaturescooieveerriiiniienienieeieeeesie ettt 1645
E.99.4. ChanGES ...cccueevutieiieiienieeiteiteete ettt sttt ettt ettt et st saeesaee s 1646

E.99.4.1. Performance Improvementsc.cceecueerveeriensierneeniensienneenns 1646
E.99.4.2. Server Changesc..ccceeueeeevienieneneneeieneeeene e 1647
E.99.4.3. Query Changes.........c..ceceeueeeeriinienieneeieieneereeeeresre e 1649
E.99.4.4. Object Manipulation Changesc..cccceceeeeveeniecencneennenens 1650
E.99.4.5. Utility Command Changes............ccccoceevveereriecinieceencneenenens 1651
E.99.4.6. Data Type and Function Changescc.ceccecevieiencnienennens 1652
E.99.4.7. Server-Side Language Changesc..ccccceceeeinieicncniencnenn. 1653
E.99.4.8. psql Changesccccoeeieiiiiiiiiniciciicecceeeeee e 1654
E.99.4.9. pg_dump Changes...........cccceceeviiriiiiniiiiiiiiiciineceee e 1655
E.99.4.10. libpq Changesc..ceeeveueiriminienienieieenenenieneeeeneeeneenenes 1655
E.99.4.11. Source Code Changescccoccevueiiiiiiiiiiiiiiiicicicnecieee 1655
E.99.4.12. Contrib Changesccccceeveeirinienienieieinineneseeeereeee e 1657

E.100. ReIEASE 7.4.30 ..ottt sttt sttt sbea 1657
E.100.1. Migration to Version 7.4.30......c.ccocceriiieiininiieniniee et 1657
E.100.2. CRANGESeveeneeiieiieiieiteeeteete sttt st 1657

E.101. Release 7.4.29 ..ottt s 1658
E.101.1. Migration to Version 7.4.29......c.ccoceviririininienineeenenteseeeeeeseaee 1658
E.101.2. CRANGESveoveeniiieeiieieeiteetceesteetee ettt ettt 1659

E.102. Release 7.4.28 ...ttt 1659
E.102.1. Migration to Version 7.4.28......c.ccccceverievienenienineeneneerenieneeeeseeenee 1660

XXXIT

E.102.2. CRANEES ..ouveeviiieiiieiieeie ettt ettt ettt sttt et e st sbeesaeesaee s 1660

E.103. Release 7.4.27 ..ot 1660
E.103.1. Migration to Version 7.4.27ccccevieriireiienieneenieesieesee st esieesiee s 1661
E.103.2. CRANEES .eouvveeiiiiiieiieeie ettt ettt st ettt st esaee s 1661

E.104. Release 7.4.20cc.ccooiiiiiiiiiiiiiiiciiiiccc e 1661
E.104.1. Migration to Version 7.4.26......c..cccccoevveevieninienineeneneerenreneeeeneeeeee 1662
E.104.2. Changescccoeoieieniieieiieicienieeeceeeetete et 1662

E.105. REIEASE 7.4.25 .ottt sttt ettt 1662
E.105.1. Migration to Version 7.4.25......c.ccccccoiiiriininieniieeeneceeeeeeeeeeeeee 1663
E.105.2. Changescooeiuiiiiiiiiieiieeceeneeeeee e 1663

E.106. Release 7.4.24 ..ottt sttt ettt 1663
E.106.1. Migration to Version 7.4.24c.coocieririinnienienieeieereesee e 1663
E.106.2. CRANGESeveeneeieeieiteee ettt st sttt 1663

E.107. ReIEASE T.4.23 ...ttt ettt ettt ettt st saens 1664
E.107.1. Migration to Version 7.4.23.......ccooiiiiieiinieiene e 1664
E.107.2. CRANGESveveeneeieeieieee ettt sttt 1664

E.108. REICASE 7.4.22 ..ottt ettt ettt st sben 1665
E.108.1. Migration to Version 7.4.22........cccccevverienineniienineene et 1665
E.108.2. CRANGESeveenieieeiieieeiteeet ettt sttt 1665

E.100. RelEaSe 7.4.21 .ecuiiiiiiiiiiiiieeeteiteteeeeee sttt s 1665
E.109.1. Migration to Version 7.4.21ccccocueviririininienineenieneeeenieseeeeeenee 1665
E.109.2. CRANGESeoveeniiiieiiiieeiteieeiceteste ettt st 1665

E.110. Release 7.4.20c.ciiiiiiiiiiieicicieiieteeeeeetee ettt 1666
E.110.1. Migration to Version 7.4.20......c..ccccevervienieneniienineenenenieneneeeeneeenee 1666
E.110.2. CRANEES .oouvveeiiieiieiieeie ettt ettt ettt sate et e aaesateebeenseesnee s 1666

E. 111 Release 7.4.19 ..ot 1667
E.111.1. Migration to Version 7.4.19......cccccovveeriiriiienienienieeieesee st 1667
B TT1.2. CRANEES .eouvteeiiieiiieiieete ettt sttt ettt et e st e st st e naeesaee s 1667

E.112. Release 7.4.18 ...t 1668
E.112.1. Migration to Version 7.4.18......cccccovieriiriiienienienieeieereesee e 1668
E.112.2. CRANEES .eouveeeiiieiieiieeieeieete ettt sttt ettt ettt s e i s 1668

E.113.Release 7.4. 17 ..o 1669
E.113.1. Migration to Version 7.4.17cccceevieriiniiiinienienieeieeseeeee e 1669
E.113.2. Changescccceoviiuieieniieiieiieieceesieetee ettt 1669

E 114 ReEICASE 7416 .ottt ettt 1669
E.114.1. Migration to Version 7.4.16......c..cccccocevviriininiininienineeeeeeeeeee 1669
E.114.2. Changescccoouiiuiiiiiieieiieeeeeeeee et 1670

E 115 REICASE 7415 ittt ettt et s 1670
E.115.1. Migration to Version 7.4.15......c.ccoccoiiiiiiiiiiiiccceeeeeeee 1670
E 1152, CRanges ..c.ceeiieiiiiieiiieieeeteete ettt ettt 1670

E.116. ReICASE T.4. 14 ..ottt ettt et s st snens 1671
E.116.1. Migration to Version 7.4.14........cocoiiiiiiiniiene e 1671
E.116.2. CRANGESveoveenieiieieieee ettt sttt 1671

E. 117, ReIEASE T.4. 13 ..ottt ettt sttt et st sbens 1671
E.117.1. Migration to Version 7.4.13......cccooiiiiiiiiniiene e 1671
E 1172, CRANGES ..ottt et sttt 1672

E.T18. ReIEASE 7412 .ottt s 1672
E.118.1. Migration to Version 7.4.12......ccccoceviiiiiininienineene et 1673
E.T18.2. CRANGES ...uveveenieieeiieiceiteetce ettt st 1673

E.119. Release 7.4. 11 .ottt 1673
E.119.1. Migration to Version 7.4.11.....cccccooeniriniininiiinincenicneeicnceeeeee 1673
E.119.2. ChANGES ..coveoveeniiieeiieieeiteeecetesteetee sttt st 1673

XXXI11

E.120. REIEASE 7. 4. 10 coueeiieieeeee ettt e eara e e e e e e e e eeareeeeens 1674

E.120.1. Migration to Version 7.4.10......ccccceeieriiriiiinienienieeieeseeeie e 1674
E.120.2. CRANEES .eouvveeiiieiieiieeie ettt sttt ettt et st esaee s 1674
E.121. Release 7.4.9 ..o 1675
E.121.1. Migration to Version 7.4.9.......ccoceeviiriiiniiinieneeeieeieeseeeee e 1675
E.121.2. Changescocveveriieiiiieieieeeceeeceeeetetee et 1675

E 122 ReEIEASE 7.4.8 .ottt sttt ettt 1676
E.122.1. Migration to Version 7.4.8........cccccceviriirieninieniieeneneeeeeeeeeeeneeeee 1676
E.122.2. Chan@esc.cooviiiiiiiiieieiieeeee ettt 1677

E 1230 REICASE 7.4.7 oottt sttt ettt e 1678
E.123.1. Migration to Version 7.4.7c.ccccccoiiiiiiniiiiniiieneneeeeeeeeeeeeee 1678
E.123.2. Changes ..c..coouieiiinieiiieieeteete ettt ettt 1678

E 124, REICASE T.4.0 ..ottt ettt sae st enens 1679
E.124.1. Migration to Version 7.4.0.......ccccceevvirimeneneneeninenenensenreeeeeneenennenne 1679
E.124.2. CRANEESveoviteieieieiieiteie sttt sttt 1679
E.125. ReIEASE T.4.5 .ottt ettt st st saen 1680
E.125.1. Migration to Version 7.4.5......cccoceiriiieninieiene e 1680
E.125.2. ChanGESeoveeiiiieieieeitee ettt 1680
E.126. REIEASE 744 ..ttt s 1680
E.126.1. Migration to Version 7.4.4cccccoveriiienieninieneneene et 1680
E.126.2. ChanGESooueeieiieiieieeiteeetcete sttt sttt 1681
E.127. RelEASE 7.4.3 .ottt 1681
E.127.1. Migration to Version 7.4.3.....ccccocvveririrnienenieneneenieneerenieeeeee e 1681
E.127.2. CRANZES ..ottt sttt 1681
E.128. REIEASE 7.4.2 ..ot 1682
E.128.1. Migration to Version 7.4.2.......cccccuevieriiriiienienienieenieeseesreesseenseesenes 1682
EL128.2. CRANEES ..ouvveeiiiiiieiieeie ettt st ettt et e st e st sbeesaeesaee s 1683
E.129. Release 7.4.1 c..oouiiiiiiiiiiiiiicicicceeee e 1684
E.129.1. Migration to Version 7.4.1......cccecvevieriieniiieniienienieeieeseeste e 1684
E.129.2. CRANEES ..ouvveviiieiiieiieeie ettt sttt st ettt et st e e s 1684
E.130. REleASE 7.4 ..o 1685
E.130.1. OVEIVIEW ...oviiiiiiiiiiiiiiiiiiiccc e 1686
E.130.2. Migration to VErSION 7.4ccocueriiiiriieniieiienieenitesie ettt 1687
E.130.3. Changesccccouerieieniieieiieecienieeeeeee ettt 1688
E.130.3.1. Server Operation Changescc..cocceceeevereecieniecencnneeneneens 1688

E.130.3.2. Performance Improvementsc..coceeueeeecueneeceencneennennenns 1689

E.130.3.3. Server Configuration Changes..........c.cccccceceecenieiiencnienenens 1690

E.130.3.4. Query Changes..........ccccocueeieviinienieniiieieseeieseeeesre e 1692

E.130.3.5. Object Manipulation Changesc..ccccceceecinieicncnieenennns 1692

E.130.3.6. Utility Command Changes.........c..cccceeeeeerenerenenveneeenennene 1693

E.130.3.7. Data Type and Function Changesc..cccccovieiininncninenn. 1694

E.130.3.8. Server-Side Language Changesccccceveverenveveeeencnnennen 1696

E.130.3.9. pSqQl Changesc.cccevuerueieirininienieieieeeienesieseeeeree e enenes 1696
E.130.3.10. pg_dump Changes.........ccccceeverimrenrenienieeninenieneeeereeeeenenes 1697
E.130.3.11. libpg Changescccceueeeeiririnienienieieieinenieseeeereeene e 1697
E.130.3.12. JDBC Changesccccouecveeririnienienieeeieinesieseeeeneeene e 1698
E.130.3.13. Miscellaneous Interface Changesccccccceveeveercreenicnnenns 1698
E.130.3.14. Source Code Changesccoceevuerereenienienieneeienieneenienieens 1698
E.130.3.15. Contrib Changesc.cceceevereerienerienienieieneeeenieneenieniens 1699

E.131. Release 7.3.21 .ottt 1700
E.131.1. Migration to Version 7.3.21ccccoceriririiininiienineeneneetenieseeeesenee 1700
E.131.2. Changes ..c..coveeieriiiiiieeiieiceicetesteetee ettt st 1700

XXXIV

E.132. REIEASE 7.3.20 coeieiieeieeeee ettt e e e e e e eeare e e e eetreeeeens 1701

E.132.1. Migration to Version 7.3.20.......cccceevieriiriiieniienienieeieenee st esieesiee s 1701
E.132.2. CRANEES ..ouvveeiiieiieiieeteeieeteste ettt sttt ettt ettt et st e e s 1701
E.133. Release 7.3.19 ..o 1701
E.133.1. Migration to Version 7.3.19......ccccevviiriiniiiiniiienieeieeeesee e 1702
E.133.2. Changescccceoueiieiiniieieiieeceenieceeee ettt 1702
E.134. Release 7.3.18 ..ottt ettt ettt 1702
E.134.1. Migration to Version 7.3.18......c..cccccoiiiiiiininiiniieeneceeeeeeeeee 1702
E.134.2. Changesccoiiiiiiiiiiieiieeceeeceeee et 1702
E.135. REIEASE 7.3.17 .ottt sttt ettt et 1703
E.135.1. Migration to Version 7.3.17c.ccccccoiiiiiiniiiiiniiicicneceeeecee 1703
E.135.2. CRanges ..c.ceeueiiiiiiienieeieeteete ettt ettt e 1703
E.136. RelEaSE 7.3. 16 ..oeeeiiiieeiieieeiee ettt ettt et st eneen 1703
E.136.1. Migration to Version 7.3.16.......cccccceriiieiiiniiieniecee e 1703
E.136.2. CRANGES -...veoveenieieeieieee ettt sttt 1703
E 137, ReIEaSE 7.3.15 .ottt ettt st 1704
E.137.1. Migration to Version 7.3.15.....ccocoiiiiiiiiiniiee e 1704
E.137.2. ChANGES ..uveveenieieeieieee ettt sttt 1704
E.138. Release 7.3.14 ..ottt sttt ettt s 1705
E.138.1. Migration to Version 7.3.14......ccccoceriiiiiininieniieeeneeeeieeeeeeeee 1705
E.138.2. CRANGESveveenieieeiieieeiteeecee sttt ettt 1705
E.139. Release 7.3.13 ..ottt 1705
E.139.1. Migration to Version 7.3.13......ccccoceniiiniininiiniicenieneetceeeeeee 1706
E.139.2. Chanescoeeviiriiiieiieiteieeicete sttt sttt 1706
E.140. Release 7.3.12coocoiiiiiiiiiieicicicieeeeeere sttt 1706
E.140.1. Migration to Version 7.3.12......ccccerieriiriiienienienieenieesee e eveesiee s 1706
E.140.2. CRANEES ..ouvveviiieiieiieeie ettt ettt ettt ettt sate bt e st e sabesbeenaeesane s 1707
E.141. Release 7.3.11 .o 1707
E.141.1. Migration to Version 7.3. 11 ..ccccociiriiniiiniiiieienieeeeeeeee e 1707
E.141.2. CRANEES .oouvteeiiieiieiieett ettt ettt ettt st ettt et s esaeesaee s 1707
E.142. Release 7.3.10 ..o 1708
E.142.1. Migration to Version 7.3.10......cccceevieriiniiiinieienieeieereesee e 1708
E.142.2. CRANEES .eouvteeiiieiieiieeieeteete ettt ettt st ettt st n 1709
E.143. RelEaSe 7.3.9 ..ottt et 1709
E.143.1. Migration to Version 7.3.9........cccoceiiiiiiiieninieniieeneneceereeeeeeeeee 1709
E.143.2. Changescccoouiiiiiiiiieieiieecereeeeee et 1710
E.144. RelEaSE 7.3.8 ..ottt sttt ettt et e 1710
E.144.1. Migration to Version 7.3.8........ccccoceiiiiiriiniiiiniiiceneeeeeeeeeeeeeeee 1710
E.144.2. CRANEES .ccuvteeiiiiiieiteeee ettt ettt ettt e 1710
E 145 REICASE 7.3.7 .ottt sttt ettt 1711
E.145.1. Migration to Version 7.3.7ccoceeieiirieienieiene e 1711
E.145.2. Changes ..c.cooueeiiiiieiiieieeteete ettt ettt 1711
E.146. REIEASE 7.3.0 ..ottt ettt st 1711
E.146.1. Migration to Version 7.3.0.......ccoceeeiiririeniininienie e 1711
E.146.2. CRANGESoveeneeieeieieeeee ettt sttt 1711
E.147. ReIEASE 7.3.5 oottt sttt ettt s 1712
E.147.1. Migration to Version 7.3.5.....ccccocvriiniriininiiieneeee e 1712
E.147.2. CRANGES ..ottt e ettt 1712
E.148. RelEaSE 7.3.4 ..ottt 1713
E.148.1. Migration to Version 7.3.4.......cccccevueririrnieninienineenieneetesieeeee e 1713
E.148.2. CRANGESveveeniiieeiieieeiteeeicee sttt st 1713
E.149. Release 7.3.3 ..ottt 1714

XXXV

E.149.1. Migration to Version 7.3.3....cccceciiriiniiniieiieniesie et 1714

E.149.2. CRANEES ..cuvveeiiieiieiieeie ettt sttt et ettt s e e e s 1714
E.150. Release 7.3.2 ..o 1716
E.150.1. Migration to Version 7.3.2......ccceceerieriiniiieniienienieesieesiee et 1716
E.150.2. CRANEES .eouvveviiieiieiieeieeieeteete ettt st ettt s n 1716
E.IS51.REIEASE 7.3 1 oottt et s 1717
E.151.1. Migration to Version 7.3.1.....ccccoccoviiiniiniinininineeneceeeeeeeeeeeee 1717
E.151.2. Changesccoouiiiiiiiiiiciieeeeseeeeee et 1717
E.I52. REIEASE 7.3 ..ottt ettt sttt et sttt be e 1718
E. 1521, OVEIVIEW ..ottt ettt ettt ettt s 1718
E.152.2. Migration to Version 7.3ccccocoeviiiiiriiiiiiii e 1719
E.152.3. CRhanges ..c..ceoveeiiiniieeiieieeeteete ettt ettt ettt 1720
E.152.3.1. Server OPerationccccceueevueerieenieenieesieenieesieesieesieeeeeeseeenne 1720

E.152.3.2. Performanceccceeeerueeienieneeiesieeteieei et 1720

E.152.3.3. Privil@@eS. ... ceoueruieiiiieiieieeiete ettt 1720

E.152.3.4. Server Configuration...........cccceeeeriererienienienienieeienieseeiesieene 1721

E.152.3.5. QUETIES ..ttt e et 1721

E.152.3.6. Object Manipulationcccceeeeviererienienienieneeienieneenienieene 1722

E.152.3.7. Utility COMMANAS........cccoereeruirieienenieienieieneetenieseeienieens 1723

E.152.3.8. Data Types and FUnctions..........cc.ccocceeuevienienieneenieneneenenenns 1724

E.152.3.9. Internationalizationcceccoevevvevieieininenieneiereeeeenenen 1725
E.152.3.10. Server-side Languagesc.cceoerervenienienieneenieneneenienens 1725

EoI52.3. 11, PSQLutiitiiieiiiiiieeierieeteteetee ettt 1725

E. 152312, 1IDPQ e 1726
E.152.3.13. JDBC ... 1726
E.152.3.14. Miscellaneous Interfaces..........cccccoceeeverieneeniineercneneenenenns 1726
E.152.3.15. Source Code.........cocevuiiiiiinininiiicicieicieieceeee e 1727
E.152.3.16. Contrib ...c.coveiiiiiiiiiiiiiiiicccce e 1728

E.153. Release 7.2.8 ...cooiiiiiiiiiiiiicicccece e 1729
E.153.1. Migration to Version 7.2.8......ccceceerieriiiriiieniieniesieeieesee st 1729
E.153.2. CRANEES .eouveeeiiieiieiieeteeeeteete ettt ettt ettt st st e s s 1729
E.154. Release 7.2.7 c..ccoiiiiiiiiiiiiiicicicciiiec e 1730
E.154.1. Migration to VErsion 7.2.7cccceceirieriiiniiienieeneesie ettt 1730
E.154.2. Changesccccoueiuieiiniieieiieecteseeeeeee ettt 1730

E 155 REICASE 7.2.60 ..ttt ettt ettt ettt 1730
E.155.1. Migration to Version 7.2.0........cccocereriecieniniienineeeneeresreeeeeeseeenee 1730
E.155.2. Changesc.coouiiiiiiiniieieiieeccseeeeee e 1731
E.156. REICASE 7.2.5 ..ottt sttt ettt e 1731
E.156.1. Migration to Version 7.2.5....cccccociiriiriiniiiiteneenieeieeeeeeee e 1731
E.156.2. CRANEES ..c.eeeeuiiiiiiiieeieeieeeteete ettt ettt ettt 1731

E 157 REICASE 7.2.4 .ottt sttt ettt e 1732
E.157.1. Migration to Version 7.2.4ccceceririeienieene et 1732
E.157.2. CRANGES -...vevieneeeieeeeee ettt sttt 1732
E.158. ReIEASE 7.2.3 ..ottt ettt ettt et st 1732
E.158.1. Migration to Version 7.2.3.......cccceoieriiiinienieienie et 1732
E.158.2. CRANGESeveeniiiieiieieei ettt et 1732
E.159. ReI@ASE 7.2.2 .ottt sttt 1733
E.159.1. Migration to Version 7.2.2.......ccccceveririenienenieniineene et 1733
E.159.2. ChanESooveeiiiieiieieeiteeetee sttt 1733
E.160. Release 7.2.1 c..couoiiiiiiiiiiiiiicieieeeiteeeteeeee sttt 1733
E.160.1. Migration to Version 7.2.1....cc.ccoceevueriniriininienineenenenrenieseeeeeenee 1734
E.160.2. CRANGESveoveeniiieeiieieeiteieeicete ettt sttt 1734

XXXVI

E 1601, REIEASE 7.2 ..ottt et er e e e e e et e e e e eetreaeeeens 1734

E.161.1. OVEIVIBW ..ottt 1734
E.161.2. Migration to VErSION 7.2......ccccueriiiinienieniienieenitesieeieesee st 1735
E.161.3. CRANEES .eouveeiiiiiieiieete ettt ettt st ettt et e s s 1736
E.161.3.1. Server OPerationccccueeueevueerieenieerieenieesieesieesieesieessieenieenns 1736

E.161.3.2. Performancec..cecuevueeeenieneenenenieieneeeeseeeenee e 1736

E.161.3.3. Privile@es.cceoieiiriieieiiniciinceieneceeeeeere e 1737

E.161.3.4. Client AuthentiCation..........cccceereerierreernieenieerieesieenieeieesieenns 1737

E.161.3.5. Server Configuration...........cccceeeevuereriecieniecieneeieneeeeneneens 1737

E.161.3.6. QUETIES ..cc.evieeeiie ettt ettt e ve e iveeeere e s e e snnaeennne 1737

E.161.3.7. Schema Manipulationcccccevirieiiiniiiinieicneneeieneee 1738

E.161.3.8. Utility COMMANGScceertiemiaieriieieeeeieieeceie e 1738

E.161.3.9. Data Types and Functions..........c..cecceeeeeerenienenenieneeenennennes 1739
E.161.3.10. Internationalizationcceceeveererienienienieseeiese e 1740
E.161.3.11. PL/PESQL ..ottt 1740
E.161.3.12. PL/PEIL ..ot 1740

E 1613130 PLTCL ittt 1741
E.161.3.14. PL/PYhON ..coeiiiiiiiieiieieeieeecee ettt 1741
Eo161.3.15. PSQLatiiiiiiiieiiieeeeee ettt 1741
E.161.3.16. IIDPQ c.evenieiiieiiiiieieiceteeeee ettt 1741
E.161.3.17. JDBC ..ottt 1741
E.161.3.18. ODBC ...ttt 1742
E.161.3.19. ECPG ..ottt 1742
E.161.3.20. MiscC. INterfaces.......cccccoeeeevienernienenienienecicnceeenieseeienieens 1743
E.161.3.21. Build and Install..........ccccoceevimirnininiininiiiinceicncneeieneee 1743
E.161.3.22. S0Urce Code......cc.coeriimiinieiiniieienienieicsteecnieetenie e 1743
E.161.3.23. CONLLID «..oveiiiiieiiiieiciceeccnccenecteesteteee e 1744

E.162. ReIEASE T.1.3 oottt sttt s s 1744
E.162.1. Migration to Version 7.1.3......cccociiriiniiiniiiiieeesieeieesee et 1744
E.162.2. CRANEES ..ouvveviiieiieiieeie ettt ettt ettt ettt st e s e saee s 1744
E.163. ReIEASE T.1.2 ..ottt sttt et 1745
E.163.1. Migration to Version 7.1.2.......ccocceeviiriiiniiiniieienieeieesee et 1745
E.163.2. CRANEES ..c.veeeuiiiiieiieeie ettt ettt sttt ettt n 1745
E.164. Release 7.1.1 ...cueoiiiiiieiiieieeteeece ettt s 1745
E.164.1. Migration to Version 7.1.1.....ccccocoiiiiiiiiiininiieeeceeeeceee 1745
E.164.2. Changesccoeoiiiiniieieiieieieneceeeee et 1746
E.165. REIEASE 7.1 ..ottt st st 1746
E.165.1. Migration to Version 7.1ccccocceciiiiiiiiiniiiiiieceneceeeeeeeeeee 1747
E.165.2. Changesccooiuiiiiiiiiiiiicese e 1747
E.166. Release 7.0.3 ...ttt ettt ettt st snen 1750
E.166.1. Migration to Version 7.0.3.......ccccooiiiiiiiiinieene e 1750
E.166.2. CRANGESooveenieiieiieieei ettt sttt 1751
E.167. Release 7.0.2oueouiiieiieieeee ettt et st saen 1751
E.167.1. Migration to Version 7.0.2........cccceceriiieniininienieeee e 1752
E.167.2. CRANGES ..ottt ettt 1752
E.168. ReIease 7.0.1 c..couiimiiiiiiieiieieeee ettt ettt s st 1752
E.168.1. Migration to Version 7.0.1.......ccoceviriiiinininiieniiceienceeeeeeeee 1752
E.168.2. CRANGESooveenieieeiieieeiteece ettt et 1752
E.169. REIEASE 7.0 ..couiiiiiiiiiieiieieeieeee ettt sttt ettt st 1753
E.169.1. Migration to Version 7.0.......cccccocerviererienienenienineenieneerenieeeeee e 1753
E.169.2. ChANGESooveeneiiieiiiieeiteteeieetesteetee sttt et 1754
E.170. ReIEASE 6.5.3 ..ottt sttt 1759

XXXVii

E.170.1. Migration to Version 6.5.3........ccccveriiriiniiiniienienie ettt 1760

E.170.2. CRANEES ..ouveeviiiiiieiieete ettt ettt ettt ettt et st st e s e saee s 1760
E.I71.REIEASE 6.5.2 ..ot 1760
E.171.1. Migration to Version 6.5.2........cccceeviiriiriiiinienienieeieesee e 1760

B 171.2. CRANEES .eouvveiiieiieiieete ettt ettt st ettt st e s s 1760
E.172.RelEase 6.5.1 c..ooviiiiiiiiiciieieeeteeee ettt ettt s 1761
E.172.1. Migration to Version 6.5.1........ccccocceoiiiiiiininiiniieneneceeeeeeeee 1761
E.172.2. ChanGESooueeiiiiiiiiieicceeseeee et 1761

E 1730 REIEASE 6.5 ..ottt ettt sttt st 1762
E.173.1. Migration to Version 6.5.........c.cccceceriiiiiiiniiienineeeneeeeieeeeeeeeeeeee 1763
E.173.1.1. Multiversion Concurrency Controlcccccoceevininienennnns 1763

E.173.2. CRANGES -.c.veveeeeeieeeieee ettt sttt 1763
E.174. ReIEASE 0.4.2 ..ottt ettt ettt enen 1766
E.174.1. Migration to Version 6.4.2.........cceceiirieiinieiene e 1767
E.174.2. CRANGES -...eeveenieieeieeteee ettt sttt 1767
E.175. ReIEASE 0.4 1 ..ottt ettt et s st saen 1767
E.175.1. Migration to Version 6.4.1........ccccoceiiiiiiininieniieee e 1767
E.175.2. ChANGESooveenieiiieieieee ettt 1767
E.176. REICASE 6.4 ...ttt sttt s 1768
E.176.1. Migration to VErsion 6.4ccoccevuererienienenienineenenieetenie e 1769
E.176.2. CRANGESoveenieiieiieieeeteecee sttt st 1769
E.177. REIEASE 6.3.2 ..cuvniiiiiiie ittt 1772
E.177.1. CRANGES ..ottt et 1773
E.178. ReleaSE 6.3.1 ..ottt 1773
B 178.1. CRANEES ..ouvveeiiieiiieiieeie ettt sttt ettt ebe e e st e e e enseesaee s 1774
E.179. RElEASE 6.3 ...ttt 1774
E.179.1. Migration to Version 6.3.......ccccceceerierieriiieniienienieeieeneeseeereesieesene s 1776
E.179.2. CRANEES ..cuvteeiiiiiieiieeie ettt ettt ettt st ettt e st st e s e saee s 1776
E.180. Release 6.2.1coociiiiiiiiiiiiiiiiiiciiiiieeecc e 1779
E.180.1. Migration from version 6.2 to version 6.2.1........c.cccecevercvenenenuenncne. 1779
E.180.2. CRANEES .eouvveiiieiiieiieeieeieeiteste ettt ettt ettt st saee s 1779
E.I81. REIEASE 6.2 ...t 1780
E.181.1. Migration from version 6.1 to version 6.2........c..ccccceeveecvenreneenenncnne. 1780
E.181.2. Migration from version 1.x to version 6.2c.ccceceveecvenrenvenennenne. 1780
E.181.3. Changescccoouiiiiiiniieieiieeeeseeeeeeeee e 1780
E.182. RelEaSE 6. 1.1 ..ottt sttt ettt et e 1782
E.182.1. Migration from version 6.1 to version 6.1.1...........cccocoviiinninnne 1782
E.182.2. ChanEsceoiuiiiiiiiiieiciieeeereeee e e 1782
E.I183. REIEASE 6.1 ..ottt ettt st 1783
E.183.1. Migration to Version 6.1cc.ccoceeiiiriiniinniiniiniieeeeeseceee e 1783
E.183.2. CRANEES ..cuveeiiiiiieiieeit ettt ettt 1784
E.184. ReIEaS@ 0.0 ...ccueiuieiiiieiieieeieee ettt sttt st saen 1785
E.184.1. Migration from version 1.09 to version 6.0.........c.ccccocevveererveinenennenne 1786
E.184.2. Migration from pre-1.09 to version 6.0cccccceceverinienrenreeeenennenn 1786
E.184.3. CRANGESveveenieieeieieee ettt sttt 1786
E.185. Release 1.09ccuciiiiiiiiiiiiieieieteiteteseteteeet ettt ettt s 1788
E.186. Release 1.02cc.couciiiiiiiriiicicieteiteieeeeeeeet ettt ettt s 1788
E.186.1. Migration from version 1.02 to version 1.02.1.......cccccocervienininnencnne. 1788
E.186.2. Dump/Reload Procedurec.cocueverieiieniinieninienieneeieieseeeeeenee 1789
E.186.3. ChanEScoueeiiriieiieieeiteieeieetesteetee ettt 1789
E.187. Release 1.071 ..ottt 1790
E.187.1. Migration from version 1.0 to version 1.01......c..ccccooeneriinininncncne. 1790

XXXVIii

E.187.2. CRANEES ..cuvveiiieiieiieeieeeeteete ettt ettt et st s saee e s 1791

E.188. REIEASE 1.0 ...ueiiiiiieiiiiciee ettt ettt ettt e e tv e et e e etaeesabeeeaaaeeeareeens 1792
E 188, 1. CRANEES .eouveeiiieiiieiieeiie ettt ettt st ettt st e s s 1792
E.189. Postgres95 Release 0.03.....ccc.ciiiiiiiiiiiieiieeitete ettt 1793
E.189.1. CRANEES .ecuvteiiiiiieiieete ettt sttt ettt et 1793
E.190. Postgres95 Release 0.02........cc.ooieieniiieiinieiinieeeneeeereseeresee e 1795
E.190.1. Changescooeiuieieniieieiieecienieeeeeeeeeete et 1795
E.191. Postgres95 Release 0.01........cc.ooiiiiiiiiiiiniiiieeeceeeeeeee e 1796
F. Additional Supplied MoOdUIEScc.oecieriiiiiiiiiiieieiee et 1797
Fo1. adminpack.......coooiiiiiiiiiiciceee ettt s 1797
F.1.1. Functions implemented.............cccccoiriiiiiiiiiiniiiiie e 1797

FL2. DUIEE_ISE ettt ettt sttt b 1798
F2.1. EXamPple USAZEcccooiiiiiiiiiiiiiciicece e 1798
F.2.2. AUROTS....oiiiiiieeee et e e e eetaae e e e eavraeeeea 1798

B30 ChKPASS. ..ttt sttt e 1798
FL3. L AULNOT «ooeeeiece ettt e et et e e e aea e 1799

FLd. CUDC ... e e e e e e e et a e e e e arraaaeeaas 1799
Fid 1. SYNTAX coeiiiiiiiieieee ettt e 1800
Fid.2. PreCISIONccoiiiieuiieeeiiieeeiiee ettt ettt e e e e e eeate e e etveeeeaaeeetaeeereeeenes 1800

Fid. 3. USAZR ettt sttt 1800

Fid. 4. DefaultScccoviiiiiiiiiiiecceee et et et et 1802

Fid. 5. INOEES «.eeeeeetieeeiee ettt ettt e e e et e e e b e e e aaeeeeareeeeaseeeaseeeenreeenans 1803

Fid.6. CIeditsS .oocouviieeiiiiceiie ettt ettt et e et e e e eab e e etaeeeveeeenns 1803

FL5. ADIINK ..ottt ettt et e e e an e e e taeeearaeans 1803
ADIINK _COMMECT ..vviiiiiiiiiiieieeeeeeeeetee ettt e et e e et eeeeeeessesessesnasssaaseees 1803
ADIINK _COMMECE_Uiiiiiiiiiiiiiiiiieeeeieeeeeeeeee e ee e et e e et eeeeeeeseessssesnnsasaaeeees 1806
ADINK_AISCOMMECT ..oevviiiiiiiiiieieeceiieeeeeeee ettt e e e e e e e e e s e e sssssanssaaaneeees 1807
ADIINK Lottt ettt e e e st e e b e e e b e e e stbeeeebeeebaeeeareeenes 1808
ADIINK_EXEC uvviiiiiieeiiieeiiieeciee et ettt e et e e et e e e tae e sab e e e e beeeabeeetbeeesseesasaeassseeennes 1811
ADIINK_OPCN. ...ttt ettt ettt et et st et e b e saee s 1813
ADINK_FEICH ..eiiiiiieiii e e eb e s rre e bae e 1815
ADINK_CLOSE ..vieivieeeiiiieeiieeciee ettt ettt te e e st e e s beeeeveeestbeeeebeesasaeeesseaennes 1817
Ablink_GEt_CONNECHIONSeovvieriiieiiiiieniie ettt ettt ettt st e beesaeesaee s 1819
dblNK_eITOr_MESSAZEeveeuveniiiieitieiietenieeeeteee ettt 1820
ABIINK_SENA_QUETY ..ottt ettt ettt e 1821
ADINK_IS_DUSY .uveeiieiiieieeiteete ettt ettt et 1822
ABINK_ @Ot TESUIL..cueiiiiiiiiiiieeieeeeteet ettt 1823
dblinK_CanCel_qUETYcooueiriiiiiiiiieiienieee ettt 1825
ADIINK_CUITENE_QUETY ..eeeuteeiieiiieieeitesite ettt ettt ettt saee s 1826
ADINK_ GOt PKEY . .eeiieeieieeieeee ettt 1827
dblink_build_SQI_INSeIT......ceouiiuieiieiieiieiesie e 1828
dblink_build_sql_delete.........cceeieiiinieiiiieieeeee e 1830
dblink_build_sql_update.........ceeieiiiriiiinieieeeeeee e 1832

FLO. dACt AN ..eiiiiiiiiiie ettt ettt et et e et e e eeta e e eraaean 1834
F.6.1. CONfIGUIAtIONeouviiiiiiiiieiieieeicete sttt 1834

FlB.2. USAZR... ettt ettt st et sttt 1834

L7 IOt XYMttt sttt et sae st sbe e 1834
F7.1. CONfiGUIAtIONeouiiiiiiiiiiiiieieeieee sttt 1834

Fl7.2. USAZR. ittt st sttt 1835

F.8. CarthdiStANCEcecuviiiiiiiiiiie ettt et ettt e eta e e e te e e etaeeeareeeas 1835
F.8.1. Cube-based earth diStancesccccueeevviieiiiieeeiiii et 1836
F.8.2. Point-based earth diStancesccocveeevviiiiiiireeiiii et 1837

XXXIX

F.O. fuzzyStrmatChi.........ooouiiiiiiiiiiie ettt st 1837

FO.1. SOUNAEX.....oiiiiiiiiiiiiiiiiiiccc e 1837
F.O.2. LeVeNSNteINc.coouiriiiiiiiiciiccicnccecetcccete et 1838
FLO.3. MEtaPhONE.coiiiiiiieiieitetetete ettt ettt e 1838
F.9.4. Double MEetaphone...........cocueevuieriiriiieniieniieeieeieesit ettt 1839
FLLO. RSEOTE ..ttt st et et s 1839
F.10.1. hstore External Representationc..ccceeeeceeniiniencneeieneneenennene 1839
F.10.2. hstore Operators and FUNCHONSc..ccccecveriirieninieninceieieeeciee 1840
FL10.30 INAEXES ettt sttt st e 1841
F10.4. EXAMPIESoioiiiiiiiiiiiieieieeere et 1841
FL10.5. STALISHICS wovvvivireieieeeiieitee sttt ettt sttt sttt 1842
FL10.6. AUTNOTSeeiiiiiiiieete ettt 1842
FoL T ANEAZE ettt ettt et a e st s bt et ettt e sbe et e aeeneens 1842
FoIT1.1. FUNCHONS ...uiiieie sttt st e 1842
F11.2. Sample USES.....ceouiiriieriiiiiiiienieeteeecetc sttt 1843
FoL20 ANEAITAY ..ttt eh ettt et sttt sb et e bt et e nae s et eaesbens 1844
F.12.1. intarray Functions and Operators............cccceceerereeneneneeneneenieneene 1844
Fo12.2. TNEX SUPPOIT..coniiiiiiiiiiiiieiieieetesieete ettt st 1846
FoI12.3 EXAMPIE ..ottt et 1846
F12.4. Benchmarkcccooveviiiiininiiniiiiicieiesieeeeeese e 1846
Fo12.5. AUNOTS ...cviiiiiiiiiicccc e 1847
FLL3L STttt s 1847
FoI3.1. DAta fYPeS..c.veeueeiirieeienieeiteieeieete sttt sttt st sbe st 1847
FlI3.2. CaSES ottt st 1848
F.13.3. Functions and OPEratorsccceecveereereeriieenieeneesieesseeseessessseenseessnes 1848
Fi13.4. EXAMPIES ..coruiiiiiiiiiiieeie ettt ettt ettt ettt e e st st enaeesaee s 1849
Fo13.5. BibHIOZIAPNY..c..eiiiiiiieeiiieieeiieeee ettt ettt e 1850
F13.6. AUNOT ..o 1850
FlLA 0 i 1850
FoI4.1. RAIONALE ..ottt 1850
FI14.2. HOW to USE It ..couiiiiiiiiieiiciieictenecccceceeteee e 1851
Fo14.3. LIMItAtIONS «..ooveeiiriieieniieiieieeicetesieeie ettt sae e 1851
FiI4.4, AUTNOT ...ttt 1851
FUIS IO ottt et sttt et s 1852
Fo1S5. 1. DefinitionScooueiiiiiiieiiieieeiteete ettt ettt 1852
F.15.2. Operators and FUNCHONSccccoirieniiiieiiiniiiiciceeeenecreeeeeeeeee 1853
FLIS.30 INACXES ettt ettt st s 1856
FI5.4. EXAMPIE ..o 1856
FoI5.5. AUTNOTSeiiiiiiieeee ettt 1858
Fo16. 01A2NAIMEcouviiiiiiiieiieeeee ettt sttt 1858
FiLIO.1. OVEIVIEW ..oniiieieeieeeeteet ettt sttt et ae s 1858
F16.2. EXAMPIES....cveiuiiiiiieieieiieeictcctetetet ettt 1859
Fo16.3. LIMItAtIONS «..eveenieiieiieieeiieieetcete sttt st e 1861
Fo16.4. AUNOT ..c.ooviiiiiiiicccccete et e 1862
FoL7. PAGRINSPECT -ttt sbe et e sbe st e aesbens 1862
FoI7.1. FUNCHOMNS ...ttt st sttt 1862
FoI8. PEDENCH. ...ttt 1863
FLI8. 1. OVEIVIEW ...ttt st 1864
F.18.2. What is the “transaction” actually performed in pgbench?.................... 1866
F.18.3. CUSOM SCIIPLS c.vvenveiieniiniieiieieetesieeitene sttt sttt 1866
F.18.4. Per-transaction loZgINgc..cecceverienirienienienienineenieneetenieseeee e 1868
F.18.5. GOOd PractiCesc..ceverieruieiiniieiiniinienieniteteieeiteee ettt 1868

xl

F.19. pg_bUffercache.........cooiiiiiiiiiiiiiieet ettt 1868

F.19.1. The pg_bufferCache VIEWcccveeeeeiiveeeeeeeireeeeeeeireeeeeeeetreeeeeeenreeeeeens 1869
F.19.2. Sample OULPUL ...ooveeriieiieieeiiesieete ettt sttt e 1869
Fi19.30 AUTNOTS ..ottt 1870
FL20. PECTYPLO -ttt ettt ettt st ettt et e et e st e ebeebee e 1870
F.20.1. General hashing functions...........c..cocceeerieiieninienineneneeeeeeeeeeeee 1870
F20.1.1. AigeSt () cereereerereeniesieeienieeeeie st esae st este e sneeeesseeneessesneensesneens 1870
F.20.1.2. MAC () teveeteeierieeieiesieete st e te ettt ee ettt enee et eneesse e esesnens 1870
F.20.2. Password hashing functionsc.cccccceceeveniiiininencnineeeeeeeene 1871
F20.2.1. CrYPE () ittt et et 1871
F20.2.2. gen_S811 () tooriieeeeiieee ettt e 1872
F.20.3. PGP encryption fUncCtionsc.ceeeeeverierienieeniene e 1873
F20.3.1. pgp_symM_enCryPEt () eeeeecveeeeeeeiieeeeeeieee e eeireee e e e 1874
F.20.3.2. pgp_sym_deCrYPEL () wieeeeerreeeeeeeieeee ettt et 1874
F.20.3.3. pgp_pub_encCryPLt () eeeecceeeeeeecieeee e ettt 1874
F.20.3.4. pgp_pub_deCryPL () wieeeecreeeeeeeiieee et e et e e e 1874
F.20.3.5. pgP_Key_ 1A () tieeeieeeeieeeeiee et eeee et eete et 1874
F.20.3.6. armor (), AEATMOTL () teeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesaereseeeeeeeeeesns 1875
F.20.3.7. Options for PGP functionscccccovevoierienienenenncncnienenees 1875
F.20.3.7.1. Cipher-al@oc..cccceeeeiininienenieenieeese e 1875

F.20.3.7.2. cOmMPIess-al@ococeeeererienenienienieienieeeene e 1875

F.20.3.7.3. compress-1eVelccceverienenieneniniineeieneneeieniene 1876

F.20.3.7.4. convert-Crlf........cooviiiiininiininieeneccceeeeeeee 1876

F.20.3.7.5. disable-mdC.....c...ccceveeiireriininieienieiceeeene e 1876

F.20.3.7.6. €nable-SesSION-KeYc.cccevurrrrerreeriieieenieeniesieeneeenannn 1876

F.20.3.7.7. S2K-MOdE......ccereiiiniiiiininienienteeneecee et 1876

F.20.3.7.8. 82K-digest-al@0......c.eevueerueiriiiiieniienieeieenieesee e 1877

F.20.3.7.9. 82K-Cipher-algocccceveeriiiniienienieeieeeesie e 1877
F.20.3.7.10. unicode-mode...........ccccoveruereruenienenienieeeneneeieniens 1877

F.20.3.8. Generating PGP keys with GnuPG.........cccccoovviviiiiiiniinienees 1877
F.20.3.9. Limitations of PGP codecc.cocceviniriieniniinninieiccnecieneee 1878
F.20.4. Raw encryption fUnCtionsceceeveerieniiienienienieenieenee e 1878
F.20.5. Random-data fUNCHONSccccecuererieniinieiiiieieie e 1879
FL20.6. NOTES ..cueereiieeeeierieeteeeeteee ettt st e 1879
F.20.6.1. Configuration............cccecuevuirieniinienieneneeieneeeeee e 1879
F.20.6.2. NULL handlingccccceeeeierieeienieneeieieeceie s eee e seesee e 1880
F.20.6.3. Security limitations..........cccceceeeuirieneninieiiinieieneeeeseeeeneneee 1880
F.20.6.4. Useful readingccccocveviieiiiiniiiiniiicenceeeeeeie e 1880
F.20.6.5. Technical referencescoeovevereereneeiereeiecieeeeiesee e 1881
F20.7. AUNOT ...t 1881
F21. pg_freeSpacemapccceeueerieeuieiieieeieste ettt ettt sttt st enen 1882
F.21.1. The pg_freespacemap VIEWS.....ccuiccuieeeiuieeeieeeeeeeeeeieeeeeeeeeveeeeeaeeeenns 1882
F.21.2. Sample OULPUL ...ccuveeieieriiiieeieeeeeeeee et 1883
F21.30 AUNOT ..ot 1884
FL22. PEIOWIOCKS. ... ettt ettt sttt ettt st ae b 1884
F22.1. OVEIVIBW ..oniiieniiiteeieei ettt st sttt 1884
F.22.2. Sample OULPULoovieiiiiieiieiieieeeseeteeteee ettt 1885
F22.3. AUTNOT ..ot e 1885
F23. P standbyc.coouiriiiiiiiiieiee ettt 1885
Fi23. 1. USAZE. .ttt st ettt 1886
F.23.2. EXAMPIES ..ottt 1888
F.23.3. SUpPOIted SEIVET VEISIONS ..ccvverereriieieeniierrieieenieesteeseesseessseesessseessnens 1889

xli

F.24.

F.25.

F.26.

F27.

F.28.

F.29.

F.30.

F31.

F.32.

F.33.

F.34.

F23.4. AUNOT ..ot 1889

PESTALLUPIE....eenieiieiieeieette ettt ettt st ettt et e st e st e e bee s st e sateenbeesaaenaee s 1889
F24.1. FUNCHONS ...cuiiiiiiiiiiciiiicccc e 1889
F24.2. AUhOr ..o 1891
P LTIttt ettt sttt ettt et e bt st st e b e e atesat e e be e bt e naee s 1891
F.25.1. Trigram (or Trigraph) CONCePLS.......ccovereevenririeniireeieneereieneeeeseeeeee 1891
F.25.2. Functions and OPEratorsc.ccoceeveeruerieueniinienieneenneneerenreseenesneenee 1892
F.25.3. INAEX SUPPOIT ..ottt 1892
F.25.4. Text Search INteZrationcccccoceeceeririeiiininiene e 1893
F.25.5. REeIENCES ...couiiiiiiiiieit ettt 1894
FL25.6. AUTNOTSeiiiiiiiiiiietee ettt st 1894
BB ettt h e s e e st b e s a e e a e 1894
F.26.1. RAtIONALE ..ottt sttt 1894
F26.2. SYNEAX .ottt sttt sttt sttt 1895
F.26.3. PreCISION ..ottt st 1896
F26.4. USAZE....cueiuieuiiiiiiieieecteitee sttt sttt sttt 1896
FL20.5. INOTES -ttt sttt ettt ettt be e 1897
F26.0. CreItS ..cuvemeiiienieiiieiesieeeeeete ettt st 1897
]2 OO OO OSSOSO PO USRS PSPRUPRURO 1897
F.27.1. refint.c — functions for implementing referential integrity................... 1898
F.27.2. timetravel.c — functions for implementing time travel..........c..cc..c....... 1898
F.27.3. autoinc.c — functions for autoincrementing fields..........cc.ccoeveeuennenne. 1899
F.27.4. insert_username.c — functions for tracking who changed a table 1899
F.27.5. moddatetime.c — functions for tracking last modification time 1899
SSHNTO . 1900
F.28.1. Functions Providedcocoeoiiiiiniiiinininiiicicicccceceee 1900
F28.2. AUNOT ...oiiiiiiiiicc e 1901
EADIETUNC ..o e 1901
F.29.1. Functions Providedc..coccoioiiiiiiiiininiiiiiiiiccccceee 1901

F.20.1.1. NOTIMAL TANG ttttttteeeeeee et e e e e e e e e e e et reeeeaaeeeaeaees 1902

FL20. 1.2, CroS St Al (£) teeeeeeeeeeee et e e e e e e e e et reeeeeaeaeeaaees 1903

F.20.1.3. CroSStabN (£EXE) aeteeeeeiieeeeeiiieeeeeeeeeeeeeeeeeeeeeeeee e reeeereeseaaaees 1905

F20.1.4. crosstab (£eXt, TEXE) wtiieeeeeeeeeeeeeeeeeeeeereeeeeeeneeeeees 1906

Fo20.1.5. CONNE DY ittt e 1909
F20.2. ATNOT ..ottt e 1911
LS PATSET ¢ uteeeuitieeiiee ettt e ettt e et e st e e sttt e eae et et e s s bt e e s at e e sabae e e bt e e s naeesaneeeereeenane 1911
F30.1. USAZE...nioiiiiieieeeeeee et st 1911
ESEATCRZ ..ttt ettt ettt sttt sat e e e beenae 1912
F.31.1. Portability ISSUEScciiiiiiiiiiiniiiicieeeece e 1912
F.31.2. Converting a pre-8.3 Installation..........ccccevevveruereeiriencrenrenreeeceeeennenne 1913
F.31.3. RefeIONCEScueeieiieieieei et 1914
UUIA-08SP vttt sttt et ettt sttt eb e 1914
F.32.1. uuid—0ssp FUNCLONSccvieiieeiiieiieeeeic ettt 1914
F.32.2. AUNOT ..ot 1915
VACUUITO. ¢ttt sttt st st sbe e s st e beesbeesbneebeebee e 1915
FL33. 1. USAZE. ittt sttt s 1915
F.33.2. MEthOd ..ottt e 1916
F.33.30 AUNOT ..o e 1916
XITZ (ot st s 1916
F.34.1. Deprecation NOtICEc..coveruireeienenienieniteteieeite et 1916
F.34.2. Description Of fUnCHONS........cc.cevererienenieieientenescee et 1917
| SRRV 3 Tt oY= ol s W o= o 1 I = SO TRURROPRPRN 1917

xlii

F.34.3.1. Multivalued reSultscoovvviieeiiiriiieeeereeeeeeereeee e 1919

F.34.4. XSLT fUNCHONS «..eveeiieiieiieiieiceienieeeeesie ettt 1920

F34.4. 1. XS 1t 0T OCESS wuiiiiiitiiieeeeireeeeeeeeee e eeeree e e e e e e eeaae e e eeareee s 1920

F34.5. AUNOT ...ttt 1920

G. EXtEINal PrOJECES ...eeiuiiiiieiiieieeie ettt ettt sttt st e i s 1921
G.1. Client INterfaces......ccvevuieieiiiieienieeieiteeete ettt 1921

G.2. Procedural Languages............cccceveeieriinieniineeienieerereeeeeesre e 1922

G.3. EXEBINSIONS ...eoutieniiiiiieeieeite sttt ettt sttt e b e st st e bt e s bt e sate s beesbeesanesanes 1922

H. The Source Code REePOSILOTYc.coueriiriiriieiiiieieii ettt 1923
H.1. Getting The Source Via Git.........ccoceiiriiiiiiniiiiiiieeeeeeeeeeee e 1923

L. DOCUMENTATIONcettieiieeieetieeiteete ettt ettt ettt sttt et sa e bt e bt e sae e e beesaeenaee s 1924
L1 DOCBOOK ..ottt sttt sttt st 1924

L2 TOOL SELS ...ttt ettt sttt ettt be e st se e b e e 1924

[.2.1. Linux RPM Installationccccooeririeniiieienieee e 1925

1.2.2. FreeBSD Installationcccceeerieririenenieieieeee e 1925

[.2.3. Debian Packages........ccceeeeuieiinieienieeieieeiteeteee et 1926

1.2.4. Manual Installation from SOUICEccereerieniirieniiieie e 1926

1.2.4.1. Installing OpenJade..........cccoceeieririininiinieineeneeee e 1926

1.2.4.2. Installing the DocBook DTD Kit.......ccoceeoueriinieniininienienieieneene 1927

1.2.4.3. Installing the DocBook DSSSL Style Sheets..........cccccocereeruennnn. 1927

1.2.4.4. Installing JadeTeX..........ceceririinininninenieenteeseeteee e 1928

[.2.5. Detection BY CONELGUTE wouveviiriiiinieniieieriteteieeeteee et 1928

1.3. Building The DOCUMENTAtiONc..coeiiiriirieiinieiisicetene ettt 1929

L3 1 HTML ettt st ettt 1929

L.3.2. IMIANPAZES ...veevreeuiientieniieeiteeteesitesiteeteesatesitesateebeesseesaseebeesseesnsesnsaenseessnens 1929

1.3.3. Print Output via JadeTeXccoceviiiriiiiierieeiieeetese et 1930

1.3.4. Print Output via RTFcccooiiiiiiiiieeceteese et 1930

1.3.5. Plain Text FIles ...c..coceeoiirimiiiiiriiiinieieeseeteeete et 1932

L.3.6. SYNLAX ChECK ...c.eiiitiiiieeiiieiieteete ettt sttt st e 1932

L4. Documentation AUtROTING.......ccccceviiriiieriieniieiieeieerie sttt 1932

L4.1. EMacS/PSGMLccoiiiiiiiiiiiieieneeeeeeercteteee st 1932

[.4.2. Other EMacs MOESc..cocuecuirieiiniriiiiiieieieeieie et 1933

L5. Style GUIAE.....couiiiiiiiiiieee ettt sttt sttt be e 1933

L.5.1. Reference Pages.........ccccoevieiiniiiininiiiniciccee e 1934
JUACTONYIMIS. ...ttt ettt et sae e ae s nesaeas 1936
Bibliography 1941
Index 1943

xliii

Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics are, for instance, user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/postgres.html

xliv

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone
free of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over a decade of devel-
opment behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

xly

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY
query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in italics. Everything that represents

xlvi

Preface

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced font (example). Within such passages, italics (example) indicate placeholders;
you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

FAQs
The FAQ list contains continuously updated answers to frequently asked questions.
Web Site

The PostgreSQL web site’ carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.
Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

5. http://www.postgresql.org

xlvii

Preface

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.

xIviii

Preface

We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ .psqglrc start-up file.)
An easy start at this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example,
but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

« Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the command SELECT version () ; to find out the version
of the server you are connected to. Most executable programs also support a ——version option; at
least postgres —-versionand psql --version should work. If the function or the options do
not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

xlix

Preface

If your version is older than 8.3.23 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article® that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server
process is quite different from crash of the parent “postgres” process; please don’t say “the server
crashed” when you mean a single backend process went down, nor vice versa. Also, client programs
such as the interactive frontend “psql” are completely separate from the backend. Please try to be
specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresqgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site’. Entering a
bug report this way causes it to be mailed to the <pgsgl-bugs@postgresqgl.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sgl@postgresql.org>
or <pgsgl-general@postgresqgl.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@postgresql.org>. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on pgsgl-hackers, if the problem needs more review.

6. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
7. http://www.postgresql.org/

Preface

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl . org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail. For more information send mail 1o <majordomo@postgresql.org> with the single word
help in the body of the message.

li

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server
program is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was
not set correctly. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check back in the installa-
tion instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 19 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

« Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC support to
create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql, to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

If you leave off the database name then it will default to your user account name. You already discov-
ered this scheme in the previous section.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started
Welcome to psgl 8.3.23, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psgl commands
\g or terminate with semicolon to execute query
\g to quit

mydb=>
The last line could also be
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purposes
of this tutorial that is not of importance.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psqgl are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();

version

PostgreSQL 8.3.23 on i586-pc-linux—gnu, compiled by GCC 2.96
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psqgl program has a number of internal commands that are not SQL commands. They begin
with the backslash character, “\”. Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out of psql, type
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psgl prompt.) The full capabilities of psqgl are documented in psql. If PostgreSQL is installed
correctly you can also type man psqgl at the operating system shell prompt to see the documentation.

Chapter 1. Getting Started

In this tutorial we will not use these features explicitly, but you can use them yourself when you see
fit.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. To use those files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. (If you
installed a pre-packaged version of PostgreSQL rather than building from source, look for a directory
named tutorial within the PostgreSQL documentation. The “make” part should already have been
done for you.) Then, to start the tutorial, do the following:

$ ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. The —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not syntactical key words, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT % FROM weather;
Here = is a shorthand for “all columns”. ' So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a
column to the table would change the results.

Chapter 2. The SQL Language

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
_______________ e
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the &S clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
——————————————— B e At
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
777777777777777 -t
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called a
Jjoin query. As an example, say you wish to list all the weather records together with the location of
the associated city. To do that, we need to compare the city column of each row of the weather table
with the name column of all rows in the cities table, and select the pairs of rows where these values

match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT x
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL doesn’t
guarantee that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns of the
weather and the cities table are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong
to. If there were duplicate column names in the two tables you’d need to qualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT x
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B H e e e e Rttt
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_1lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

11

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

12

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

13

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

14

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it
will be of advantage if you have read that chapter. Some examples from this chapter can also be found
in advanced. sql in the tutorial directory. This file also contains some example data to load, which
is not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

15

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

16

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

17

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

balance - 100.00

This example is, of course, oversimplified, but there’s a lot of control to be had over a transaction
block through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -—— (in ft)
state char (2)
)i

CREATE TABLE non_capitals (
name text,
population real,
altitude int -—— (in ft)
)

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

18

Chapter 3. Advanced Features

name text,

population real,

altitude int -—— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located

at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ o
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

19

Chapter 3. Advanced Features

3.6. Conclusion
PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site' for links to
more resources.

1. http://www.postgresql.org

20

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look into Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

23

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Identifier and key word names are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F0O, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "Foo" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write

24

Chapter 4. SQL Syntax

two adjacent single quotes, e.g. ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:
SELECT ' foobar’;
but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g. E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represents a special byte value. \b is a backspace, \ f is a form feed, \n is a newline, \r is a carriage
return, \t is a tab. Also supported are \digits, where digits represents an octal byte value, and
\xhexdigits, where hexdigits represents a hexadecimal byte value. (It is your responsibility that
the byte sequences you create are valid characters in the server character set encoding.) Any other
character following a backslash is taken literally. Thus, to include a backslash character, write two
backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in addition
to the normal way of ”.

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, in which backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default
will change to on in a future release for improved standards compliance.
Applications are therefore encouraged to migrate away from using backslash
escapes. If you need to use a backslash escape to represent a special
character, write the constant with an to be sure it will be handled the same
way in future releases.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.2. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those

25

Chapter 4. SQL Syntax

must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

SSDianne’s horses
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ $qgS[\t\r\n\v\\1$g$);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1qg represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $ functions, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagString contentS$tags is correct,
but STAGSString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.3. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ 1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

26

Chapter 4. SQL Syntax

4.1.2.4. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. [digits] [e[+-]1digits]
[digits] .digits[e[+—-]digits]
digitse[+-]digits

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" -- string style
1.23::REAL —— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.5. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
" string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called t ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

27

Chapter 4. SQL Syntax

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.8 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.8. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The cAST () syntax conforms to SQL. The type ’ string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D" "&I|*?

There are a few restrictions on operator names, however:

« —-and /« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

+ A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~1@#EDPN&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write X+@Y; you must write X« @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an

28

Chapter 4. SQL Syntax

identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

+ The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» The asterisk () is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/+ multiline comment
+ with nesting: / nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of » /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-1 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators
< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;

will be parsed as:

29

Chapter 4. SQL Syntax

SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

- right unary minus

» left exponentiation

*x /% left multiplication, division,
modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-1 for “any other”
operator. This is true no matter which specific operator name appears inside OPERATOR () .

30

Chapter 4. SQL Syntax

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value.

+ A column reference.

« A positional parameter reference, in the body of a function definition or prepared statement.
+ A subscripted expression.

« A field selection expression.
« An operator invocation.

+ A function call.

+ An aggregate expression.

+ A type cast.

« A scalar subquery.

« An array constructor.

« A row constructor.

» Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause, or one of the key words NEW or OLD. (NEW and OLD can only appear
in rewrite rules, while other correlation names can be used in any SQL statement.) The correlation
name and separating dot can be omitted if the column name is unique across all the tables being used
in the current query. (See also Chapter 7.)

31

Chapter 4. SQL Syntax

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper._subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]

mytable.two_d_column[17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

32

Chapter 4. SQL Syntax

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([expression [, expression ... 11)

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...])

aggregate_name (ALL expression [, ... 1)

aggregate_name (DISTINCT expression [, ...])
(

aggregate_name *)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
and expression is any value expression that does not itself contain an aggregate expression.

33

Chapter 4. SQL Syntax

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression(s) yield non-null values. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, since ALL is
the default. The third form invokes the aggregate for all distinct non-null values of the expressions
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count () aggregate function.

For example, count () yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null; count (distinct £1) yields the number of distinct non-null values
of £1.

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.9 and Section 9.19), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect
to the query level that the aggregate belongs to.

Note: PostgreSQL currently does not support brsTIncT with more than one input expression.

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The caAST syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.5. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

34

Chapter 4. SQL Syntax

typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided in new applications.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.9. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.19 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, one or more
expressions (separated by commas) for the array element values, and finally a right square bracket].
For example:

SELECT ARRAY[1,2,3+4];

The array element type is the common type of the member expressions, determined using the same
rules as for UNION or CASE constructs (see Section 10.5).

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

35

Chapter 4. SQL Syntax

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],1[3,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]11]);

SELECT ARRAY[fl, f2, 7{{9,10},{11,12}}’::int[]] FROM arr;
array

{{{1,2},{(3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);

?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

4.2.11. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) from values
for its member fields. A row constructor consists of the key word row, a left parenthesis, zero or
more expressions (separated by commas) for the row field values, and finally a right parenthesis. For
example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

36

Chapter 4. SQL Syntax

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . + syntax is used at the top level of a SELECT list. For
example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded, so that writing Row (t .+, 42)
created a two-field row whose first field was another row value. The new behavior is usually more
useful. If you need the old behavior of nested row values, write the inner row value without . «, for
instance row (£, 42).

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £3 text);
CREATE FUNCTION getfl (mytable) RETURNS int AS ’SELECT $1.f1l’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,’this is a test’));
getfl

CREATE TYPE myrowtype AS (f1 int, £f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"’this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);

37

Chapter 4. SQL Syntax

SELECT ROW (table.*) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.20. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.19.

4.2.12. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A casE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing v
> 1.5*x instead.)

38

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

39

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists look into Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is that a t imestamp column can have a default

40

Chapter 5. Data Definition

of now (), so that it gets set to the time of row insertion. Another common example is generating a
“serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.15).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

41

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in just the same way as for column constraints:

CREATE TABLE products (

42

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

43

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

In general, a unique constraint is violated when there are two or more rows in the table where the
values of all of the columns included in the constraint are equal. However, two null values are not
considered equal in this comparison. That means even in the presence of a unique constraint it is
possible to store duplicate rows that contain a null value in at least one of the constrained columns.
This behavior conforms to the SQL standard, but we have heard that other SQL databases might not
follow this rule. So be careful when developing applications that are intended to be portable.

44

Chapter 5. Data Definition

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

45

Chapter 5. Data Definition

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products
table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)
CREATE TABLE orders (

order_id integer PRIMARY KEY,
shipping_address text,

46

Chapter 5. Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

« Disallow deleting a referenced product
+ Delete the orders as well
» Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

47

Chapter 5. Data Definition

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH OIDs, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.16 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

Cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ct id will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in

48

Chapter 5. Data Definition

a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2*? (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
number of SQL commands, not number of rows processed. Also, as of PostgreSQL 8.3, only com-
mands that actually modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion change, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can

« Add columns,

« Remove columns,

« Add constraints,

« Remove constraints,

« Change default values,

» Change column data types,
« Rename columns,

« Rename tables.

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

49

Chapter 5. Data Definition

5.5.1. Adding a Column

To add a column, use a command like this:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using upDATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like this:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

50

Chapter 5. Data Definition

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like this:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising

51

Chapter 5. Data Definition

results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object
can do anything with the object. In order to allow other users to use it, privileges must be granted.
(However, users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular ob-
ject vary depending on the object’s type (table, function, etc). For complete information on the differ-
ent types of privileges supported by PostgreSQL, refer to the GRANT reference page. The following
sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 19.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

52

Chapter 5. Data Definition

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege from
that recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT
and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named myt able. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

53

Chapter 5. Data Definition
schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:
DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

54

Chapter 5. Data Definition

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.
We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.22 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)

55

Chapter 5. Data Definition

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner
of the schema needs to grant the USAGE privilege on the schema. To allow users to make use of the
objects in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer
true: you can create such a table name if you wish, in any non-system schema. However, it’s best to
continue to avoid such names, to ensure that you won’t suffer a conflict if some future version defines
a system table named the same as your table. (With the default search path, an unqualified reference to
your table name would be resolved as the system table instead.) System tables will continue to follow
the convention of having names beginning with pg_, so that they will not conflict with unqualified
user-table names so long as users avoid the pg_ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

56

Chapter 5. Data Definition

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts with Suser, which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —-— in feet

)
CREATE TABLE capitals (

state char (2)
) INHERITS (cities);

57

Chapter 5. Data Definition

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, S,
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing » to explicitly specify that descendant tables are
included:

SELECT name, altitude
FROM citiesx
WHERE altitude > 500;

Writing » is not necessary, since this behavior is the default (unless you have changed the setting
of the sql_inheritance configuration option). However writing « might be useful to emphasize that
additional tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

58

Chapter 5. Data Definition

tableoid | name | altitude

,,,,,,,,,, I
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 36). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when
the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to

59

Chapter 5. Data Definition

LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns of child tables
be dropped or altered if they are inherited from any parent tables. If you wish to remove a table and
all of its descendants, one easy way is to drop the parent table with the CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns or constraints on parent tables is only possible when
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

5.8.1. Caveats

Table access permissions are not automatically inherited. Therefore, a user attempting to access a
parent table must either have permissions to do the operation on all its child tables as well, or must
use the ONLY notation. When adding a new child table to an existing inheritance hierarchy, be careful
to grant all the needed permissions on it.

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your problem.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

« Query performance can be improved dramatically in certain situations, particularly when most of

60

Chapter 5. Data Definition

the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

- When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE is far faster than a bulk operation. It also
entirely avoids the vACUUM overhead caused by a bulk DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will
not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

61

Chapter 5. Data Definition

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like this:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might
want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is enabled in postgresgl.conf.
Without this, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like this:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables
as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01")

62

Chapter 5. Data Definition

) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’2006-03-01" AND logdate < DATE ’2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’'2007-11-01’ AND logdate < DATE ’2007-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’2007-12-01" AND logdate < DATE ’2008-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
) INHERITS (measurement);
. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);
We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement ... and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);
RETURN NULL;

END;

$$

LANGUAGE plpgsqgl;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’2006-02-01' AND NEW.logdate < DATE ’'2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE ’'2006-03-01’ AND NEW.logdate < DATE ’2006-04-01") T
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE '2008-01-01" AND NEW.logdate < DATE ’2008-02-01") T
INSERT INTO measurement_y2008m01 VALUES (NEW.x);

ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger () fur

63

Chapter 5. Data Definition

END IF;
RETURN NULL;
END;
$s
LANGUAGE plpgsgl;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain

access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01'")
) INHERITS (measurement);

64

Chapter 5. Data Definition

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical default plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seqg Scan on measurement_y2006m02 measurement (cost=0.00..30.38
Filter: (logdate >= ’72008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38

Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38
Filter: (logdate >= ’2008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38

Filter: (logdate >= ’72008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly reduced plan that will deliver the same answer:

SET constraint_exclusion = on;

65

rows=543

rows=543

rows=543

rows=543

Wi

Wi

wi

Wi

Chapter 5. Data Definition

EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’'2008-02-01')
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COpY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll

UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

66

Chapter 5. Data Definition

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

+ There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

« The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

 If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

+ Constraint exclusion only works when the query’s WHERE clause contains constants. A parameter-
ized query will not be optimized, since the planner cannot know which partitions the parameter
value might select at run time. For the same reason, “stable” functions such as CURRENT_DATE
must be avoided.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

67

Chapter 5. Data Definition

« Views

« Functions and operators

+ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what brROP ... CASCADE will do, run
DROP without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or caScADE is required. No
database system actually enforces that rule, but whether the default behavior is RESTRICT or
CASCADE varies across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

68

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

69

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, ’"Cheese’, 9.99),
(2, "Bread’, 1.99),
(3, 'Milk’", 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It
is not as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore
it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not

70

Chapter 6. Data Manipulation
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

71

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

SELECT select_list FROM table expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

A simple kind of query has the form:

SELECT * FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns
from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specification » means all columns that
the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For example, if tablel has columns named a, b, and c (and
perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

72

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a table join, or complex combinations of these. If more than one table reference is listed in the
FROM clause they are cross-joined (see below) to form the intermediate virtual table that can then be
subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of
the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write x after the table name to explicitly
specify that descendant tables are included. Writing » is not necessary since that behavior is the
default (unless you have changed the setting of the sql_inheritance configuration option). However
writing » might be useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOIN T2

For each combination of rows from 71 and T2, the derived table will contain a row consisting of
all columns in 71 followed by all columns in T2. If the tables have N and M rows respectively,
the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 71, 72. It is also equivalent to FROM T1
INNER JOIN T2 ON TRUE (see below).
Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER

Tl NATURAL [INNER] | { LEFT | RIGHT | FULL [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

73

]] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
{ }

)

Chapter 7. Queries

The on clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of a JOIN USING has one column for each of the equated
pairs of input columns, followed by all of the other columns from each table. Thus, USING (a,
b, c)isequivalenttoON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) withthe
exception that if ON is used there will be two columns a, b, and c in the result, whereas with
USING there will be only one of each.

Finally, NATURAL is a shorthand form of USTNG: it forms a USTNG list consisting of exactly those
column names that appear in both input tables. As with USTNG, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both of 71 and T2 might be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables £ 1:

m | name
e
1] a

2 | b

3 | c

t2:

74

1 XXX
3 1 yyy
5

| zzz

then we get the following results for the various joins:

=> SELECT * FROM tl CROSS JOIN t2;

num | name | num | value
77777 Fom
1] a \ 1 | xxx
11 a \ 31 yyy
1] a \ 5 | zzz
2 1 Db \ 1 | xxx
2 | b \ 3 1 yyy
2 1 Db \ 5 | zzz
3 | c | 1 | xxx
31 c \ 31 yyy
3 | ¢ \ 5 | zzz
(9 rows)

=> SELECT » FROM tl INNER JOIN t2 ON tl.num =

num | name | num | value
77777 t————
11 a \ 1 | xxx
31 ¢ \ 31 yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);
num | name | value

,,,,, e
1] a | xxx
31 c l yyy

(2 rows)

=> SELECT » FROM tl NATURAL INNER JOIN t2;

num | name | value
,,,,, I,
1] a | xxxX
31 c | yyy
(2 rows)

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 e e Rttt
1] a \ 1 | xxx
2 | Db \ |
3 1 ¢ \ 3 1 yyy
(3 rows)

=> SELECT x FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ e

1] a | xxx

2 | b \

31 c | yyy
(3 rows)

Chapter 7. Queries

75

Chapter 7. Queries

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— Bt it
1] a | 1 | xxx
3 c \ 3 1 yyy
| | 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 e et e e
11 a \ 1 | xxx
2 | b \ |
31 ¢ \ 31 yyy
| | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;

num | name | num | value
_____ oy
11 a \ 1 | xxx
2 1 Db \ |
3| c \ |
(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table reference alias

The as key word is noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference for the current query — it is no longer possible
to refer to the table by the original name. Thus:

SELECT x= FROM my_table AS m WHERE my_table.a > 5;

76

Chapter 7. Queries

is not valid according to the SQL standard. In PostgreSQL this will draw an error if the
add_missing_from configuration variable is off (as it is by default). If it is on, an implicit table
reference will be added to the FROM clause, so the query is processed as if it were written as:

SELECT % FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

That will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT x= FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT = FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, using any of these forms, the alias hides the
original names within the JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.x FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid: the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (‘bob’, ’jones’), (’Jjoe’, ’'blow’))
AS names (first, last)

77

Chapter 7. Queries

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is
used in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT » FROM foo
WHERE foosubid IN (select foosubid from getfoo (foo.fooid) =z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT x FROM getfoo(l);

SELECT = FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (’ dbname=mydb’, ’select proname, prosrc from pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea$%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, what » should expand to.

78

Chapter 7. Queries

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the result is false or null) it is discarded. The search condition typically references
at least some column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wrERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frou clause is
probably not as portable to other SQL database management systems. For outer joins there is no
choice in any case: they must be done in the From clause. An oN/usING clause of an outer join is
not equivalent to a wHERE condition, because it determines the addition of rows (for unmatched
input rows) as well as the removal of rows from the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

79

10)

AND 100

Chapter 7. Queries

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that share the same values
in all the columns listed. The order in which the columns are listed does not matter. The effect is to
combine each set of rows sharing common values into one group row that is representative of all rows
in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM testl;
X

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

80

Chapter 7. Queries

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price might be fully dependent on the product ID, so the additional groupings
could theoretically be unnecessary, but this is not implemented yet.) The column s.units does not
have to be in the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which
represents the sales of a product. For each product, the query returns a summary row about all sales
of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using a GROUP BY clause, but then only certain groups are of interest, the
HAVING clause can be used, much like a WHERE clause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

81

Chapter 7. Queries

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is »+ which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM ...

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they could be constant arithmetic expressions
as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified using As, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

82

Chapter 7. Queries

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list
(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all

rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM the construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which really says

(queryl UNION query2) UNION query3

UNION effectively appends the result of query?2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

83

Chapter 7. Queries

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DEsC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

For backwards compatibility with the SQL92 version of the standard, a sort_expression can in-
stead be the name or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
it’s not allowed as part of an expression — for example, this is not correct:

1.

Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering

for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

84

Chapter 7. Queries

SELECT a + b AS sum, c FROM tablel ORDER BY sum + c; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use As to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause. If both OFFSET and LIMIT appear, then OFFSET rows are skipped before
starting to count the LIMIT rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating a query plan, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “‘constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each

85

Chapter 7. Queries
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’"two’

UNION ALL

SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as an arm of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

86

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data (“byte array”)

character varying [(n) |varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [(p)] time span

line infinite line in the plane

lseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path in the plane

point geometric point in the plane

polygon closed geometric path in the
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

87

Chapter 8. Data Types

time zone

Name Aliases Description

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 I date and time

without time zone]

timestamp [(p) 1 with timestamptz date and time, including time

Zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possibilities for formats, such as the date and time
types. Some of the input and output functions are not invertible. That is, the result of an output func-
tion might lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes usual choice for integer | -2147483648 to
+2147483647

bigint 8 bytes large-range integer -
9223372036854775808
to
9223372036854775807

88

Chapter 8. Data Types

Name Storage Size Description Range

decimal variable user-specified no limit
precision, exact

numeric variable user-specified no limit
precision, exact

real 4 bytes variable-precision, 6 decimal digits

inexact precision

double precision |8 bytes variable-precision, 15 decimal digits

inexact precision
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to

integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the usual choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type should only be used if the integer range is not sufficient, because the latter is definitely faster.

The bigint type might not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such support, bigint acts the same as integer (but still
takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int 8 are extensions, which are shared with various other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

In what follows we use these terms: The scale of a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. The precision of a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

89

Chapter 8. Data Types
NUMERIC (precision, scale)
The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus five to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in a SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.On input,
the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored
as approximations, so that storing and printing back out a value might show slight discrepancies.
Managing these errors and how they propagate through calculations is the subject of an entire branch
of mathematics and computer science and will not be discussed further here, except for the following
points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

90

Chapter 8. Data Types

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might or might not work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

LEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in a SQL command, you
must put quotes around them, for example UPDATE table SET x = ’Infinity’.On input, these
strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-Nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL ac-
cepts float (1) to float (24) as selecting the real type, while float (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
setting up unique identifier columns (similar to the AUTO_INCREMENT property supported by some
other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL
)

91

Chapter 8. Data Types
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be explicitly
inserted, either. (In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint
to prevent duplicate values from being inserted by accident, but this is not automatic.) Lastly, the
sequence is marked as “owned by” the column, so that it will be dropped if the column or table is
dropped.

Note: Prior to PostgreSQL 7.3, serial implied un1guE. This is no longer automatic. If you wish
a serial column to be in a unique constraint or a primary key, it must now be specified, same as
with any other data type.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type
names bigserial and serial8 work just the same way, except that they create a bigint column.
bigserial should be used if you anticipate the use of more than 2*' identifiers over the lifetime of
the table.

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. Input is
accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such as ’ $1, 000.00’ . Output is generally in the latter form but depends on the
locale. Non-quoted numeric values can be converted to money by casting the numeric value to text
and then money:

SELECT 1234::text::money;

There is no simple way of doing the reverse in a locale-independent manner, namely casting a money
value to a numeric type. If you know the currency symbol and thousands separator you can use

regexp_replace():

SELECT regexp_replace (’52093.89’ : :money::text, "[$,1', ”, 'g’)::numeric;

92

Chapter 8. Data Types
Since the output of this data type is locale-sensitive, it may not work to load money data into a database

that has a different setting of 1c_monetary. To avoid problems, before restoring a dump make sure
lc_monetary has the same or equivalent value as in the database that was dumped.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) Variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying (n) and character (n), where nis
a positive integer. Both of these types can store strings up to n characters in length. An attempt to store
a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of type character will be space-padded; values of type character varying will
simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar(n) and char (n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as
well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed
when converting a character value to one of the other string types. Note that trailing spaces are
semantically significant in character varying and text values.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which

93

Chapter 8. Data Types

includes the space padding in the case of character. Longer strings have 4 bytes overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration is
less than that. It wouldn’t be very useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different anyway. If you desire to store long strings
with no specific upper limit, use text or character varying without a length specifier, rather than
making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from increased
storage size when using the blank-padded type, and a few extra cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, it has no such advantages in PostgreSQL. In most situations text
Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 22.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’ok’);

SELECT a, char_length(a) FROM testl; -- ©
a | char_length

,,,,,, e

ok \ 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, e
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length might change in a future release.
The type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage.
It is internally used in the system catalogs as a poor-man’s enumeration type.

94

Chapter 8. Data Types

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

1 or 4 bytes plus the actual
binary string

bytea variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings by two characteristics: First, binary strings specifically allow storing octets of value zero and
other “non-printable” octets (usually, octets outside the range 32 to 126). Character strings disallow
zero octets, and also disallow any other octet values and sequences of octet values that are invalid
according to the database’s selected character set encoding. Second, operations on binary strings
process the actual bytes, whereas the processing of character strings depends on locale settings. In
short, binary strings are appropriate for storing data that the programmer thinks of as “raw bytes”,
whereas character strings are appropriate for storing text.

When entering bytea values, octets of certain values must be escaped (but all octet values can be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, it is
converted into the three-digit octal number equivalent of its decimal octet value, and preceded by two
backslashes. Table 8-7 shows the characters that must be escaped, and gives the alternative escape
sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet |Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\000"’ SELECT \000

E’\\000’ : :bytea;
39 single quote 77 or E/\\047’ |SELECT ’

E’\”::bytea;
92 backslash E’\\\\" or SELECT A\

E’\\134" E’\\\\’ : :bytea

0to 31 and 127 to | “non-printable” E’\\xxx’ (octal |SELECT \001
255 octets value) E’\\001’ ::bytea;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some

95

Chapter 8. Data Types

instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7 was exactly one octet in length, even though the output representation of the zero octet
and backslash are more than one character.

The reason that you have to write so many backslashes, as shown in Table 8-7, is that an input string
written as a string literal must pass through two parse phases in the PostgreSQL server. The first
backslash of each pair is interpreted as an escape character by the string-literal parser (assuming
escape string syntax is used) and is therefore consumed, leaving the second backslash of the pair.
(Dollar-quoted strings can be used to avoid this level of escaping.) The remaining backslash is then
recognized by the bytea input function as starting either a three digit octal value or escaping another
backslash. For example, a string literal passed to the server as E’ \\001’ becomes \ 001 after passing
through the escape string parser. The \001 is then sent to the bytea input function, where it is
converted to a single octet with a decimal value of 1. Note that the single-quote character is not
treated specially by bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into
its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are rep-
resented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternative output representation. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Example Output Result
Value Output

Representation
92 backslash AN\ SELECT AN\

E’\\134’ ::bytea;

0to 31 and 127 to | “non-printable” \ xxx (octal value) | SELECT \001
255 octets E’\\001’ ::bytea;
32to 126 “printable” octets | client character SELECT ~

set representation |E’\\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the
same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations
available on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

96

Chapter 8. Data Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and |4713 BC 5874897 AD | 1 microsecond
(p) 1 I time / 14 digits
without

time zone]

timestamp [|8 bytes both date and | 4713 BC 5874897 AD | 1 microsecond
(p)] with time, with time / 14 digits
time =zone zone

interval [|12 bytes time intervals | -178000000 178000000 1 microsecond
(p) 1 years years / 14 digits
date 4 bytes dates only 4713 BC 5874897 AD |1 day

time [(p) 8 bytes times of day 00:00:00 24:00:00 1 microsecond
] [without only / 14 digits
time zone]

time [(p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone

Note: Prior to PostgreSQL 7.3, writing just t imestamp was equivalent t0 timestamp with time
zone. This was changed for SQL compliance.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from 0O to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision might be less than 6. t imestamp values are stored as
seconds before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a
few years of 2000-01-01, but the precision degrades for dates further away. When t imestamp val-
ues are stored as eight-byte integers (a compile-time option), microsecond precision is available
over the full range of values. However eight-byte integer timestamps have a more limited range
of dates than shown above: from 4713 BC up to 294276 AD. The same compile-time option also
determines whether time and interval values are stored as floating-point or eight-byte integers.
In the floating-point case, large interval values degrade in precision as the size of the interval
increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
should provide a

timestamp without time zone, and timestamp with time zone

complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.

97

Chapter 8. Data Types

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of month, day, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.5 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specified for time, timestamp, and interval types.
The allowed values are mentioned above. If no precision is specified in a constant specification, it
defaults to the precision of the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in any datestyle input mode

1999-01-08 ISO 8601; January 8 in any mode
(recommended format)

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

98

Chapter 8. Data Types

8.5.1.2. Times

The time-of-day types are time [(p)] without time zoneandtime [(p)] with time
zone. Writing just t ime is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the

99

Chapter 8. Data Types

time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format:
January 8 04:05:06 1999 PST

is supported.
The SQL standard differentiates t imestamp without time zone and timestamp with time

zone literals by the presence of a “+” or “-”. Hence, according to the standard,
TIMESTAMP "2004-10-19 10:23:54"

isatimestamp without time zone, while

TIMESTAMP '2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been decided to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different zone reference can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Intervals

interval values can be written with the following syntax:
[@Q] quantity unit [quantity unit...] [direction]

Where: quantity is a number (possibly signed); unit iS microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-

100

Chapter 8. Data Types

rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of different units are implicitly added up with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10" isread the same as ' 1 day 12 hours 59 min 10 sec’.

The optional subsecond precision p should be between 0 and 6, and defaults to the precision of the
input literal.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. Because intervals are usually created from constant strings or timestamp subtraction,
this storage method works well in most cases. Functions justify_days and justify_hours are
available for adjusting days and hours that overflow their normal periods.

8.5.1.5. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-
13. The values infinity and -infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read. (In particular, now and related strings are converted to a specific
time value as soon as they are read.) All of these values need to be written in single quotes when used
as constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity timestamp later than all other time stamps

—infinity timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LocaALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Section
9.9.4.) Note however that these are SQL functions and are not recognized as data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES, and German, using the command SET datestyle. The default is the ISO
format. (The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output
format is a historical accident.) Table 8-14 shows examples of each output style. The output of the
date and time types is of course only the date or time part in accordance with the given examples.

101

Chapter 8. Data Types

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

POSTGRES original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET

SQL, MDY month/daylyear 12/17/1997 07:37:16.00 PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997
PST

interval output looks like the input format, except that units like century or week are converted
to years and days and ago is converted to an appropriate sign. In ISO mode the output looks like:

[quantity unit [...] 1 [days] [hours:minutes:seconds]

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client. The formatting function to_char (see Section 9.8) is also available as a more
flexible way to format the date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL currently
supports daylight-savings rules over the time period 1902 through 2038 (corresponding to the full
range of conventional Unix system time). Times outside that range are taken to be in “standard time”
for the selected time zone, no matter what part of the year they fall in.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the date type does not have an associated time zone, the t ime type can. Time zones in
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore not possible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

102

Chapter 8. Data Types

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommend not using the type time with time zone (though it is
supported by PostgreSQL for legacy applications and for compliance with the SQL standard). Post-
greSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 44.56). PostgreSQL uses the widely-used
z1ic time zone data for this purpose, so the same names are also recognized by much other software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular
offset from UTC, in contrast to full time zone names which might imply a set of daylight
savings transition-date rules as well. The recognized abbreviations are listed in the
pg_timezone_abbrevs view (see Section 44.55). You cannot set the configuration parameters
timezone or log_timezone using a time zone abbreviation, but you can use abbreviations in
date/time input values and with the AT TIME ZONE operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbrevi-
ation, offset is a numeric offset in hours west from UTC, and DST is an optional daylight-
savings zone abbreviation, assumed to stand for one hour ahead of the given offset. For example,
if ESTSEDT were not already a recognized zone name, it would be accepted and would be func-
tionally equivalent to USA East Coast time. When a daylight-savings zone name is present, it is
assumed to be used according to the same daylight-savings transition rules used in the zic time
zone database’s posixrules entry. In a standard PostgreSQL installation, posixrules is the
same as US/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings
rules. If needed, you can adjust this behavior by replacing the posixrules file.

There is a conceptual and practical difference between the abbreviations and the full names: abbre-
viations always represent a fixed offset from UTC, whereas most of the full names imply a local
daylight-savings time rule and so have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL
versions prior to 8.2, which were case-sensitive in some contexts and not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configura-
tion files stored under . . . /share/timezone/ and . ../share/timezonesets/ of the installation
directory (see Section B.3).

The timezone configuration parameter can be set in the file postgresgl . conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

« If timezone is not specified in postgresgl.conf nor as a server command-line option, the
server attempts to use the value of the Tz environment variable as the default time zone. If TZ is

103

Chapter 8. Data Types

not defined or is not any of the time zone names known to PostgreSQL, the server attempts to
determine the operating system’s default time zone by checking the behavior of the C library func-
tion localtime (). The default time zone is selected as the closest match among PostgreSQL’s
known time zones. (These rules are also used to choose the default value of log_timezone, if it is
not specified.)

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The PGTZz environment variable, if set at the client, is used by libpq applications to send a SET
TIME ZONE command to the server upon connection.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean. boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
rer
"true’
Yy
ryes’
1y

7,

For the “false” state, the following values can be used:

FALSE
If!
"false’
Inl
Inol
IOI

Leading and trailing whitespace is ignored. Using the key words TRUE and FALSE is preferred (and
SQL-compliant).

104

Chapter 8. Data Types

Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, 'non est’);
SELECT * FROM testl;

a | b
t | sic est

Example 8-2 shows that boolean values are output using the letters t and £.

boolean uses 1 byte of storage.

8.7. Enumerated Types

Enumerated (enum) types are data types that are comprised of a static, predefined set of values with
a specific order. They are equivalent to the enum types in a number of programming languages. An
example of an enum type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types

Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, 'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

Example 8-3. Basic Enum Usage

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, "happy’);

SELECT x FROM person WHERE current_mood = ’"happy’;
name | current_mood

______ e

Moe | happy

(1 row)

105

Chapter 8. Data Types

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type
was declared. All standard comparison operators and related aggregate functions are supported for
enums. For example:

Example 8-4. Enum Ordering

INSERT INTO person VALUES (’'Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT % FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ e
Moe | happy

Curly | ok

(2 rows)

SELECT x FROM person WHERE current_mood > ’'sad’ ORDER BY current_mood;

name current_mood

|
_______ e
Curly | ok
Moe | happy
(2 rows)

SELECT name FROM person
WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Enumerated types are completely separate data types and may not be compared with each other.

Example 8-5. Lack of Casting

CREATE TYPE happiness AS ENUM (’happy’, ’very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks int,

happiness happiness
)i
INSERT INTO holidays (num_weeks,happiness) VALUES (4, ’'happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’'very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’'ecstatic’);
INSERT INTO holidays (num_weeks, happiness) VALUES (2, ’sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

106

Chapter 8. Data Types

Example 8-6. Comparing Different Enums by Casting to Text

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so " happy’ is not the same as ’ HAPPY’. Spaces in the labels are
significant, too.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-16 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-16. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on the plane x,y)

line 32 bytes Infinite line (not fully | ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to (xLyl),...)
closed path)

circle 24 bytes Circle <(X,y),r> (center and

radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, yv)

107

Chapter 8. Data Types

X 7 Y

where x and y are the respective coordinates as floating-point numbers.

Points are output using the first syntax.

8.8.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using any
of the following syntaxes:

[(x1, y1) , (%2, y2) |
((x1, y1) , (x2, y2))
(x1, y1) , (%2, y2)
x1 , vyl ’ x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((xt, y1), (x2, y2))
(x1, y1) , (%2, y2)
x1 , vyl , x2 4, y2

where (x1, y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are not considered connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , «.. , (xn , yn) 1]
((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)

(x1 , yl ;e xn , yn)
x1 , yl ;oee e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first syntax.

108

Chapter 8. Data Types

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons should probably
be considered equivalent to closed paths, but are stored differently and have their own set of support
routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , «.. , (xn , yn))
(x1 , yl , (xn , yn)
(x1 , yl ’ xn , yn)
x1 , yl , xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and a radius. Values of type circle are specified using any
of the following syntaxes:

< (x, vyv) , r>
((x, yv), r)
(x, v) ., r
X 5 Y ’

where (x, y) is the center and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-17. It
is preferable to use these types instead of plain text types to store network addresses, because these
types offer input error checking and several specialized operators and functions (see Section 9.12).

Table 8-17. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, includ-
ing IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnet it is in, all

109

Chapter 8. Data Types

in one field. The subnet identity is represented by stating how many bits of the host address represent
the network address (the “netmask’). If the netmask is 32 and the address is IPv4, then the value does
not indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits specify
a unique host address. Note that if you want to accept networks only, you should use the cidr type
rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y part is left off, then the netmask is 32 for IPv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networks is address/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except that it will be at least large enough to include all of the octets written in the input. It is
an error to specify a network address that has bits set to the right of the specified netmask.

Table 8-18 shows some examples.

Table 8-18. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4£8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4£8:3:ba:2e0:811f:fe22:d 1{1 2B :4£8:3:ba:2e0:8 1ff:fe22:d 1£]1 MBI :4{8:3:ba:2e0:81ff:fe22:d1f
offff:1.2.3.0/120 +ffff:1.2.3.0/120 offff:1.2.3/120
ffff:1.2.3.0/128 ffff:1.2.3.0/128 offff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not.

110

Chapter 8. Data Types

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

708002b:010203"
708002b-010203"
70800.2b01.0203"
"08-00-2b-01-02-03"
708:00:2b:01:02:03"

which would all specify the same address. Upper and lower case is accepted for the digits a through
£. Output is always in the last of the forms shown.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), wWhere n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.3 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-7. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’007);

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, P
101 | 00
100 | 101

111

Chapter 8. Data Types

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The t svector type represents a document in a form suited for text search, while the t squery
type similarly represents a query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
make different variants of the same word look alike (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT ’a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

"a’ ’"on’ ’"and’ "ate’ ’'cat’ ’fat’ 'mat’ ’'rat’ ’sat’

(As the example shows, the sorting is first by length and then alphabetically, but that detail is seldom
important.) To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
"the’ 7’ ! ’lexeme’ ’spaces’ ’'contains’

(We use dollar-quoted string literals in this example and the next one, to avoid confusing matters by
having to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT Sthe lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

"a’ ’the’ 'Joe”s’ ’"quote’ ’lexeme’ ’contains’

Optionally, integer position(s) can be attached to any or all of the lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

"a’:1,6,10 "on’:5 "and’:8 "ate’:9 'cat’:3 ’"fat’:2,11 "mat’:7 ’'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
clamped to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be a, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’ ::tsvector;

112

Chapter 8. Data Types

tsvector

"a’ :1A ’'cat’:5 ’fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes that the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’::tsvector;
tsvector

For most English-text-searching applications the above words would be considered non-normalized,
but t svector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’The Fat Rats’);
to_tsvector

"fat’:2 'rat’:3

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them using the boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’"fat & rat’::tsquery;
tsquery

SELECT ’fat & (rat | cat)’::tsquery;
tsquery

SELECT ’fat & rat & ! cat’::tsquery;
tsquery

"fat’ & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only tsvector lexemes with one of those weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

113

Chapter 8. Data Types

"fat’ :AB & ’cat’

Quoting rules for lexemes are the same as described above for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before putting them into the t squery
type. The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery(’'Fat:ab & Cats’);
to_tsquery

"fat’ :AB & 'cat’

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as globally unique iden-
tifier, or GUID, instead.) Such an identifier is a 128-bit quantity that is generated by an algorithm
chosen to make it very unlikely that the same identifier will be generated by anyone else in the known
universe using the same algorithm. Therefore, for distributed systems, these identifiers provide a bet-
ter uniqueness guarantee than that which can be achieved using sequence generators, which are only
unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bbo9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, and omitting the hyphens. Examples are:

AQOEEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{aleebc99-9c0b-4ef8-bb6d-6bb90od380all}
aleebc999c0bdef8bb6d6bb9bd380all

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The contrib module contrib/uuid-ossp provides functions that implement several
standard algorithms. Alternatively, UUIDs could be generated by client applications or other libraries
invoked through a server-side function.

8.13. XML Type

The data type xml can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform

114

Chapter 8. Data Types

type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure —-with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character
node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } value)
Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
" <foo>bar</foo>’::xml

can also be used.

The xm1 type does not validate its input values against a possibly included document type declaration
(DTD).

The inverse operation, producing character string type values from xml, uses the function

xmlserialize:
XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be one of character, character varying, or text (or an alias name for those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When character string values are cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the
XML data passed through them. When using the text mode to pass queries to the server and query

115

Chapter 8. Data Types

results to the client (which is the normal mode), PostgreSQL converts all character data passed be-
tween the client and the server and vice versa to the character encoding of the respective end; see
Section 22.2. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data might become invalid
as the character data is converted to other encodings while travelling between client and server, while
the embedded encoding declaration is not changed. To cope with this behavior, an encoding decla-
ration contained in a character string presented for input to the xm1 type is ignored, and the content
is always assumed to be in the current server encoding. Consequently, for correct processing, such
character strings of XML data must be sent off from the client in the current client encoding. It is
the responsibility of the client to either convert the document to the current client encoding before
sending it off to the server or to adjust the client encoding appropriately. On output, values of type
xml will not have an encoding declaration, and clients must assume that the data is in the current
client encoding.

When using the binary mode to pass query parameters to the server and query results back to the
client, no character set conversion is performed, so the situation is different. In this case, an encoding
declaration in the XML data will be observed, and if it is absent, the data will be assumed to be in
UTF-8 (as required by the XML standard; note that PostgreSQL does not support UTF-16 at all).
On output, data will have an encoding declaration specifying the client encoding, unless the client
encoding is UTF-8, in which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
would be casting the expression to a character string type and indexing that, or indexing an XPath
expression. The actual query would of course have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL could also be used to speed up full-document searches
in XML data. The necessary preprocessing support is, however, not available in the PostgreSQL
distribution in this release.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

116

Chapter 8. Data Types

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)i

However, the current implementation does not enforce the array size limits — the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizes in CREATE TABLE is simply
documentation, it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard, can be used for one-dimensional arrays.
pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL
does not enforce the size restriction.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, type box uses a semicolon (;) but all
the others use comma (,). Each val is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

117

Chapter 8. Data Types

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.5. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT % FROM sal_emp;

name | pay_by_qguarter | schedule

_______ T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’'Bill’,
ARRAY[10000, 10000, 10000, 100001,
ARRAY [['meeting’, ’lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’lunch’]11]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.10.

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error
report, for example:

INSERT INTO sal_emp
VALUES (’Bill’,
/{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’');
ERROR: multidimensional arrays must have array expressions with matching dimensions

118

Chapter 8. Data Types

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing Iower-bound: upper—-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e. contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3][1:2] then referencing
schedule[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

119

Chapter 8. Data Types

An array slice expression likewise yields null if the array itself or any of the subscript expressions
are null. However, in other corner cases such as selecting an array slice that is completely outside the
current array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. If the
requested slice partially overlaps the array bounds, then it is silently reduced to just the overlapping
region.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2]1[1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps not so
convenient for programs. Dimensions can also be retrieved with array_upper and array_lower,
which return the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_upper

8.14.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter
WHERE name = ’'Carol’;

’{25000,25000,27000,27000}"

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter([l:2] = 7 {27000,27000}"
WHERE name = ’‘Carol’;

A stored array value can be enlarged by assigning to element(s) not already present. Any positions
between those previously present and the newly assigned element(s) will be filled with nulls. For
example, if array myarray currently has 4 elements, it will have six elements after an update that
assigns to myarray [6], and myarray [5] will contain a null. Currently, enlargement in this fashion
is only allowed for one-dimensional arrays, not multidimensional arrays.

120

Chapter 8. Data Types

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[—2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2]1,1[3,41];
?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed on to either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1l || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,41] || ARRAY[[5,6],[7,81,19,011);
array_dims

[1:5][1:2]
(1 row)

121

Chapter 8. Data Types

When an N-dimensional array is pushed on to the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,1[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, the functions exist primarily for use in implementing the
concatenation operator. However, they might be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,61]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],(3,411);
array_cat

{{5,6},{1,2},{3,4}}

8.14.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand,
if you know the size of the array. For example:

SELECT x FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR

122

Chapter 8. Data Types

pay_by_qgquarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is described in Section 9.20. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you could find rows where the array had all values equal to 10000 with:

SELECT = FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale up better to large numbers of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else: it
is determined by the typdelim setting for the array’s element type. (Among the standard data types
provided in the PostgreSQL distribution, type box uses a semicolon (;) but all the others use comma.)
In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces,
and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT £1[1][-2][3] AS el, £f1[1][-1][5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:51={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

123

Chapter 8. Data Types

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL” to
be entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter might be turned of f to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can write double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or whatever the delimiter character is), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, use escape string syntax and precede it with a backslash. Alternatively, you can
use backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can write whitespace before a left brace or after a right brace. You can also write whitespace
before or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.2)
can be used to avoid the need to double backslashes.

Tip: The arrAY constructor syntax (see Section 4.2.10) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values
are written the same way they would be written when not members of an array.

8.15. Composite Types

A composite type describes the structure of a row or record; it is in essence just a list of field names
and their data types. PostgreSQL allows values of composite types to be used in many of the same
ways that simple types can be used. For example, a column of a table can be declared to be of a
composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision

124

Chapter 8. Data Types

)

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a quite different kind of CREATE TYPE command is meant, and you’ll
get odd syntax errors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (
item inventory_item,

count integer
)i

INSERT INTO on_hand VALUES (ROW ('’ fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’SELECT S$l.price x $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition
do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite constant
is the following:

'(vall , valz , ...)’

An example is:

125

Chapter 8. Data Types
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nn , 4 2 ,) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.5. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax, since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (’ fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to:

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.11.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a field name, per SQL syntax
rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the i tem column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

126

Chapter 8. Data Types
SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will provoke a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specity subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

r 42y’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent
a double quote character, analogously to the rules for single quotes in SQL literal strings.) Alterna-
tively, you can use backslash-escaping to protect all data characters that would otherwise be taken as
composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

127

Chapter 8. Data Types

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.2) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 0IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regconfig, and regdictionary. Table 8-19 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable’ ::regclass;

rather than:

128

Chapter 8. Data Types

SELECT x= FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-19. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc Pg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | « (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name pPg_type
regtype pg_type data type name integer
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most uses regprocedure or regoperator is more appropriate. For
regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is that if a constant of one of these types appears in a
stored expression (such as a column default expression or view), it creates a dependency on the refer-
enced object. For example, if a column has a default expression nextval (‘my_seq’ : : regclass),
PostgreSQL understands that the default expression depends on the sequence my_seq; the system
will not let the sequence be dropped without first removing the default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

129

Chapter 8. Data Types

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8-20 lists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

anyarray Indicates that a function accepts any array data
type (see Section 34.2.5).

anyelement Indicates that a function accepts any data type
(see Section 34.2.5).

anyenum Indicates that a function accepts any enum data

type (see Section 34.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 34.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified
row type.

trigger A trigger function is declared to return
trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all

the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow only void and record as a result type (plus t rigger when the function is used as a trig-
ger). Some also support polymorphic functions using the types anyarray, anyelement, anyenum,

and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

130

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators
and some explicitly marked functions, are not specified by the SQL standard. Some of the extended
functionality is present in other SQL database management systems, and in many cases this func-
tionality is compatible and consistent between the various implementations. This chapter is also not
exhaustive; additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.12 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

131

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of type boolean; expressions like 1 < 2 < 3 are not
valid (because there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Similarly,

a NOT BETWEEN x AND y

is equivalent to

a< x OR a > y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally. BETWEEN SYMMETRIC is the same as BETWEEN except
there is no requirement that the argument to the left of AND be less than or equal to the argument on
the right; the proper range is automatically determined.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms
to the SQL standard.

132

Chapter 9. Functions and Operators

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses t0 x IS NULL.
This was the default behavior in PostgreSQL releases 6.5 through 7.1.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null
or when all the row’s fields are null, while 1s noT NULL is true when the row expression itself is
non-null and all the row’s fields are non-null. This definition conforms to the SQL standard, and is
a change from the inconsistent behavior exhibited by PostgreSQL versions prior to 8.2.

The ordinary comparison operators yield null (signifying “unknown”) when either input is null. An-
other way to do comparisons is with the IS [NOT] DISTINCT FROM construct:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, when both inputs
are null it will return false, and when just one input is null it will return true. Similarly, IS NOT
DISTINCT FROM is identical to = for non-null inputs, but it returns true when both inputs are null,
and false when only one input is null. Thus, these constructs effectively act as though null were a
normal data value, rather than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as Is NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1

133

Chapter 9. Functions and Operators

Operator Description Example Result
* multiplication 2 x 3 6
/ division (integer 4 /2 2
division truncates
results)
% modulo (remainder) 5% 4 1
~ exponentiation 2.0 ~ 3.0 8
I/ square root |/ 25.0 5
|1/ cube root [1/ 27.0 3
! factorial 5 | 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where

noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as x) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) smallest integer ceil (-42.8) -42
numeric) not less than

argument
ceiling(dp or |(same as input) smallest integer ceiling(-95.3)|-95

numeric)

not less than
argument (alias
for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

|2

exp (dp or

numeric)

(same as input)

exponential

exp (1.0)

2.718281828459

134

Chapter 9. Functions and Operators

P45

Vo

148

|

Function Return Type Description Example Result
floor (dp or (same as input) largest integer not | floor (-42.8) -43
numeric) greater than
argument
1n(dp or (same as input) natural logarithm |1n(2.0) 0.693147180559
numeric)
log(dp or (same as input) base 10 logarithm | 10g (100.0) 2
numeric)
log (b numeric, |numeric logarithm to base |log (2.0, 6.0000000000
X numeric) b 64.0)
mod (y, x) (same as argument | remainder of y/x |mod (9, 4) 1
types)
pi() dp “r” constant pi() 3.141592653589
power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric a raised to the power (9.0, 729
numeric, b power of b 3.0)
numeric)
radians (dp) dp degrees to radians |radians(45.0) |0.785398163397
random () dp random value in random ()
the range 0.0 <=
x < 1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric round to s round (42.4382,|42.44
numeric, s decimal places 2)
int)
setseed (dp) void set seed for setseed (0.54823)
subsequent
random () calls
(value between 0
and 1.0)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqrt (dp or (same as input) square root sqgrt (2.0) 1.414213562373
numeric)
trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Z€10
trunc (v numeric truncate to s trunc(42.4382,142.43

numeric, s

int)

decimal places

2)

135

Chapter 9. Functions and Operators

dp, bl dp, b2

dp, count int)

to which operand
would be assigned
in an equidepth
histogram with
count buckets, in
the range b1l to b2

0.024,
5)

10.06,

Function Return Type Description Example Result
width_bucket (op | int return the bucket |width_bucket (5}35,
numeric, bl to which operand | 0.024, 10.06,
numeric, b2 would be assigned | 5)
numeric, count in an equidepth
int) histogram with
count buckets, in
the range b1 to b2
width_bucket (op | int return the bucket |width_bucket (5}35,

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take argu-

ments and return values of type double precision.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x)

inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions with a special syntax wherein certain key words rather than com-
mas are used to separate the arguments. Details are in Table 9-5. These functions are also implemented
using the regular syntax for function invocation. (See Table 9-6.)

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,

136

Chapter 9. Functions and Operators

the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if
you need to duplicate the previous behavior.

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation "greSQL’
string || text String 'Value: ' || Value: 42
non-string Or concatenation 42
non-string || with one
string non-string input
bit_length (string)nt Number of bits in |bit_length (’ jo$ad2)
string
char_length (strijnnt Number of char_length(’ jode’)
or characters in
character_length|(string) string
lower (string) text Convert string to | lower (" TOM’) tom
lower case
octet_length (striimt Number of bytes |octet_length (’ jése’)
in string
overlay (string |text Replace substring | overlay (' TxxxxaEhomas
placing string placing ’"hom’
from int [for from 2 for 4)
int])
position (substrinbnt Location of position(’om’ |3
in string) specified substring | in ' Thomas”’)
substring (string text Extract substring substring (! Thomhst
[from int] from 2 for 3)
[for int])
substring (string text Extract substring | substring (' Thommas
from pattern) matching POSIX |from "...s$")
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

137

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string text Extract substring | substring (' Thomema
from pattern matching SQL from
for escape) regular "S#"o_a#"_’
expression. See for "#7)
Section 9.7 for
more information
on pattern
matching.
trim([leading |text Remove the trim(both ’x’ |Tom
| trailing | longest string from
both] containing only " xTomxx"')
[characters] the characters
from string) (a space by
default) from the
start/end/both
ends of the
string
upper (string) text Convensnﬂngto upper (" tom’) TOM
uppercase

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings. the
argument must be
a strictly ASCII
character.

ascii(’'x")

120

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’xyxtrimy

"xy’)

yExin

138

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

chr (int)

text

Character with
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate a strictly
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

A

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSTION.
Also there are
some predefined
conversions. See
Table 9-7 for
available
conversions.

convert (' text_
"UTF8’,
"LATIN1")

ihextf&h,utf8
represented in ISO
8859-1 encoding

convert_from (str

bytea,
src_encoding

name)

text

ing

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from(’téergktinnutf&s,

"UTF8")

represented in the
current database
encoding

139

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert_to (strin
text,
dest_encoding

name)

bytea
g

Convert string to

dest_encoding.

convert_to (’soj
text’,
"UTF8’")

neome text
represented in the
UTF8 encoding

decode (string
text, type

text)

bytea

Decode binary
data from string
previously
encoded with
encode.
Parameter type is
same as in

encode.

decode (' MTIzAA}R
"base64d’)

££23\000\001

encode (data
bytea, type

text)

text

Encode binary
data to different
representation.
Supported types
are: base64, hex,
escape. Escape
merely outputs
null bytes as \000
and doubles
backslashes.

encode (E’ 123\\
"baseb64d’)

MUY XBRAEE,

initcap (string)

text

Convert the first
letter of each
word to uppercase
and the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS')

Hi Thomas

length (string)

int

Number of
characters in

string

length (' jose’)

length (stringbyt]

encoding name)

eint

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8’)

140

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

lpad (string
text, length
int [, fill

text])

text

Fill up the
string to length
length by
prepending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated (on
the right).

lpad("hi’,
"xy'")

5,

xyxhi

ltrim(string
text [,
characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim (/" zzzytriy

Ixyzl)

trim

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24f
d6963£7d28el7f

b0
V2

pg_client_encodi]

nyahe

Current client
encoding name

pg_client_enco

H$0% (ASCIT

quote_ident (stri]

text)

roext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled.

quote_ident ('F

bar’)

p&Foo bar"

141

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (stjriexgt

text)

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

OR”"Reilly’)

quote_literal (valuext

anyelement)

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

1243)5"

regexp_matches (
text, pattern
[/

text])

text flags

stxatngf text[]

Return all
captured
substrings
resulting from
matching a
POSIX regular
expression against
the string. See
Section 9.7.3 for
more information.

regexp_matches

" (bar) (beque)”’

({Pavhbehgagleba

4

regexp_replace (
text, pattern
text,
replacement
text [, flags
text])

tireixty

Replace
substring(s)
matching a
POSIX regular
expression. See
Section 9.7.3 for
more information.

regexp_replace
" . [mN]a.’,

IMI)

(TEMomas’,

regexp_split_to_|

text, pattern
text [, flags
text 1)

atrexy (dtring

Split string
using a POSIX
regular expression
as the delimiter.
See Section 9.7.3
for more
information.

regexp_split_t
world’,
E’\\s+")

p{hetdyg (Wheldd

142

~

Chapter 9. Functions and Operators

Function Return Type Description Example Result
regexp_split_to_ftaele fsieiy Split string regexp_split_toheabdwerhdl(@®
text, pattern using a POSIX world’, rOwSs)
text [, flags regular expression |E’ \\s+")
text]) as the delimiter.

See Section 9.7.3

for more

information.
repeat (string text Repeat string repeat (' Pg’, PgPgPgPg
text, number the specified 4)
int) number of times
replace (string |text Replace all replace (' abcdefabEdefapxXef
text, from occurrences in fed’, TXX')
text, to text) string of

substring from

with substring to
rpad (string text Fill up the rpad(’hi’, 5, |hixyx
text, length stringtolength |’xy’)
int [, £fill length by
text]) appending the

characters fill (a

space by default).

If the stringis

already longer

than 1length then

it is truncated.
rtrim(string text Remove the rtrim(’trimxxxxtyrim
text [, longest string ')
characters containing only
text]) characters from

characters (a

space by default)

from the end of

string
split_part (stringext Split stringon |split_part (' ab¢d@fdef~@~ghi’,
text, delimiter delimiter and I~@~", 2)
text, field return the given
int) field (counting

from one)
strpos (string, |int Location of strpos (’high’, |2

substring)

specified substring
(same as
position (substr
in string), but
note the reversed

argument order)

"ig”)

ing

143

Chapter 9. Functions and Operators

from from for

count))

Function Return Type Description Example Result
substr (string, |text Extract substring | substr (’ alphabeph,
from [, (same as 3, 2)

count]) substring (string

text [,

encoding text])

to_ascii (string | text

Convert string
to ASCII from
another encoding
(only supports
conversion from
LATINI, LATIN2,
LATINO, and
WIN1250
encodings)

to_ascii ('KarelKarel

to_hex (number

int or bigint)

text

Convert number
to its equivalent
hexadecimal
representation

to_hex (214748363FFfEffff

translate (string
text, from

text, to text)

text

Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to

set

translate (' 1234823x5

7147, ’ax’)

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCITI MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTF8
big5_to_euc_tw BIG5 EUC_TW
bigb_to_mic BIGS MULE_INTERNAL
bigb_to_utf8 BIGS UTFE8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigb EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TwW UTF8

144

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

gb18030_to_utf8 GB18030 UTF8
gbk_to_utfs8 GBK UTFEF8
is0_8859_10_to_utf8 LATING UTF8
is0_8859_13_to_utf8 LATIN7 UTF8
iso_8859_14_to_utfs LATINS UTF8
iso_8859_15_to_utf8 LATINO UTF8
iso_8859_16_to_utf8 LATIN1O UTFEF8
is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859_1 to_utfs LATIN1 UTF8
is0_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utfs8 LATINZ2 UTF8

iso_8859 2 to_windows_1250ATIN2 WIN1250
is0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3 to_utfs8 LATIN3 UTFEF8
is0_8859_4_to_mic LATIN4 MULE_INTERNAL
is0_8859_4_to_utfs LATIN4 UTF8
iso_8859_5_to_koi8_r IS0O_8859_5 KOI8
is0_8859_5_to_mic IS0_8859_5 MULE_INTERNAL
iso0_8859_5_to_utf8 ISO_8859_5 UTF8
iso_8859_5_to_windows_125I50_8859_5 WIN1251
iso_8859_5_to_windows_866I50_8859_5 WINB66
iso_8859_6_to_utfs IS0O_8859_6 UTF8
iso_8859_7_to_utfs8 IS0_8859_7 UTF8
is0_8859_8_to_utfs8 IS0O_8859_8 UTF38
iso_8859_9 to_utfs8 LATINS UTF8
johab_to_utfs8 JOHAB UTFEF8
koi8_r_to_iso_8859_5 KOIS8 IS0O_8859_5
koi8_r_to_mic KOI8 MULE_INTERNAL
koi8_ r_ to_utf8 KOIS8 UTF8

koi8_r_ to_windows_1251 KOIS8 WIN1251
koi8_r_ to_windows_866 KO1IS8 WIN866
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_1iso_8859_2 MULE_INTERNAL LATIN2

145

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_1iso_8859_4 MULE_INTERNAL LATIN4
mic_to_1iso_8859_5 MULE_INTERNAL IS0O_8859_5
mic_to_koi8_ r MULE_INTERNAL KOIS8
mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
tcvn_to_utfs8 WIN1258 UTF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTFES8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTFE8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030

ut £8_to_gbk UTFES8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_13 UTF8 LATIN7
utf8_to_iso_8859_14 UTF8 LATINS8
utf8_to_iso_8859_ 15 UTF8 LATINO
utf8_to_iso_8859 16 UTFES8 LATIN1O
utf8_to_iso_8859_2 UTFE8 LATINZ2
utf8_to_iso_8859_3 UTF8 LATIN3
utf8 _to_iso_8859 4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0O_8859_5
utf8_to_iso_8859_6 UTF8 ISO_8859_6
utf8_to_iso_8859_7 UTF8 IS0_8859_7
utf8_to_iso_8859_8 UTF8 IS0_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
utf8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTF8 KOI8
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTFS8 WIN1258
utf£8_to_uhc UTFES8 UHC
utf8_to_windows_1250 UTF8 WIN1250
utf8_to_windows_1251 UTFS8 WIN1251

146

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1253 UTFES8 WIN1253
utf8_to_windows_1254 UTFE8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTF8 WIN1257
utf8_to_windows_866 UTFS8 WINB866
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_iso_8859|WIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859|WIN1251 IS0_8859_5
windows_1251_to_koi8_r WIN1251 KOI8
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_8WEN1251 WIN866
windows_1252 to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_ _bWIN866 I5S0_8859_5
windows_866_to_koi8_r WIN866 KO1IS8
windows_866_to_mic WINB66 MULE_INTERNAL
windows_866_to_utf8 WINB866 UTF8
windows_866_to_windows_1RPBIN866 WIN
windows_874_to_utf8 WINB74 UTF8
euc_jis_2004_to_utfs8 EUC_JIS_2004 UTFE8

ut8_to_euc_jis_2004

UTF8

EUC_JIS_2004

shift_jis_2004_to_utf8

SHIFT_JIS_2004

UTFS8

ut8_to_shift_jis_2004

UTF8

SHIFT_JIS_2004

euc_jis_2004_to_shift_ji

sEDQ04TIS_2004

SHIFT_JIS_2004

shift_jis_2004_to_euc_ji

sSHOPE_JIS_2004

EUC_JIS_2004

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores followed by _to_

followed by the equally processed destination encoding name. Therefore the names might deviate
from the customary encoding names.

147

Chapter 9. Functions and Operators

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details are in Table 9-8. Some functions are also implemented
using the regular syntax for function invocation. (See Table 9-9.)

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :byk&Rost’ gres\00
string concatenation |

E’\\047gres\\000’ : :bytea
get_bit(string,|int Extract bit from |get_bit (E’ Th\\QQOomas’ : :bytea
offset) string 45)
get_byte(string,int Extract byte from | get_byte (E’ Th\\000omas’ : :bytea,
offset) string 4)
octet_length (striimyt) Number of bytes |octet_length (Ef50\\000se’ ::bytea)

in binary string

position (substrinbnt Location of position (E’\\0QBom’ : :bytea
in string) specified substring | in

E’Th\\000omas’ } :bytea)
set_bit(string,|bytea Set bit in string set_bit (E' Th\\Q0hsNaB8bmAbytea
offset, 45, 0)
newvalue)
set_byte(string,bytea Set byte in string | set_byte (E’ Th\\UB86RAskasbytea,
offset, 4, 64)
newvalue)
substring (string bytea Extract substring | substring (E’ Th\hQ006mas’ : :bytea
[from int] from 2 for 3)
[for int])
trim([both] bytea Remove the trim(E’\\00OQ’ : | Bymea

bytes from

string)

longest string
containing only
the bytes in
bytes from the
start and end of

string

from
E’\\000Tom\\00

D’ ::bytea)

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of
them are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function

Return Type

Description

Example

Result

148

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

btrim(string
bytea, bytes

bytea)

bytea

Remove the
longest string
consisting only of
bytes in bytes
from the start and
end of string

btrim(E"\\000t
E’\\000’ : :byte

ritmin000’ : :byte
2)

2y

decode (string
text, type

text)

bytea

Decode binary
string from
string
previously
encoded with
encode.
Parameter type is
same as in

encode.

decode (E’ 123\\

"escape’)

0235600456

encode (string
bytea, type

text)

text

Encode binary
string to
ASClII-only
representation.
Supported types
are: base64, hex,

escape.

encode (E’ 123\\

"escape’)

D0A356004bgtea,

length (string)

int

Length of binary
string

length (E’ 30\ \0

DBse’ : :bytea)

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (E’ Th\\000or

8ab2cdBgbé8paarf
04958c334c82d8

18
Dl

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the types bit and bit varying. Aside from the usual comparison operators, the operators
shown in Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result
| concatenation B710001" || 10001011
B/ 011’
& bitwise AND B’ 10001’ & 00001
B’01101"
bitwise OR B’10001" | 11101
B’ 01101’

149

Chapter 9. Functions and Operators

Operator Description Example Result

bitwise XOR B’10001" # 11100
B’01101'

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001" << 3 01000

>> bitwise shift right B’10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10) 0000101100
44::pbit (3) 100

cast (=44 as bit(12)) 111111010100
71110’ ::bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so it will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?” operators, functions
are available to extract or replace matching substrings and to split a string at the matches.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns true if the st ring is contained
in the set of strings represented by pattern. (As expected, the NOT LIKE expression returns false if
LIKE returns true, and vice versa. An equivalent expression is NOT (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

150

Chapter 9. Functions and Operators

"abc’ LIKE ’"abc’ true
"abc’ LIKE ’a%’ true
"abc’ LIKE '_b_’ true
"abc’ LIKE ’c’ false

LIKE pattern matches always cover the entire string. To match a sequence anywhere within a string,
the pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter in pattern must be preceded by the escape character. The default escape character is the back-
slash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement (assuming escape string
syntax is used, see Section 4.1.2.1). Thus, writing a pattern that actually matches a literal backslash
means writing four backslashes in the statement. You can avoid this by selecting a different escape
character with ESCAPE; then a backslash is not special to LIKE anymore. (But it is still special to the
string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writing ESCAPE . This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~« corresponds to ILIKE. There are also !~~ and
! ~~x operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are
PostgreSQL-specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is much like LIKE, except that it interprets the pattern using the SQL standard’s definition of
aregular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern can match any part of the string. Also
like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any
string, respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).
« « denotes repetition of the previous item zero or more times.
+ + denotes repetition of the previous item one or more times.

» Parentheses () can be used to group items into a single logical item.

151

Chapter 9. Functions and Operators

« A bracket expression [.. .] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition (? and { . . . }) are not provided, though they exist in POSIX. Also, the
dot (.) is not a metacharacter.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO ’abc’ true
"abc’ SIMILAR TO ’'a’ false
"abc’ SIMILAR TO %

(%! true
"abc’ SIMILAR TO ' (b ’

false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match to the entire data string, else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers is returned.

Some examples:

substring (' foobar’ from ’$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from ’'#"o_b#"$’ for '#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, "thomas’ ~ ’.xthomas.x’
case sensitive
~x Matches regular expression, ’thomas’ ~=
case insensitive ! .xThomas. '
I~ Does not match regular "thomas’ !~
expression, case sensitive " . «Thomas.x’
L~k Does not match regular "thomas’ !~x
expression, case insensitive " oxvadim. x’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As with LIKE, pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different

152

Chapter 9. Functions and Operators

special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc’ ~ ’"abc’ true
"abc’ ~ "7a’ true
"abc’ ~ " (b|d)’ true
rabce’ ~ """ (blc)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (’ foobar’ from ’'o0.b’) oob
substring (' foobar’ from ‘o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, f1ags]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \ n, where n is 1 through 9, to indicate that the source
substring matching the n’th parenthesized subexpression of the pattern should be inserted, and it can
contain \ & to indicate that the substring matching the entire pattern should be inserted. Write \\ if you
need to put a literal backslash in the replacement text. (As always, remember to double backslashes
written in literal constant strings, assuming escape string syntax is used.) The f1ags parameter is an
optional text string containing zero or more single-letter flags that change the function’s behavior. Flag
i specifies case-insensitive matching, while flag g specifies replacement of each matching substring
rather than only the first one. Other supported flags are described in Table 9-19.

Some examples:

regexp_replace (’ foobarbaz’, 'b..’, 'X")

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X", 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Y’, 'g’)

fooXarYXazY

The regexp_matches function returns all of the captured substrings resulting from matching a
POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern [, flags
]). If there is no match to the pattern, the function returns no rows. If there is a match, the function
returns a text array whose n’th element is the substring matching the n’th parenthesized subexpression

153

Chapter 9. Functions and Operators

of the pattern (not counting “non-capturing” parentheses; see below for details). If the pattern does
not contain any parenthesized subexpressions, then the result is a single-element text array containing
the substring matching the whole pattern. The £1ags parameter is an optional text string containing
zero or more single-letter flags that change the function’s behavior. Flag g causes the function to find
each match in the string, not only the first one, and return a row for each such match. Other supported
flags are described in Table 9-19.

Some examples:

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (’ foobarbequebazilbarfbonk’, ' (b["b]l+) (b["b]+)", "g’);
regexp_matches

{bar, beque}
{bazil,barf}
(2 rows)

SELECT regexp_matches (' foobarbequebaz’, ’'barbeque’);
regexp_matches

{barbeque}
(1 row)

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is
no match to the pattern, the function returns the string. If there is at least one match, for each
match it returns the text from the end of the last match (or the beginning of the string) to the beginning
of the match. When there are no more matches, it returns the text from the end of the last match to the
end of the string. The f1ags parameter is an optional text string containing zero or more single-letter
flags that change the function’s behavior. regexp_split_to_table supports the flags described in
Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table (’the quick brown fox Jjumped over the lazy dog’, E’
foo

154

Chapter 9. Functions and Operators
(9 rows)

SELECT regexp_split_to_array(’the quick brown fox jumped over the lazy dog’,
regexp_split_to_array
{the, quick, brown, fox, jumped, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table (’the quick brown fox’, E’\\sx’) AS foo;

foo

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that is implemented by regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a package written by Henry Spencer. Much
of the description of regular expressions below is copied verbatim from his manual entry.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
f